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Abstract: We provide a comprehensive and in-depth overview of the various approaches applicable
to the recognition of Data Matrix codes in arbitrary images. All presented methods use the typical
“L” shaped Finder Pattern to locate the Data Matrix code in the image. Well-known image processing
techniques such as edge detection, adaptive thresholding, or connected component labeling are used
to identify the Finder Pattern. The recognition rate of the compared methods was tested on a set
of images with Data Matrix codes, which is published together with the article. The experimental
results show that methods based on adaptive thresholding achieved a better recognition rate than
methods based on edge detection.

Keywords: Data Matrix code recognition; edge detection; adaptive thresholding; finder pattern;
timing pattern; perspective distortion

1. Introduction

The popularity and use of two-dimensional (2D) matrix codes are growing and they
are replacing traditional linear 1D barcodes in many areas of life. The most important
advantages of 2D codes are the data capacity (the ability to store more data in a smaller
area) and the error correction ability (by utilizing Reed-Solomon algorithm). A 2D code
attached to the product can contain detailed information about the product, manufacturer,
recipient, customer, and therefore find uses in production, inventory, distribution, sales,
and repair processes.

Two-dimensional matrix codes are built of black and white modules (also called cells),
usually arranged in a square pattern. One module represents the smallest building block
and, in the data area, the dark module usually encodes binary 1 and the light module
binary 0. As more data is encoded in a 2D code, the number of modules (rows and
columns) increases.

Each type of 2D code has its characteristic fixed parts, which are used to determine its
position and orientation (Finder Pattern) and to determine its dimensions (Timing Pattern).
Variable parts encode data (Figure 1).

Figure 1. Structure of Data Matrix code compared to QR Code.
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Data Matrix and QR Codes are the most common types of 2D codes (Table 1). Data
Matrix codes are usually used to mark small items such as electronic components because
they need less space to encode the same amount of data.

Table 1. Comparison of Data Matrix codes and QR codes.

Feature Data Matrix Codes QR Codes

Size from 10 × 10 to 144 × 144 modules
(increment by +2)

from 21 × 21 to 177 × 177 modules
(incremented by +4)

Capacity 3116 numeric or 2335 alphanumeric or 1556 bytes 7089 numeric or 4296 alphanumeric or 2953 bytes
(at lowest error correction level)

Error Correction Level one level up to 30% damage four configurable levels: L (Low): 7%, M
(Medium): 15%, Q (Quartile): 25%, H (High): 30%

Finder Pattern “L” shaped on the edge
at three corners of a QR Code. Each Finder Pattern
is formed by an inner dark square surrounded by a

dark frame

Timing Pattern alternating dark and light modules at the edge alternating dark and light modules placed inside a
QR Code and interconnecting Finder Patterns

License public domain public domain

Related Work

Recently, relatively few articles have been published dealing with the recognition
of Data Matrix codes in images (most authors focus on recognizing QR codes). Qiang
Huang et al. in [1] presented the Finder Pattern detection method mainly based on
line segment detection [2] and combination. Donghong et al. [3] proposed an algorithm
based on the Radon transform and Chenguang et al. [4] proposed the algorithm based
on the Hough transform (both of these algorithms are time-consuming). Liu et al. [5]
combined connected region selection, based on region feature analysis, and positioning
using the line Snake algorithm. Cho et al. [6] utilized the Selective Search method to
detect candidate regions, followed by LBP (Local Binary Patterns) and HOG (Histogram of
Oriented Gradients) feature extraction and SVM (Support Vector Machine) classification to
determine 2D code regions. Sörös [7] suggested a 2D code localization algorithm, which
combines the search for areas with a high concentration of edge structures as well as for
areas with a high concentration of corner structures.

2. The Data Matrix Code Localization Methods

In the following sections, we will give an overview of several methods for localization
Data Matrix codes in images which all utilize a typical “L” shaped Finder Pattern. The
individual steps of the Data Matrix code localization algorithms are schematically shown
in Figure 2 (some steps are common to different algorithms/methods).

Finder Pattern localization is based on the assumption that the Finder Pattern area is
darker than its surroundings and therefore can be segmented based on the gray intensity.
Two basic image processing techniques are utilized:

• Edge detection (see Section 2.1)
• Adaptive thresholding (see Section 2.2)

The procedures described in Sections 2.3–2.6 are common and follow up the proce-
dures described in Sections 2.1 and 2.2.
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Figure 2. The flow chart of the proposed algorithms.

2.1. Edge Detection Methods (Method Group 1)

An input grayscale image is convolved using a 3 × 3 Sobel operator [8]. The Sobel
operator approximates the first derivates of the image function and uses two kernels to
approximate horizontal Gx and vertical Gy derivate at each point in the input image I
Equation (1).

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

 ∗ I, Gy =

 −1 −2 −1
0 0 0
+1 +2 +1

 ∗ I (1)

where Gx, Gy are images approximating horizontal and vertical derivates, respectively, and
I is an input grayscale image.

Using these gradient images, the gradient magnitude image M (Figure 3b) and the
gradient direction image A (Figure 3c) are computed Equation (2).

M =
√

G2
x + G2

y , A = arctan
(

Gy

Gx

)
(2)

A gradient direction is perpendicular to a direction of the edge.
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Figure 3. (a) grayscale image; (b) gradient magnitude image; (c) gradient direction image.

2.1.1. Connecting of Edge Points into Continuous Regions (Alternative 1)

A modified 2-pass connected component labeling algorithm [9] is applied to the
gradient images. Edge points that meet all of the following conditions are joined into
continuous regions:

• Gradient magnitude of edge point (in the gradient magnitude image M) must be
above fixed limit 90 (weak edges caused by noise are ignored);

• Gradient direction of edge point (in the gradient direction image A) must not differ by
more than 22 degrees from the average angle of the region (i.e., the average of gradient
directions of edge points that have been joined into the given region so far);

• The intensity of at least one neighboring point in the grayscale image I is under fixed
value 110 (Data Matrix code must be an object dark enough in an image).

A region descriptor is maintained for each continuous region (BLOB). As the individ-
ual edge points (at coordinates x, y) are added to the given continuous region, the region
descriptor is updated as follows:

• Area← Area + 1 (M00 ←M00 + 1);
• An outer bounding box: Top, Right, Bottom and Left;
• A sum of gradient directions (angles): Angles← Angles + A (x, y);
• Region moments: M10←M10 + x, M01←M01 + y, M11←M11 + x× y, M20←M20 + x× x,

M02 ←M02 + y × y.

After all the regions are labeled (Figure 4a), the region moments are used to compute
the region centroid C and the region orientation Θ (Equation (3); region orientation is the
angle between the x-axis and the major axis of the region).

C =
(

M10
M00

, M01
M00

)
=
(
Cx, Cy

)
,

Θ = 1
2 arctan

(
2µ11

µ20−µ02

)
= 1

2 arctan
(

2(M11−Cx M01)

(M20−Cx M10)−(M02−Cy M01)

) (3)

Figure 4. (a) colored continuous regions; (b,c) significant linear regions.

The modification of 2-pass connected component labeling algorithm consists of:



J. Imaging 2021, 7, 163 5 of 18

• Adding an intermediate step, where also nearby (their distance is at most 2 points)
distinct regions of a similar direction (their difference in angles is at most 7.5 degrees)
are marked as equivalent (Figure 5a; this situation can occur with synthetic Data
Matrix codes, where there are “sharp stairs”);

• Adding a finalization step, where distinct regions which have end-points that are at
most three points apart and the angle Θ (Equation (3)) of regions differs by less than
five degrees and the major axis of one region is not more than 1.5 points away from
the centroid C (Equation (3)) of the other region are joined (Figure 5b; this situation
can occur when there are “bumpy edges”).

Figure 5. (a) “sharp stairs”; (b) “bumpy edges”.

Evaluation of connected regions—filtering out non-linear regions.
Region descriptors are evaluated and small regions with an area of less than 40 are

filtered out first. For the remaining regions, it is verified whether it is possible to put a line
passing through the region’s centroid C at an angle Θ (Equation (3)) and having at least
90% of the points in common with the region and the length of this line segment is at least
20 points (Figure 4b). The common points of the line and the region form the axis of the
region with the two end-points.

Searching for Finder Pattern candidates—two adjacent perpendicular linear regions.
Region descriptors are scanned to find pairs of regions perpendicular to each other

(the difference between the right angle and the differences of the region angles Θ is less than
five degrees; if perspective distorted Data Matrix codes must be considered, the tolerance
must be increased accordingly), the distance of the regions end-points is less than five
points and their length does not differ by more than 10% (Figure 4c). The intersection of
the axes of the regions is the vertex (PB) of the Finder Pattern.

Processing continues in Section 2.3.

2.1.2. Connecting of Edge Points into Continuous Regions (Alternative 2)

The connected component labeling algorithm [9] is applied to the edge (magnitude)
image M (Figure 6b) obtained in the edge detection step (2.1; in contrast to the previous
Alternative 1, the orientation of the edges—gradient direction image A—is not taken into
account). A region descriptor is maintained for each continuous region (BLOB). As the
individual edge points are added to the given continuous region, it is updated as follows:

• Area← Area + 1;
• (x, y) coordinates of the added point are used to update 8 boundary points: Top-Left,

Top-Right, Right-Top, Right-Bottom, Bottom-Right, Bottom-Left, Left-Bottom, Left-Top.

Only the edge points which have a magnitude that is above a specified threshold
are considered. The threshold was experimentally set to 70 to ensure that weak edges
are ignored.
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Figure 6. (a) grayscale image; (b) edge image (magnitudes); (c) colored continuous edge regions.

2.1.3. Evaluation of Finder Pattern Candidates

Region descriptors computed during the connected component labeling phase are
used to filter out regions that cannot represent the outer edges of the Finder Pattern.
The candidate region must have a minimum area and such three boundary points (out of
8 boundary points; Figure 6c) which form an isosceles right-angled triangle. This procedure
is described in detail in Section 2.2.3.

2.1.4. Validating of Finder Pattern Candidates and Aligning to Finder Pattern

A Finder Pattern candidate region is described by three vertices—boundary points—
PA, PB, and PC, which form an isosceles right-angled triangle (Figure 7a; some tolerances
must be taken into account with respect to possible geometric deformations of a Data
Matrix code). However, the initial position of the line segments PA-PB and PB-PC may not
be optimal.

Figure 7. (a) three vertices (PA-PB-PC) of an isosceles right-angled triangle; (b) optimize position of
the line segments PA-PB (PB-PC) using region moments.

Minimizing the distance of the boundary line points to the candidate region points.
The optimal position of the boundary line PA-PB can be defined as such, where the

moment of inertia of the candidate region points is minimal, where line PA-PB is an axis
of rotation.

1. Start with an initial estimate of the boundary line PA-PB and the five points wide
region of interest along the PA-PB boundary line (Figure 7b);

2. Calculate centroid C and gradient k of optimized boundary line y using raw and
central statistical moments (when calculating the moments, take into account only the
candidate region points which are in the region of interest):

C =
(

M10
M00

, M01
M00

)
=
(
Cx, Cy

)
, k =

µ02−µ20+
√
(µ20−µ02)

2+4µ2
11

2µ11
,

q = Cy − kCx, y = kx + q
(4)
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3. Shift the end-points PA and PB of the boundary line using optimized line parameters
k and q. If the orientation of the line y is vertical (|k| > 1) then use y-coordinates of
the end-points PA and PB to update their x-coordinates (Px = (Py − q)/k), otherwise
use x-coordinates to update their y-coordinates (Py = Px × k + q).Narrow the width of
the region of interest by 1 point and repeat step 2;

4. Check if there is at least a 90% overlap of boundary line PA-PB and the candidate
region. If sufficient overlap is not found, the candidate region is rejected.

Apply the same procedure for the line segment PB-PC.
Processing continues in Section 2.3.

2.2. Adaptive Thresholding Methods (Method Group 2)
2.2.1. Binarization Using Adaptive Thresholding

Based on the assumption that the Data Matrix code is a darker object relative to
its immediate surroundings, the adaptive thresholding technique is used. The expected
result is that the points belonging to the dark modules become foreground points and the
points belonging to the light modules become background points (Figure 8b). Adaptive
thresholding techniques are able to distinguish dark and light points even when the image
is unevenly illuminated. For each point in the image, an individual threshold T(x, y) is
calculated, which is based on the intensity values of the points around it. In addition to
the local mean m(x, y) (Equation (5)), local variance s2(x, y) (Equations (6) and (7)) is often
used [10–12].

T(x, y) = m(x, y)− delta

m(x, y) = 1
w2

x+w/2
∑

i=x−w/2

y+w/2
∑

j=y−w/2
I(i, j) (5)

T(x, y) = m(x, y) + ks(x, y)

s2(x, y) = 1
w2

x+w/2
∑

i=x−w/2

y+w/2
∑

j=y−w/2
I(i, j)2 −m(x, y)2 (6)

T(x, y) = m(x, y)
[

1 + k
(

s(x, y)
128

− 1
)]

(7)

where w is a side of the local window with the center at (x, y) and k is constant. The size of
the local window must correspond to the expected maximum module sizes (it should be at
least five times greater; in our experiments, we worked with windows size 35 points).

Figure 8. (a) grayscale image; (b) binarized image; (c) colored continuous regions.

Besides these well-known adaptive thresholding techniques, we also introduced our
own (Equation (8)), which provided slightly better results:

T(x, y) = m(x, y)− I(x, y)
k1

− s2(x, y)
k2

(8)
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where k1 is a constant controlling penalization of light points, k2 is a constant controlling
decreasing of the local threshold for points in which neighborhood intensity significantly
varies (in our experiments k1 was set to 10 and k2 to 120).

2.2.2. Connecting Foreground Points into Continuous Regions

The connected component labeling algorithm [9] is applied to the binary image ob-
tained in the previous step. A region descriptor is maintained for each continuous region
(BLOB). As the individual foreground points are added to the given continuous region, it
is updated as follows:

• Area← Area + 1;
• (x, y) coordinates of the added point are used to update 8 boundary points: Top-Left,

Top-Right, Right-Top, Right-Bottom, Bottom-Right, Bottom-Left, Left-Bottom, Left-Top.

The result of the labeling algorithm is an image of the labels (each continuous region
is assigned its number; Figure 8c) and at the same time each region is described by an area
(number of foreground points) and a bounding octagon (defined by 8 boundary points).

(Note that this is the same procedure as in Section 2.1.2 with the difference that here
the foreground points from the binary image are connected, while in Section 2.1.2 the edge
points were connected).

2.2.3. Evaluation of Finder Pattern Candidates

Region descriptors computed during the connected component labeling phase are
used to filter out regions that cannot represent part of the Data Matrix code (including
Finder Pattern). Considering that the Data Matrix code has a square shape, the area
descriptors must meet the following conditions:

• Area of the region must be greater than 80 points (removes small areas, which cannot
be Finder Pattern part of the Data Matrix code);

• Aspect Ratio (width to height ratio) of the region must be in the interval <0.5; 2>;
• Extent (ratio of the area of the region to the area of the outer bounding box) must be in

the interval (0.1; 0.6).

These quick checks remove false-positive candidates (Figure 9a) but are not sufficient
to identify true Data Matrix Finder Pattern candidates, so additional filtering is required.

Figure 9. Data Matrix Finder Pattern candidates. (a) suppression of unfitting regions; (b) 8 boundary
points of region; (c) 3 vertices of a right triangle.

Each candidate region is also described by 8 boundary points (Figure 9b) denoted
as TL (Top-Left), TR (Top-Right), RT (Right-Top), RB (Right-Bottom), BR (Bottom-Right),
BL (Bottom-Left), LB (Left-Bottom), LT (Left-Top). If the candidate region should be a
Finder Pattern, then at least three points must form the vertices of an isosceles right-angled
triangle (Figure 9c). The boundary points form two quadrilaterals, defined by four points:

• TL (Top-Left)–RT (Right-Top)–BR (Bottom-Right)–LB (Left-Bottom);
• TR (Top-Right)–RB (Right-Bottom)–BL (Bottom-Left)–LT (Left-Top).
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A quadrilateral with a bigger perimeter (the one that represents the outer boundary of
the candidate region) is selected. As shown in Figure 10, the rotation of the Data Matrix
code affects the selection of the outer quadrilateral P1-P2-P3-P4 (the solid red line indicates
the outer quadrilateral, while the dashed line connects the boundary points that do not
form the outer quadrilateral).

Figure 10. Outer bounding boxes of candidate regions. (a) unrotated code; (b) rotated clockwise;
(c) rotated counterclockwise.

All four interior angles of the quadrilateral are evaluated to see whether their adjacent
vertices can form the vertices of an isosceles right-angled triangle (Equation (9); the length
of the two legs and the hypotenuse of the triangle is checked). Due to possible perspective
distortion of the Data Matrix code, some tolerances must be considered:

min(|PA, PB|, |PB, PC|) > 28
||PA, PB| − |PB, PC|| < 16∣∣∣∣|PA, PC| −

√
|PA, PB|2 + |PB, PC|2

∣∣∣∣ < max(4, 0.11|PA, PC|)
(9)

where PA, PC are adjacent vertices of one of the interior angles PB.
If formula Equation (10) applies then the vertices are arranged counter-clockwise

so that PA is top-left, PB is bottom-left and PC is the bottom-right vertex of the Finder
Pattern [13]. In this case, the vertices PA and PB are swapped so that the vertices are
arranged clockwise.

(PA.x− PB.x)(PC.y− PB.y)− (PA.y− PB.y)(PC.x− PB.x) < 0 (10)

(Note: Experiments have shown that if the 8 boundary points do not form a right-
angled triangle, it is effective to shrink the candidate region by one point, update the
boundary points and repeat the search again (small protrusions may appear on the edge of
the Finder Pattern due to imperfect thresholding).

2.2.4. Validating Finder Pattern Candidates and Aligning to Finder Pattern

The candidates for the Finder Pattern which have been identified on the basis of the
relative position of the three vertices PA, PB, and PC must be verified and the position of
the three vertices must be optimized to align to the Finder Pattern of the Data Matrix code
in the image. Points PA, PB, PC are the boundary points of the continuous region, but their
position may not be optimal due to image noise, imperfect local thresholding, or defects in
the Finder Pattern.

The following two alternative algorithms optimize the position of the boundary lines
PA-PB and PB-PC so that they are aligned to the edge of the Finder Pattern.

Alternative 1: Approaching the Line Segment to the Region

The end-points of the line segment PA-PB are alternately approached to the candidate
region until at least a 90% overlap is achieved.
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1. Shift the initial estimate of the line segment PA-PB by five points in the perpendicular
direction away from the candidate region (Figure 11; PA’-PB’);

Figure 11. Approaching the line segment to the region.

2. Calculate the overlap of line segments PA-C and C-PB (C is the center of line segment
PA-PB). Shift by one point, towards the candidate region, the end of the line segment
that has less overlap. If there is no overlap, shift PA and PB alternately (zick-zack);

3. Stop approaching if 90% overlap is found. If no overlap is found after the specified
number of iterations, the candidate region is rejected.

Alternative 2: Projections along the Line Segments

The optimal position of the end-points of the line segment PA-PB (and similar line
segment PB-PC) is such where the difference of adjacent projections is maximal—the edge
is the strongest one (Figure 12).

Figure 12. Projection along the line segment.

1. Calculate projection Proj in the rectangular area along the line segment defined by
end-points PA-PB. The width of the rectangular area is seven points and the length
is |PA, PB|. For the purposes of calculating the projection (sum), the point that lies
in the candidate region has a value of 1 otherwise 0. These values are summed and
two adjacent values in projection Proj with the maximal difference are identified
(argmax(Proj[i + 1] − Proj[i − 1]));

2. The points PA, PB are independently shifted in both directions and step 1 is repeated
for each shift. The position of the maximal difference is stored;

3. The optimal position of PA-PB is such, where at least 80% of points of the line segment
PA-PB lie in the Finder Pattern candidate region, and at the same time, at least 40% of
points are such that they lie in the candidate region while their adjacent points are
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outside the candidate region. If such a position is not found then the candidate region
is rejected.

2.3. Identification of Perspective Distortion and Setting-Up Perspective Transformation

The Finder Pattern candidate region is described by three vertices PA (P1), PB (P2),
and PC (P3). If perspective distorted Data Matrix codes are considered, the position of 4th
point P4 must be determined. The initial estimate of the position of point P4 is obtained by
extending to the parallelogram. As shown in Figure 13 this estimate must be corrected for
perspective distorted Data Matrix codes.

Figure 13. The initial estimate of the position of 4th point P4. (a) undistorted Data Matrix code;
(b) skewed Data Matrix code; (c,d) perspective distorted Data Matrix codes.

2.3.1. Evaluation Distance to Timing Pattern

The first method of how to find the correct position of the fourth corner point P4 is
based on moving the boundary lines P3–P4 and P1–P4 and evaluating the overlap of the
boundary lines with a Data Matrix code candidate (Figure 14; Data Matrix code candidate
area is defined by four points P1-P2-P3-P4).

Figure 14. Perspective distorted Data Matrix code. (a) the initial estimate of the position of point P4;
(b) distances from line segment P3-P4a to Timing Pattern of Data Matrix code.

The boundary line P3-P4 is shifted by two points away from the Data Matrix code
candidate. The boundary line P3–P4 is divided into five slots. For each slot the minimal
distance di to the nearest inner dark point of Data Matrix code candidate (Figure 14b) is
computed and the number of dark points intersected by the boundary line.

• If d5 − d1 > 1 and di ≤ di+1 then point P4 is shifted inward to the Data Matrix candidate
area (a situation where P4 is located outside);

• If d4 − d1 < 0 and di ≥ di+1 and there is at least one slot where there is 40% of intersected
dark points, then P4 is shifted outward from the Data Matrix candidate area (a situation
where P4 is located inside), and the procedure repeats.
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2.3.2. Setting-Up Perspective Transformation

Once the position of the 4th point, P4, is refined perspective transformation from
the source square domain representing an ideal Data Matrix code to the quadrilateral
destination representing a real Data Matrix code in the image can be set up (Figure 15).

Figure 15. Perspective transformation.

Using the following equations [14]:

u =
ax + by + c
gx + hy + 1

, v =
dx + ey + f
gx + hy + 1

where coefficients can be computed from coordinates of four vertices P1(u1,v1), P2(u2, v2),
P3(u3, v3), P4(u4, v4) as:

a = (u3 − u2)/L + gu3, b = (u1 − u2)/L + hu1, c = u2
d = (v3 − v2)/L + gv3, e = (v1 − v2)/L + hv1, f = v2

g =

∣∣∣∣∣ du3 du2
dv3 dv2

∣∣∣∣∣∣∣∣∣∣ du1 du2
dv1 dv2

∣∣∣∣∣
, h =

∣∣∣∣∣ du1 du3
dv1 dv3

∣∣∣∣∣∣∣∣∣∣ du1 du2
dv1 dv2

∣∣∣∣∣
du1 = (u3 − u2)L, du2 = (u1 − u4)L, du3 = u2 − u3 + u4 − u1
dv1 = (v3 − v2)L, dv2 = (v1 − v4)L, dv3 = v2 − v3 + v4 − v1

(11)

2.4. Validating Data Matrix Code Area

The Data Matrix code area defined by four points P1-P2-P3-P4 is checked against the
following criteria to further eliminate false candidate regions and thus reduce computa-
tional costs (at this point dimensions of a Data Matrix code (number of rows and columns)
is not known so only relative metrics can be used). The Data Matrix code area is divided
into four equally sized tiles, and for each tile, the following is checked:

• The density of black points inside the tile area is between 0.25 and 0.85 (laser engraved
Data Matrix codes have a higher density of black points);

• The ratio of horizontal to vertical edge points inside the tile area is between 0.33 and
3.4.

In addition to the tiles, stricter criteria for the whole area are also checked:

• The density of black points inside the Data Matrix area is between 0.35 and 0.70;
• The ratio of horizontal to vertical edge points inside the Data Matrix area is between

0.75 and 1.25;
• The density of horizontal edge points is greater than five times the width and the

density of vertical edge points is greater than five times the height.

A Data Matrix code creates an irregular chess-board-like structure where there is
a relatively balanced number of black and white modules that form the edges at the
same time.



J. Imaging 2021, 7, 163 13 of 18

2.5. Checking Timing Pattern of a Data Matrix Candidate

It is currently verified that the two sides of a Data Matrix candidate form an “L”
shaped Finder Pattern. Subsequently, it must be verified that the two opposite sides form a
Timing Pattern and the number of rows and columns must be determined. In the Timing
Pattern, there are alternate dark and light modules.

2.5.1. Checking Local Extremes along Expected Timing Patterns

The outer boundary of the Data Matrix candidate is defined by the four vertices P1, P2,
P3, and P4. However, the location of these corner points may not be completely accurate, so
the Timing Pattern is examined in a wider area (blue rectangular areas along line segments
P3-P4 and P1-P4 in Figure 16a).

Figure 16. Local extremes in Timing Pattern areas. (a) Timing Pattern areas; (b) Local extremes.

Timing Pattern areas (vertical and horizontal) are scanned line by line. For each line
scan are computed:

• number of transitions between dark and light modules (as a threshold value is used
average gray-scale intensity in the Data Matrix candidate region);

• number of local extremes (blue dots in Figure 16b), that differs more than one standard
deviation in gray-scale intensity in the Data Matrix candidate region);

• the sum of absolute values of gradients (changes in gray-scale intensities between two
adjacent pixels);

If the number of local minima is the same as the number of local maxima then the
number of local extremes determines the dimension (number of rows or columns) of the
examined Data Matrix code. Otherwise, the number of transitions between dark and light
modules is used to determine the dimensions of the Data Matrix code.

The determined dimension must be greater than 10 and must be even. If only square
Data Matrix codes are considered, then the number of rows must be equal to the number
of columns.

The optimal position of the boundary line is that where the sum of the gradients
is maximum.

2.5.2. Checking Horizontal and Vertical Edge Projections

It sometimes happens that the Timing Pattern on any side of the Data Matrix code is
damaged and the prior step gives a different result for the number of rows and columns.
In this case, edge projections are used as a fallback method. Firstly, the edge projections
of the whole area of the Data Matrix code candidate are evaluated (Figure 17a), secondly
edge projections of the surrounding area of the Timing Pattern are evaluated (Figure 17b).
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Figure 17. Horizontal and vertical edge projections of the Data Matrix code. (a) projections of the
whole area; (b) projections of the Timing Pattern.

A histogram H of the distances between local maxima PLMAX in edge projections is
constructed. The distance with the highest occurrence DM (mode value) is taken as the
integer estimate of the module width. The real module width MW is calculated as the
weighted average of DM and two adjacent distances (Equation (12)):

MW =
(DM − 1)H[DM − 1] + DM H[DM] + (DM + 1)H[DM + 1]

H[DM − 1]H[DM]H[DM + 1]
(12)

Local maxima PLMAX in edge projections must meet one of the following criteria (PAVG
is average and PSTDDEV is a standard deviation of projection):

• It is local maxima on <−1, +1> and its edge projection value PLMAX > PAVG + 1
4 PSTDDEV;

• It is local maxima on <−2, +2> and its edge projection value PLMAX > PAVG − 1
2 PSTDDEV

(if modules are blurred/eroded there can be small local maxima under average).

The averages, standard deviations, local maxima, and modulus sizes are calculated
independently for horizontal and vertical projection.

The number of modules is then determined from the width of the Data Matrix code
and the module width MW is rounded to an even number.

(Note: By maximizing the standard deviation in the edge projections, it is also possible
to iteratively determine the position of P4 in case the Data Matrix code is perspective
distorted. We introduced this approach for QR Codes in [15]).

2.6. Decoding the Data Matrix Code

Once the precise location of all four corner points, which form the bounding quadri-
lateral, is established, perspective transformation is set up and the number of rows and
columns is determined, we can map image points from the Data Matrix code in the image
to the square binary matrix (Figure 18). Dark modules must be mapped to binary 1 and
light modules to binary 0. This binary matrix is the input of a deterministic process that
decodes the data stored in the Data Matrix Code.

The open-source libdmtx library [16] is used to decode the binary matrix, which
restores the original text encoded in the Data Matrix code.

One module in a real image is usually formed by a group of several points. One central
point of the module decides whether the module is classified as dark or light (red points
in Figure 18 represent the central points of the modules). Points with an intensity above
the threshold are considered light, the others dark. The threshold is set as the average
gray intensity in the Data Matrix code region. If the modules are made up of more than
5 × 5 points, we can include them in the decision-making, in addition to the central point,
also points in its immediate surrounding (e.g., points forming a cross “+”).
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Figure 18. Transformation of the Data Matrix code from the image domain into the binary matrix.

3. Results

The methods described above were compared on a test set consisting of 111 samples
of Data Matrix codes. The testing dataset contained 21 synthetic Data Matrix codes of
various sizes and rotations, 55 Data Matrix codes from Internet images, and 35 Data Matrix
codes from a specific manufacturing process (marked by laser onto a metal surface). The
samples of the test codes for these three groups are shown in Figure 19.

Figure 19. Testing samples: (a) synthetic; (b) Internet; (c) industrial.

In Table 2 there are the compared results of the Data Matrix localization methods
described in Section 2 (and also one another open-source solution is included). In the
table, there are the numbers of successfully recognized/decoded Data Matrix codes (for
individual groups of samples as well as for the whole test set consisting of a total of
111 codes).

Table 2. Recognition results for different localization methods.

Method Description
Synthetic
Samples

(a)

Internet
Samples

(b)

Industrial
Samples

(c)

All
Samples

(a) + (b) + (c)

libdmtx (open-source) [16] 15 53 28 96
(M1) Method described in Section 2.1.1

(edge detection, perpendicular linear regions) 21 48 19 88

(M2) Method described in Sections 2.1.2–2.1.4
(edge detection, right-angled triangle from region boundary points) 21 43 18 82

(M3) Method described in Section 2.2 + Alternative 1
(adaptive thresholding, right-angled triangle from region boundary
points + aligning to the Finder Pattern by approaching line segment

to region)

21 55 34 110

(M4) Method described in Section 2.2 + Alternative 2
(adaptive thresholding, right-angled triangle from region boundary

points + aligning to the Finder Pattern using projections along
Finder Pattern)

21 55 33 109
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As shown, methods based on adaptive thresholding (M3, M4) achieve better results
than methods based on edge detection (M1, M2). This group of methods was also able to
segment Data Matrix codes in low contrast images. (Note that, unlike other articles, we
consider a Data Matrix code to be successfully recognized only if it is also decoded, not just
localized). Edge detection methods that use a fixed threshold can determine a significant
edge fail if there are reflections (false edges) near the Finder Pattern (Figure 20a) or there is
low contrast between the Finder Pattern and the surroundings (Figure 20b).

Figure 20. Edge detection problems: (a) Merged edges; (b) Missing edges.

In Table 3, the relative time consumptions of proposed methods are shown. Because
the images in the test dataset have different resolutions and different numbers of Data
Matrix codes in one image, we used the total test time for all the images in the test dataset
to determine the overall time consumption (tested methods were implemented in Free
Pascal without using any optimized computer vision libraries). Note that, all the presented
methods differ in the initial steps—Finder Patter localization phase, and then share the
next recognition steps.

Table 3. Approximate relative time consumption of tested methods.

Method Relative
Time Consumption

Average Time
Per Image

(M1) 88% 6.1 ms
(M2) 58% 4.0 ms
(M3) 100% 6.8 ms
(M4) 119% 8.1 ms

Our testing dataset is published online together with this article under “Supplemen-
tary Material”.

As can be seen from the experimental results, the M3 method achieved the best
recognition rate. Methods based on edge detection (M1, M2) had lower computational
complexity, but at the cost of a lower recognition rate. Experiments have also shown that
recognition rate can be further increased by:

• Appropriate pre-processing: by applying morphological conditional dilation with
structuring element 3 × 3 to the binary image (replaces in the binary image non-object
points that become object points after morphological closing), the nearby broken parts
of the interrupted Finder Pattern are joined (small white areas are removed);

• Recognition in altered scale space: repeat recognition for the original image resized in
scales 4:3 and 2:1 (Table 4; the side effect of scaling is smoothing the image).

Table 4. Recognition results for repeated runs in multiple scales of images.

Method Original Images in
Scale 1:1

Rescaled Images in
‘’Scales 1:1, 1:0.75, 1:0.5

(M1) 88 100
(M2) 82 91
(M3) 110 111
(M4) 109 111
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4. Conclusions

We have designed and compared several methods for the localization of the 2D Data
Matrix codes in arbitrary images under various lighting conditions. These methods are
suitable for the localization of single or multiple Data Matrix codes in low-resolution
images and are computationally undemanding. All the proposed methods use a typical
“L” shaped Finder Pattern to identify the position of the Data Matrix codes in an image.
Prerequisites of our methods are the existence of a relatively intact Finder Pattern and a
quiet zone around a Data Matrix code.

This comparative study summarizes various approaches usable in recognizing Data
Matrix codes, which provides the reader with a comprehensive review of the topic.

The proposed methods were validated on the testing set consisting of synthetic and
also real-world samples. The experimental results show that our methods have a great
detection rate.

Data Matrix codes as automatic identification and data capture (AIDC) technology
can be used to mark transport units in logistics, parts in production, warehouse positions,
sold goods and can also be used in automated robot navigation in production engineer-
ing [17–21].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jimaging7090163/s1; one ZIP file contains, one ZIP file contains images of the testing dataset
of the Data Matrix codes used to test our proposed methods.
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