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Abstract: Diabetic Retinopathy (DR) is a leading cause of vision loss in the world. In the past few
years, artificial intelligence (AI) based approaches have been used to detect and grade DR. Early
detection enables appropriate treatment and thus prevents vision loss. For this purpose, both fundus
and optical coherence tomography (OCT) images are used to image the retina. Next, Deep-learning
(DL)-/machine-learning (ML)-based approaches make it possible to extract features from the images
and to detect the presence of DR, grade its severity and segment associated lesions. This review
covers the literature dealing with AI approaches to DR such as ML and DL in classification and
segmentation that have been published in the open literature within six years (2016–2021). In
addition, a comprehensive list of available DR datasets is reported. This list was constructed using
both the PICO (P-Patient, I-Intervention, C-Control, O-Outcome) and Preferred Reporting Items for
Systematic Review and Meta-analysis (PRISMA) 2009 search strategies. We summarize a total of 114
published articles which conformed to the scope of the review. In addition, a list of 43 major datasets
is presented.

Keywords: diabetic retinopathy; artificial intelligence; deep learning; machine-learning; datasets;
fundus image; optical coherence tomography; ophthalmology

1. Introduction

Diabetic retinopathy (DR) is a major cause of irreversible visual impairment and
blindness worldwide [1]. This etiology of DR is due to chronic high blood glucose levels,
which cause retinal capillary damage, and mainly affects the working-age population. DR
begins at a mild level with no apparent visual symptoms but it can progress to severe
and proliferated levels and progression of the disease can lead to blindness. Thus, early
diagnosis and regular screening can decrease the risk of visual loss to 57.0% as well as
decreasing the cost of treatment [2].

DR is clinically diagnosed through observation of the retinal fundus either directly or
through imaging techniques such as fundus photography or optical coherence tomography.
There are several standard DR grading systems such as the Early Treatment Diabetic
Retinopathy Study (ETDRS) [3]. ETDRS separates fine detailed DR characteristics using
multiple levels. This type of grading is done upon all seven retinal fundus Fields of View
(FOV). Although ETDRS [4] is the gold standard, due to implementation complexity and
technical limitations [5], alternative grading systems are also used such as the International
Clinical Diabetic Retinopathy (ICDR) [6] scale which is accepted in both clinical and
Computer-Aided Diagnosis (CAD) settings [7]. The ICDR scale defines 5 severity levels
and 4 levels for Diabetic Macular Edema (DME) and requires fewer FOVs [6]. The ICDR
levels are discussed below and are illustrated in Figure 1.
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Figure 1. Retinal fundus images of different stages of diabetic retinopathy. (A) Stage II: Mild non-proliferative dia-
betic retinopathy; (B) Stage III: Moderate non-proliferative diabetic retinopathy; (C) Stage IV: Severe non-proliferative
diabetic retinopathy; (D) Stage V: Proliferative diabetic retinopathy (images courtesy of Rajiv Raman et al., Sankara
Nethralaya, India).

• No Apparent Retinopathy: No abnormalities.
• Mild Non-Proliferative Diabetic Retinopathy (NPDR): This is the first stage of diabetic

retinopathy, specifically characterized by tiny areas of swelling in retinal blood vessels
known as Microaneurysms (MA) [8]. There is an absence of profuse bleeding in retinal
nerves and if DR is detected at this stage, it can help save the patient’s eyesight with
proper medical treatment (Figure 1A).

• Moderate NPDR: When left unchecked, mild NPDR progresses to a moderate stage
when there is blood leakage from the blocked retinal vessels. Additionally, at this stage,
Hard Exudates (Ex) may exist (Figure 1B). Furthermore, the dilation and constriction
of venules in the retina causes Venous Beadings (VB) which are visible ophthalmospi-
cally [8].

• Severe NPDR: A larger number of retinal blood vessels are blocked in this stage,
causing over 20 Intra-retinal Hemorrhages (IHE; Figure 1C) in all 4 fundus quadrants
or there are Intra-Retinal Microvascular Abnormalities (IRMA) which can be seen
as bulges of thin vessels. IRMA appears as small and sharp-border red spots in
at least one quadran. Furthermore, there can be a definite evidence of VB in over
2 quadrants [8].

• Proliferative Diabetic Retinopathy (PDR): This is an advanced stage of the disease
that occurs when the condition is left unchecked for an extended period of time. New



J. Imaging 2021, 7, 165 3 of 26

blood vessels form in the retina and the condition is termed Neovascularization (NV).
These blood vessels are often fragile, with a consequent risk of fluid leakage and
proliferation of fibrous tissue [8]. Different functional visual problems occur at PDR,
such as blurriness, reduced field of vision, and even complete blindness in some cases
(Figure 1D).

DR detection has two main steps: screening and diagnosis. For this purpose, fine
pathognomonic DR signs in initial stages are determined normally, after dilating pupils
(mydriasis). Then, DR screening is performed through slit lamp bio-microscopy with
a + 90.0 D lens, and direct [9]/indirect ophthalmoscopy [10]. The next step is to diagnose
DR which is done through finding DR-associated lesions and comparing with the standard
grading system criteria. Currently, the diagnosis step is done manually. This procedure
is costly, time consuming and requires highly trained clinicians who have considerable
experience and diagnostic precision. Even if all these resources are available there is still
the possibility of misdiagnosis [11]. This dependency on manual evaluation makes the
situation challenging. In addition, in year 2020, the number of adults worldwide with DR,
and vision-threatening DR was estimated to be 103.12 million, and 28.54 million. By the
year 2045, the numbers are projected to increase to 160.50 million, and 44.82 million [12]. In
addition, in developing countries where there is a shortage of ophthalmologists [13,14] as
well as access to standard clinical facilities. This problem also exists in underserved areas
of the developed world.

Recent developments in CAD techniques, which are defined in the subscope of artifi-
cial intelligence (AI), are becoming more prominent in modern ophthalmology [15] as they
can save time, cost and human resources for routine DR screening and involve lower diag-
nostic error factors [15]. CAD can also efficiently manage the increasing number of afflicted
DR patients [16] and diagnose DR in early stages when fewer sight threatening effects are
present. The scope of AI based approaches are divided between Machine Learning-based
(ML) and Deep Learning-based (DL) solutions. These techniques vary depending on the
imaging system and disease severity. For instance, in early levels of DR, super-resolution
ultrasound imaging of microvessels [17] is used to visualize the deep ocular vasculature.
On this imaging system, a successful CAD method applied a DL model for segmenting
lesions on ultrasound images [18]. The widely applied imaging methods such as Optical
Coherence Tomography (OCT), OCT Angiography (OCTA), Ultrawide-field fundus (UWF)
and standard 45◦ fundus photography are covered in this review. In addition to the men-
tioned imaging methods, Majumder et al. [15] reported a real time DR screening procedure
using a smartphone camera.

The main purpose of this review is to analyze 114 articles published within the
last 6 years that focus on the detection of DR using CAD techniques. These techniques
have made considerable progress in performance with the use of ML and DL schemes
that employ the latest developments in Deep Convolutional Neural Networks (DCNNs)
architectures for DR severity grading, progression analysis, abnormality detection and
semantic segmentation. An overview of ophthalmic applications of convolutional neural
networks is presented in [19–22].

2. Methods
2.1. Literature Search Details

For this review, literature from 5 publicly accessible databases were surveyed. The
databases were chosen based on their depth, their ease of accessibility, and their popularity.
These 5 databases are:

• PubMed: Publications from MEDLINE (https://pubmed.ncbi.nlm.nih.gov/ accessed
on date 14 June 2021)

• IEEE Xplore: IEEE conference & journals (https://ieeexplore.ieee.org/Xplore/home.
jsp accessed on 14 June 2021)

• PUBLONS: Publications from Web of Science (https://publons.com/about/home/
accessed on 14 June 2021)

https://pubmed.ncbi.nlm.nih.gov/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://publons.com/about/home/
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• SPIE digital library: Conference & journals from SPIE (https://www.spiedigitallibrary.
org/ accessed on 14 June 2021)

• Google Scholar: Conference and journal proceedings from multiple databases (https:
//scholar.google.co.in/ accessed on 14 June 2021).

Google Scholar has been chosen to fill the gaps in the search strategy by identifying
literature from multiple sources, along with articles that might be missed in manual
selection from the other four databases. The articles of this topic within the latest six year
time-period show that the advances in AI-enabled DR detection has increased considerably.
Figure 2 visualizes the articles matching with this topic. This figure was generated using
the PubMed results.

Figure 2. Increase in the number of articles matching the predefined keywords over the last 6 years;
the PubMed search results were used to create this figure.

At the time of writing this review, a total of 10,635 search results were listed in the
PubMed database for this time period when just the term “diabetic retinopathy” was
used. The MEDLINE database is arguably the largest for biomedical research. In addition,
some resources from the National Library of Medicine which is a part of the U.S. National
Institutes of Health, were employed in this review.

A search of the IEEE Xplore library and the SPIE digital library for the given time
period reports a total of 812 and 332 search results respectively. The IEEE Xplore and SPIE
libraries contain only publications of these two professional societies. Further databases
were added to this list by collecting papers from non-traditional sources such as pre-print
servers such as ArXiv. In Figure 3, by using data from all sources, we plot the number of
papers published as a function of the year.

The scope of this review is limited to “automated detection and grading of diabetic
retinopathy using fundus & OCT images”. Therefore, to make the search more manageable,
a combination of relevant keywords was applied using the PICO (P-Patient, I-Intervention,
C-Control, O-Outcome) search strategy [23]. Keywords used in the PICO search were
predetermined. A combination of (“DR” and (“DL” or “ML” or “AI”)) and (fundus or
OCT) was used which reduced the initial 10,635 search results in PubMed to just 217 during
the period under consideration. A manual process of eliminating duplicate search results
carried out across the results from all obtained databases resulted in a total number of
114 papers.

https://www.spiedigitallibrary.org/
https://www.spiedigitallibrary.org/
https://scholar.google.co.in/
https://scholar.google.co.in/
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Figure 3. A plot of the number of articles as a function of year. This figure was generated using
results from all 5 databases using search terms Diabetic Retinopathy AND (“Deep Learning” OR
“Machine Learning”).

Overall, the search strategy for identifying relevant research for the review involved
three main steps:

1. Using the predefined set of keywords and logical operators, a small set of papers
were identified in this time range (2016–2021).

2. Using a manual search strategy, the papers falling outside the scope of this review
were eliminated.

3. The duplicate articles (i.e., the papers occurring in multiple databases) were elimi-
nated to obtain the set of unique articles.

The search strategy followed by this review abides by the Preferred Reporting Items
for Systematic Review and Meta-analysis (PRISMA) 2009 checklist [24], and the detailed
search and identification pipeline is shown in Figure 4.

Figure 4. Flowchart summarizing the literature search and dataset identification using
PRISMA review strategy for identifying articles related to automated detection and diagnosis of
diabetic retinopathy.
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2.2. Dataset Search Details

The backbone of any automated detection model whether ML-based, DL-based, or
multi-model-based, is the dataset. High-quality data with correct annotations have extreme
importance in image feature extraction and training the DR detection model, properly. In
this review, a comprehensive list of datasets has been created and discussed. A previously
published paper [25] also gives a list of ophthalmic image datasets, containing 33 datasets
that can be used for training DR detection and grading models. The paper by Khan
et al. [25] highlighted 33 of the 43 datasets presented in Table 1. However, some databases
which are popular and publicly accessible are not listed by Khan et al. [25], e.g., UoA-
DR [26], Longitudinal DR screening data [27], FGADR [28] etc. In this review, we identified
additional datasets that are available to use. The search strategy for determining relevant
DR detection datasets is as follows:

Table 1. Datasets for DR detection, grading and segmentation and their respective characteristics.

Dataset No. of
Image Device Used Access Country Year No. of

Subjects Type Format Remarks

DRIVE [29] 40

Canon CR5
non-mydriatic 3CCD

camera with a 45◦
FOV

OA Netherlands 2004 400 Fundus JPEG
Retinal vessel

segmentation and
ophthalmic diseases

DIARETDB0
[30] 130 50◦ FOV DFC OA Finland 2006 NR Fundus PNG DR detection and

grading

DIARETDB1
[31] 89 50◦ FOV DFC OA Finland 2007 NR Fundus PNG DR detection and

grading

National
Taiwan

University
Hospital [32]

30

Heidelberg retina
tomography with
Rostock corneal

module

OA Japan 2007–2017 30 Fundus TIFF DR, pseudo exfoliation

HEI-MED
[33] 169

Visucam PRO fundus
camera (Zeiss,

Germany)
OA USA 2010 910 Fundus JPEG DR detection and

grading

19 CF [34] 60 NR OA Iran 2012 60 Fundus JPEG DR detection

FFA
Photographs

& CF [35]
120 NR OA Iran 2012 60 FFA JPEG DR grading and lesion

detection

Fundus
Images with

Exudates
[36]

35 NR OA Iran 2012 NR Fundus JPEG Lesion detection

DRiDB [37] 50 Zeiss VISUCAM 200
DFC at a 45◦ FOV AUR Croatia 2013 NR Fundus BMP

files DR grading

eOphtha [38] 463 NR OA France 2013 NR Fundus JPEG Lesion detection

Longitudinal
DR

screening
data [27]

1120
Topcon TRC-NW65

with a 45 degrees field
of view

OA Netherlands 2013 70 Fundus JPEG DR grading

22 HRF [39] 45 CF-60UVi camera
(Canon) OA

Germany
and Czech
Republic

2013 45 Fundus JPEG DR detection

RITE [40] 40

Canon CR5
non-mydriatic 3CCD

camera with a 45◦
FOV

AUR Netherlands 2013 Same As
Drive Fundus TIFF

Retinal vessel
segmentation and

ophthalmic diseases

DR1 [41] 1077 TRC-50× mydriatic
camera Topcon OA Brazil 2014 NR Fundus TIFF DR detection

DR2 [41] 520

TRC-NW8
retinography (Topcon)

with a D90 camera
(Nikon, Japan)

OA Brazil 2014 NR Fundus TIFF DR detection

DRIMDB
[42] 216 CF-60UVi fundus

camera (Canon) OA Turkey 2014 NR Fundus JPEG DR detection and
grading

FFA
Photographs

[43]
70 NR OA Iran 2014 70 FFA JPEG DR grading and Lesion

detection

MESSIDOR
1 [44] 1200

Topcon TRC NW6
non-mydriatic

retinography, 45◦ FOV
OA France 2014 NR Fundus TIFF DR and DME grading
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Table 1. Cont.

Dataset No. of
Image Device Used Access Country Year No. of

Subjects Type Format Remarks

Lotus
eyecare

hospital [45]
122

Canon non-mydriatic
Zeiss fundus camera

90◦ FOV
NOA India 2014 NR Fundus JPEG DR detection

Srinivasan
[46] 3231

SD-OCT (Heidelberg
Engineering,

Germany)
OA USA 2014 45 OCT TIFF DR detection and

grading, DME, AMD

EyePACS
[47] 88,702

Centervue DRS
(Centervue, Italy),

Optovue iCam
(Optovue, USA),

Canon
CR1/DGi/CR2

(Canon), and Topcon
NW (Topcon)

OA USA 2015 NR Fundus JPEG DR grading

Rabbani [48]
24 images

& 24
videos

Heidelberg
SPECTRALIS OCT

HRA system
OA USA 2015 24 OCT TIFF Diabetic Eye diseases

DR HAGIS
[49] 39

TRC-NW6s (Topcon),
TRC-NW8 (Topcon),
or CR-DGi fundus

camera (Canon)

OA UK 2016 38 Fundus JPEG DR, HT, AMD and
Glaucoma

JICHI DR
[50] 9939 AFC-230 fundus

camera (Nidek) OA Japan 2017 2740 Fundus JPEG DR grading

Rotterdam
Ophthalmic

Data
Repository

DR [51]

1120
TRC-NW65

non-mydriatic DFC
(Topcon)

OA Netherlands 2017 70 Fundus PNG DR detection

Singapore
National DR

Screening
Program [52]

494,661 NR NOA Singapore 2017 14,880 Fundus JPEG DR, Glaucoma and
AMD

IDRID [53] 516 NR OA India 2018 NR Fundus JPEG DR grading and lesion
segmentation

OCTID [54] 500+
Cirrus HD-OCT

machine (Carl Zeiss
Mediatec)

OA Multi ethnic 2018 NR OCT JPEG DR, HT, AMD

UoA-DR [55] 200
Zeiss VISUCAM 500
Fundus Camera FOV

45◦
AUR India 2018 NR Fundus JPEG DR grading

APTOS [56] 5590 DFC OA India 2019 NR Fundus PNG DR grading

CSME [57] 1445
NIDEK non-mydriatic
AFC-330 auto-fundus

camera
NOA Pakistan 2019 NR Fundus JPEG DR grading

OCTAGON
[58] 213 DRI OCT Triton

(Topcon) AUR Spain 2019 213 OCTA JPEG &
TIFF DR detection

ODIR-2019
[59] 8000

Fundus camera
(Canon), Fundus

camera (ZEISS), and
Fundus camera

(Kowa)

OA China 2019 5000 Fundus JPEG DR, HT, AMD and
Glaucoma

OIA-DDR
[60] 13,673 NR OA China 2019 9598 NR JPEG DR grading and lesion

segmentation

Zhongshan
Hospital and

First
People’s

Hospital [61]

19,233 Multiple colour
fundus camera NOA China 2019 5278 Fundus JPEG DR grading and lesion

segmentation

AGAR300
[62] 300 45◦ FOV OA India 2020 150 Fundus JPEG DR grading and MA

detection

Bahawal
Victoria

Hospital [57]
2500

Vision Star, 24.1
Megapixel Nikon

D5200 camera
NOA Pakistan 2020 500 Fundus JPEG DR grading

Retinal
Lesions [63] 1593 Selected from EPACS

dataset AUR China 2020 NR Fundus JPEG DR grading and lesion
segmentation

Dataset of
fundus

images for
the study of

DR [64]

757 Visucam 500 camera
of the Zeiss brand OA Paraguay 2021 NR Fundus JPEG DR grading

FGADR [60] 2842 NR OA UAE 2021 NR Fundus JPEG DR and DME grading
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Table 1. Cont.

Dataset No. of
Image Device Used Access Country Year No. of

Subjects Type Format Remarks

Optos
Dataset

(Tsukazaki
Hospital)

[65]

13,047
200 Tx

ultra-wide-field
device (Optos, UK)

NOA Japan NR 5389 Fundus JPEG DR, Glaucoma, AMD,
and other eye diseases

MESSIDOR
2 [66] 1748

Topcon TRC NW6
non-mydriatic

retinography 45◦ FOV
AUR France NR 874 Fundus TIFF DR and DME grading

Noor
hospital [67] 4142

Heidelberg
SPECTRALIS SD-OCT

imaging system
NOA Iran NR 148 OCT TIFF DR detection

DFC: Digital fundus camera, RFC: Retinal Fundus Camera, FFA: Fundus Fluorescein Angiogram, DR: Diabetic retinopathy, MA: Microa-
neurysms, DME: Diabetic Macular Edema, FOV: field-of-view, AMD: Age-related Macular Degeneration; OA: Open access AUR: Access
upon request; NOA: Not Open access; CF: Colour Fundus; HT: Hypertension; NR: Not Represented.

Appropriate results from all 5 of the selected databases (PubMed, PUBLONS, etc.)
were searched manually. We gathered information about names of datasets for DR detection
and grading.

4. The original papers and websites associated with each dataset were analyzed and a
systematic, tabular representation of all available information was created.

5. The Google dataset search and different forums were checked for missing dataset
entries and step 2 was repeated for all original datasets found.

6. A final comprehensive list of datasets and its details was generated and represented
in Table 1.

A total of 43 datasets were identified employing the search strategy given above. Upon
further inspection, a total number of 30 datasets were identified as open access (OA), i.e.,
can be accessed easily without any permission or payment. Of the total number of datasets,
6 have restricted access. However, the databases can be accessed with the permission of the
author or institution; the remaining 7 are private and cannot be accessed. These datasets
were used to create a generalized model because of the diversity of images (multi-national
and multi-ethnic groups).

3. Results
3.1. Dataset Search Results

This section provides a high-level overview of the search results that were obtained
using the datasets, as well as using different review articles on datasets in the domain
of ophthalmology, e.g., Khan et al. [25]. Moreover, different leads obtained from GitHub
and other online forums are also employed in this overview. Thus, 43 datasets were
identified and a general overview of the datasets is systematically presented in this section.
The datasets reviewed in this article are not limited to 2016 to 2021 and could have been
released before that. The list of datasets and their characteristics are shown in Table 1 below.
Depending on the restrictions and other proforma required for accessing the datasets, the
list has been divided into 3 classes; they are:

• Public open access (OA) datasets with high quality DR grades.
• DR datasets, that can be accessed upon request, i.e., can be accessed by filling necessary

agreements and forms for fair usage; they are a sub-type of (OA) databases and are
termed Access Upon Request (AUR) in the table.

• Private datasets from different institutions that are not publicly accessible or require
explicit permission can access are termed Not Open Access (NOA).

3.2. Diabetic Retinopathy Classification

This section discusses the classification approaches used for DR detection. The classifi-
cation can be for the detection of DR [68], referable DR (RDR) [66,69], vision threatening DR
(vtDR) [66], or to analyze the proliferation level of DR using the ICDR system. Some studies



J. Imaging 2021, 7, 165 9 of 26

also considered Diabetic Macular Edema (DME) [69,70]. Recent ML and DL methods have
produced promising results in automated DR diagnosis.

Thus, multiple performance metrics such as accuracy (ACC), sensitivity (SE) or recall,
specificity (SP) or precision, area under the curve (AUC), F1 and Kappa scores are used to
evaluate the classification performance. Tables 2 and 3 present a brief overview of articles
that used fundus images for DR classification, and articles that classify DR on fundus
images using novel preprocessing techniques, respectively. Table 4 lists the recent DR
classification studies that used OCT and OCTA images. In the following subsections, we
provide the details of ML and DL aspects and evaluate the performance of prior studies in
terms of quantitative metrics.

3.2.1. Machine Learning Approaches

In this review, 9 out of 93 classification-based studies employed machine learning
approaches and 1 article used un-ML method for detecting and grading DR. Hence, in this
section, we present an evaluation over various ML-based feature extraction and decision-
making techniques that have been employed in the selected primary studies to construct DR
detection models. In general, six major distinct ML algorithms were used in these studies.
These are: principal component analysis (PCA) [70,71], linear discriminant analysis (LDA)-
based feature selection [71], spatial invariant feature transform (SIFT) [71], support vector
machine (SVM) [16,71–73], k nearest neighbor (KNN) [72] and random forest (RF) [74].

In addition to the widely used ML methods, some studies such as [75] presented a
pure ML model with an accuracy of over 80% including distributed Stochastic Neighbor
Embedding (t-SNE) for image dimensionality reduction in combination with ML Bagging
Ensemble Classifier (ML-BEC). ML-BEC improves classification performance by using the
feature bagging technique with a low computational time. Ali et al. [57] focused on five
fundamental ML models, named sequential minimal optimization (SMO), logistic (Lg),
multi-layer perceptron (MLP), logistic model tree (LMT), and simple logistic (SLg) in the
classification level. This study proposed a novel preprocessing method in which the Region
of Interest (ROI) of lesions is segmented with the clustering-based method and K-Means;
then, Ali et al. [57] extracted features of the histogram, wavelet, grey scale co-occurrence,
and run-length matrixes (GLCM and GLRLM) from the segmented ROIs. This method
outperformed previous models with an average accuracy of 98.83% with the five ML
models. However, an ML model such as SLg performs well; the required classification time
is 0.38 with Intel Core i3 1.9 gigahertz (GHz) CPU, 64-bit Windows 10 operating system
and 8 gigabytes (GB) memory. This processing time is higher than previous studies.

We can also use ML method for OCT and OCTA for DR detection. Recently, LiU
et al. [76] deployed four ML models of logistic regression (LR), logistic regression regular-
ized with the elastic net penalty (LR-EN), support vector machine (SVM), and the gradient
boosting tree named XGBoost with over 246 OCTA wavelet features and obtained ACC,
SE, and SP of 82%, 71%, and 77%, respectively. This study, despite inadequate results,
has the potential to reach higher scores using model optimization and fine-tuning hyper
parameters. These studies show a lower overall performance if using a small number of
feature types and simple ML models are used. Dimensionality reduction is an application
of ML models which can be added in the decision layer of CAD systems [77,78].

The ML methods in combination with DL networks can have a comparable perfor-
mance with the pure DL models. Narayanan et al. [78] applied a SVM model for the
classification of features obtained from the state of art DNNs that are optimized with
PCA [78]. This provided an accuracy of 85.7% on preprocessed images. In comparison with
methods such as AlexNet, VGG, ResNet, and Inception-v3, the authors report an ACC of
99.5%. In addition, they also found that this technique is more applicable with considerably
less computational cost.
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3.2.2. Deep Learning Approaches

This section gives an overview of DL algorithms that have been used. Depending on
the imaging system, image resolution, noise level, and contrast as well as the size of the
dataset, the methods can vary. Some studies propose customized networks such as the
work done by Gulshan et al. [69], Gargeya et al. [68], Rajalakshmi et al. [79], Riaz et al. [80].
These networks have lower performance outcomes than the state of art networks such as
VGG, ResNet, Inception, and DenseNet but the fewer layers make them more generalized,
suitable for training with small datasets, and computationally efficient. Quellec et al. [81]
applied L2 regularization over the best performed DCNN in the KAGGLE competition for
DR detection named o-O. Another example of customized networks is the model proposed
by Sayres et al. [82], which showed 88.4%, 91.5%, 94.8% for ACC, SE, and SP, respectively,
over a small subset of 2000 images obtained from the EyePACS database. However, the
performance of this network is lower than the results obtained from Mansour et al. [72]
which used a larger subset of the EyePACS images (35,126 images). Mansour et al. [72]
deployed more complex architectures such as the AlexNet on the extracted features of
LDA and PCA that generated better results than Sayres et al. [82] with 97.93%, 100%, and
93% ACC, SE, and SP, respectively. Such DCNNs should be used with large datasets since
the large number of images used in the training reduces errors. If a deep architecture
is applied for a small number of observations, it might cause overfitting in which the
performance over the test data is not as well as expected on the training data. On the other
hand, the deepness of networks does not always guarantee higher performance, meaning
that they might face problems such as vanishing or exploding gradient which will have to
be addressed by redesigning the network to simpler architectures. Furthermore, the deep
networks extract several low and high-level features. As these image features get more
complicated, it becomes more difficult to interpret. Sometimes, high-level attributes are not
clinically meaningful. For instance, the high-level attributes may refer to an existing bias in
all images belonging to a certain class, such as light intensity and similar vessel patterns,
that are not considered as a sign of DR but the DCNN will consider them as critical features.
Consequently, this fact makes the output predictions erroneous.

In the scope of DL-based classification, Hua et al. [83] designed a DL model named
Trilogy of Skip-connection Deep Networks (Tri-SDN) over the pretrained base model
ResNet50 that applies skip connection blocks to make the tuning faster yielding to ACC
and SP of 90.6% and 82.1%, respectively, which is considerably better than the values of
83.3% and 64.1% compared with the situation when skip connection blocks are not used.

There are additional studies that do not focus on proposing new network architectures
but enhance the preprocessing step. The study done by Pao et al. [84] presents bi-channel
customized CNN in which an image enhancement technique known as unsharp mask is
used. The enhanced images and entropy images are used as the inputs of a CNN with 4
convolutional layers with results of 87.83%, 77.81%, 93.88% over ACC, SE, and SP. These
results are all higher than the case of analysis without preprocessing (81.80% 68.36%,
89.87%, respectively).

Shankar et al. [85] proposed another approach to preprocessing using Histogram-
based segmentation to extract regions containing lesions on fundus images. As the
classification step, this article utilized the Synergic DL (SDL) model and the results
indicated that the presented SDL model offers better results than popular DCNNs on
MESSIDOR 1 database in terms of ACC, SE, SP.

Furthermore, classification is not limited to the DR detection and DCNNs can be
applied to detect the presence of DR-related lesions such as the study reported by Wang et al.
They cover twelve lesions in their study: MA, IHE, superficial retinal hemorrhages (SRH),
Ex, CWS, venous abnormalities (VAN), IRMA, NV at the disc (NVD), NV elsewhere (NVE),
pre-retinal FIP, VPHE, and tractional retinal detachment (TRD) with average precision
and AUC 0.67 and 0.95, respectively; however, features such as VAN have low individual
detection accuracy. This study provides essential steps for DR detection based on the
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presence of lesions that could be more interpretable than DCNNs which act as black
boxes [86–88].

There are explainable backpropagation-based methods that produce heatmaps of the
lesions associated with DR such as the study done by Keel et al. [89], which highlights Ex,
HE, and vascular abnormalities in DR diagnosed images. These methods have limited per-
formance providing generic explanations which might be inadequate as clinically reliable.
Tables 2–4 briefly summarizes previous studies on DR classification with DL methods.

Table 2. Classification-based studies in DR detection using fundus imaging.

Author, Year Dataset Grading Details Pre-
Processing Method Accuracy Sensitivity Specificity AUC

Abràmoff,
2016 [66] MESSIDOR 2 Detect RDR and vtDR No

DCNN:
IDx-DR

X2.1.
ML: RF

NA 96.80% 87.00% 0.98

Chandrakumar,
2016 [90]

EyePACS,
DRIVE,
STARE

Grade DR based on ICDR
scale Yes DCNN STARE and

DRIVE: 94% NA NA NA

Colas, 2016
[91] EyePACS Grade DR based on ICDR

scale No DCNN NA 96.20% 66.60% 0.94

Gulshan, 2016
[69]

EyePACS,
MESSIDOR 2

Detect DR based on ICDR
scale, RDR and referable

DME
Yes DCNN NA EyePACS:

97.5%
EyePACS:

93.4%
EyePACS:

0.99

Wong, 2016
[92]

EYEPACS,
MESSIDOR 2

Detect RDR, Referable
DME (RDME) No DCNN NA 90% 98% 0.99

Gargeya, 2017
[68]

EyePACS,
MESSIDOR 2,

eOphtha
Detect DR or non-DR Yes DCNN NA EyePACS:

94%
EyePACS:

98%
EyePACS:

0.97

Somasundaram,
2017 [76] DIARETDB1 Detect PDR, NPDR No

ML: t-SNE
and

ML-BEC
NA NA NA NA

Takahashi,
2017 [50]

Jichi Medical
University

Grade DR with the Davis
grading scale (NPDR,

severe DR, PDR)
No

DCNN:
Modified

GoogLeNet
81% NA NA NA

Ting, 2017 [52] SiDRP Detect RDR, vtDR,
glaucoma, AMD No DCNN NA RDR: 90.5%

vtDR: 100%
RDR: 91.6%
vtDR: 91.1%

RDR: 0.93
vtDR: 0.95

Quellec, 2017
[81]

EyePACS,
eOphta,

DIARETDB 1
Grade DR based on ICDR Yes

DCNN: L2-
regularized
o-O DCNN

NA 94.60% 77% 0.955

Wang, 2017
[93]

EyePACS,
MESSIDOR 1

Grade DR based on ICDR
scale Yes

Weakly
supervised
network to

classify
image and

extract high
resolution

image
patches

containing a
lesion

MESSIDOR
1: RDR:
91.1%

NA NA
MESSIDOR

1: RDR:
0.957

Benson, 2018
[94]

Vision Quest
Biomedical

database
Grade DR based on ICDR

scale + scars detection Yes DCNN:
Inception v3 NA 90% 90% 0.95.

Chakrabarty,
2018 [95]

High-
Resolution

Fundus (HRF)
Images

Detect DR Yes DCNN 91.67% 100% 100% F1 score: 1

Costa, 2018
[96] MESSIDOR 1 Grade DR based on ICDR

scale No

Multiple
Instance
Learning

(MIL)

NA NA NA 0.9

Dai, 2018 [97] DIARETDB1 MA, HE, CWS, Ex
detection Yes

DCNN:
Multi-

sieving
CNN(image

to text
mapping)

96.10% 87.80% 99.70% F1 score:
0.93

Dutta, 2018
[98] EyePACS

Mild NPDR, Moderate
NPDR, Severe NPDR,

PDR
Yes DCNN:

VGGNet 86.30% NA NA NA

Kwasigroch,
2018 [99] EyePACS Grade DR based on ICDR

scale Yes DCNN:
VGG D 81.70% 89.50% 50.50% NA

Levenkova,
2018 [78]

UWF
(Ultra-Wide

Field)
Detect CWS, MA, HE, Ex No DCNN,

SVM NA NA NA 0.80
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Table 2. Cont.

Author, Year Dataset Grading Details Pre-
Processing Method Accuracy Sensitivity Specificity AUC

Mansour, 2018
[72] EyePACS Grade DR based on ICDR

scale Yes
DCNN, ML:

AlexNet,
LDA, PCA,
SVM, SIFT

97.93% 100% 0.93 NA

Rajalakshmi,
2018 [7]

Smartphone-
based imaging

device

Detect DR and vtDR
Grade DR based on ICDR

scale
No DCNN NA DR: 95.8%

vtDR: 99.1%
DR: 80.2%

vtDR: 80.4% NA

Robiul Islam,
2018 [100] APTOS 2019 Grade DR based on ICDR

scale Yes DCNN:
VGG16 91.32% NA NA NA

Zhang, 2018
[101] EyePACS Grade DR based on ICDR

scale Yes DCNN:
Resnet-50 NA 61% 84% 0.83

Zhang, 2018
[102] EyePACS Grade DR based on ICDR

scale No DCNN 82.10% 76.10% 0.855 Kappa score:
0.66

Arcadu, 2019
[103]

7 FOV images
of RIDE and

RISE datasets

2 step grading based on
ETDRS No DCNN:

Inception v3 NA 66% 77% 0.68

Bellemo, 2019
[104]

Kitwe Central
Hospital,
Zambia

Grade DR based on ICDR
scale No

DCNN:
Ensemble of

Adapted
VGGNet &

Resenet

NA
RDR:

92.25%
vtDR:

99.42%

RDR:
89.04%

RDR: 0.973
vt DR: 0.934

Chowdhury,
2019 [105] EyePACS Grade DR based on ICDR

scale Yes DCNN:
Inception v3

2 Class:
61.3% NA NA NA

Govindaraj,
2019 [106] MESSIDOR 1 Detect DR Yes

Probabilistic
Neural

Network
98% Almost 90%

from chart
Almost 97%
from chart

F1 score:
almost 0.97

Gulshan, 2019
[107]

Aravind Eye
Hospital and

Sankara
Nethralaya,

India

Grade DR based on ICDR
scale No DCNN NA

Aravind:
88.9%

SN: 92.1%

Aravind:
92.2%

SN: 95.2%

Quadratic
weighted K

scores:
Aravind:

0.85
SN: 0.91

Hathwar, 2019
[108]

EyePACS,
IDRID Detect DR Yes DCNN:

Xception-TL NA 94.30% 95.50% Kappa score:
0.88

He, 2019 [109] IDRID Detect DR grade and
DME risk Yes DCNN:

AlexNet
DR grade:

65% NA NA NA

Hua, 2019 [83]

Kyung Hee
University

Medical
Center

Grade DR based on ICDR
scale No DCNN:

Tri-SDN 90.60% 96.50% 82.10% 0.88

Jiang, 2019
[110]

Beijing
Tongren Eye

Center
DR or Non-DR Yes

DCNN:
Inception

v3,
Resnet152

and
Inception-
Resnet-v2

Integrated
model:
88.21%

Integrated
model:
85.57%

Integrated
model:
90.85%

0.946

Li, 2019 [111] IDRID,
MESSIDOR 1

Grade DR based on ICDR
scale No

DCNN:
Attention
network
based on
ResNet50

DR: 92.6%,
DME: 91.2%

DR: 92.0%,
DME: 70.8% NA DR: 0.96

DME: 0.92

Li, 2019 [61]

Shanghai
Zhongshan

Hospital
(SZH) and

Shanghai First
People’s
Hospital

(SFPH), China,
MESSIDOR 2

Grade DR based on ICDR
scale Yes DCNN:

Inception v3 93.49% 96.93% 93.45% 0.9905

Metan, 2019
[112] EyePACS Grade DR based on ICDR

scale Yes DCNN:
ResNet 81% NA NA NA

Nagasawa,
2019 [113]

Saneikai
Tsukazaki

Hospital and
Tokushima
University
Hospital,

Japan

Detect PDR Yes DCNN:
VGG-16 NA PDR: 94.7% PDR: 97.2% PDR: 0.96

Qummar, 2019
[114] EyePACS Grade DR based on ICDR

scale Yes

DCNN:
Ensemble of
(Resnet50,
Inception

v3, Xception,
Dense121,
Dense169)

80.80% 51.50% 86.72% F1 score:
0.53
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Table 2. Cont.

Author, Year Dataset Grading Details Pre-
Processing Method Accuracy Sensitivity Specificity AUC

Ruamviboonsuk,
2019 [115]

Thailand
national DR

screening
program
dataset

Grade DR based on ICDR
and detect RDME No DCNN NA DR: 96.8% DR: 95.6% DR: 0.98

Sahlsten, 2019
[70] Private dataset

Detect DR based on
multiple grading systems,

RDR and DME
Yes DCNN:

Inception-v3 NA 89.60% 97.40% 0.98

Sayres, 2019
[82] EyePACS Grade DR based on ICDR No DCNN 88.40% 91.50% 94.80% NA

Sengupta,
2019 [116]

EyePACS,
MESSIDOR 1

Grade DR based on ICDR
scale Yes DCNN:

Inception-v3 90. 4% 90% 91.94% NA

Ting, 2019
[117]

SiDRP, SiMES,
SINDI, SCES,
BES, AFEDS,
CUHK, DMP
Melb, with 2

FOV

Grade DR based on ICDR
scale Yes DCNN NA NA NA

Detect DR:
0.86

RDR: 0.96

Zeng, 2019
[118] EyePACS Grade DR based on ICDR

scale Yes DCNN:
Inception v3 NA 82.2% 70.7% 0.95

Ali, 2020 [57]

Bahawal
Victoria
Hospital,
Pakistan.

Grade DR based on ICDR
scale Yes

ML: SMO,
Lg, MLP,
LMT, Lg

employed
on selected

post-
optimized

hybrid
feature
datasets

MLP:
73.73%

LMT: 73.00
SLg: 73.07

SMO: 68.60
Lg: 72.07%

NA NA

MLP: 0.916
LMT: 0.919
SLg: 0.921

SMO: 0.878
Lg: 0.923

Araujo, 2020
[119]

EyePACS,
MESSIDOR 2,
IDRID, DMR,
SCREEN-DR,

DR1,
DRIMDB,

HRF

Grade DR based on ICDR
scale Yes DCNN NA NA NA

Kappa score:
EyePAC:

0.74

Chetoui, 2020
[26]

EyePACS,
MESSIDOR 1,

2, eOphta,
UoA-DR from
the University
of Auckland

research,
IDRID, STARE,
DIARETDB0,

1

Grade DR based on ICDR
scale Yes

DCNN:
Inception-

ResNet
v2

97.90% 95.80% 97.10% 98.60%

Elswah, 2020
[74] IDRID Grade DR based on ICDR

scale Yes
DCNN:

ResNet 50 +
NN or SVM

NN: 88%
SVM: 65% NA NA NA

Gadekallu,
2020 [71]

DR Debrecen
dataset

collection of 20
features of

MESSIDOR 1

DR or Non-DR Yes
DCNN

ML: PCA +
Firefly

97% 92% 95% NA

Gadekallu,
2020 [120]

DR Debrecen
dataset Detect DR Yes

ML: PCA+
grey wolf
optimiza-

tion (GWO)
+ DNN

97.30% 91% 97% NA

Gayathri, 2020
[121]

MESSIDOR 1,
EyePACS,

DIARETDB0
Grade DR based on ICDR

scale NA
Wavelet

Transform,
SVM, RF

MESSIDOR
1: 99.75%

MESSIDOR
1: 99.8%

MESSIDOR
1: 99.9% NA

Jiang, 2020
[122] MESSIDOR 1

Image-wise label the
presence of MA, HE, Ex,

CWS
Yes

DCNN:
ResNet 50

based

MA: 89.4%
HE: 98.9%
Ex: 92.8%

CWS: 88.6%
Normal:
94.2%

MA: 85.5%
HE: 100%
Ex: 93.3%

CWS: 94.6%
Normal:
93.9%

MA: 90.7%
HE: 98.6%
Ex: 92.7%

CWS: 86.8%
Normal:
94.4%

MA: 0.94
HE: 1

Ex: 0.97
CWS: 0.97
Normal:

0.98

Lands, 2020
[123]

APTOS 2019,
APTOS 2015

Grade DR based on ICDR
scale Ye

DCNN:
DensNet

169
93% NA NA Kappa score:

0.8

Ludwig, 2020
[10]

EyePACS,
APTOS,

MESSIDOR 2,
EYEGO

Detect RDR Yes DCNN:
DenseNet201 NA MESSIDOR

2: 87%
MESSIDOR

2: 80%
MESSIDOR

2: 0.92

Majumder,
2020 [15]

EyePACS,
APTOS 2019

Grade DR based on ICDR
scale Yes CNN 88.50% NA NA NA
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Table 2. Cont.

Author, Year Dataset Grading Details Pre-
Processing Method Accuracy Sensitivity Specificity AUC

Memari, 2020
[124]

MESSIDOR 1,
HEI-MED Detect DR Yes DCNN NA NA NA NA

Narayanan,
2020 [125] APTOS 2019 Detect and grade DR

based on ICDR scale Yes

DCNN:
AlexNet,
ResNe,
VGG16,

Inception v3

98.4% NA NA 0.985

Pao, 2020 [84] EyePACS Grade DR based on ICDR
scale Yes

CNN:
bichannel

customized
CNN

87.83% 77.81% 93.88% 0.93

Paradisa, 2020
[73] DIARETDB 1 Grade DR based on ICDR

scale Yes

ResNet-50
for

extraction
and SVM,
RF, KNN,

and
XGBoost as
classifiers

SVM: 99%,
KNN: 100%

SVM: 99%,
KNN: 100% NA NA

Patel, 2020
[126] EyePACS Grade DR based on ICDR

scale Yes
DCNN:

MobileNet
v2

91.29% NA NA NA

Riaz, 2020 [80] EyePACS,
MESSIDOR 2 NA Yes DCNN NA EyePACS:

94.0%
EyePACS:

97.0%
EyePAC:

0.98

Samanta, 2020
[127] EyePACS Grade DR based on ICDR

scale Yes
DCNN:

DenseNet121
based

84.1% NA NA NA

Serener, 2020
[128]

EyePACS,
MESSIDOR 1,
eOphta, HRF,

IDRID

Grade DR based on ICDR
scale Yes DCNN:

ResNet 18

Country:
EyePACS:

65%
Continent:
EyePACS +
HRF: 80%

Country:
EyePACS:

17%
Continent:
EyePACS +
HRF: 80%

Country:
EyePACS:

89%
Continent:
EyePACS +
HRF: 80%

NA

Shaban, 2020
[129] APTOS

Grade DR to non-DR,
moderate DR, and severe

DR
Yes DCNN 88% 87% 94% 0.95

Shankar, 2020
[85] MESSIDOR 1 Grade DR based on ICDR

scale Yes

DCNN:
Histogram-

based
segmenta-

tion +
SDL

99.28% 98.54% 99.38% NA

Singh, 2020
[130]

IDRID,
MESSIDOR 1 Grade DME in 3 levels Yes

DCNN:
Hierarchical
Ensemble of

CNNs
(HE-CNN)

96.12% 96.32% 95.84% F1 score:
0.96

Thota, 2020
[131] EyePACS NA Yes DCNN:

VGG16 74% 80.0% 65.0% 0.80

Wang, 2020
[132]

2 Eye
hospitals,

DIARETDB1,
EyePACS,

IDRID

MA, HE, EX Yes DCNN

MA: 99.7%
HE: 98.4%
EX: 98.1%
Grading:
91.79%

Grading:
80.58%

Grading:
95.77%

Grading:
0.93

Wang, 2020
[133]

Shenzhen,
Guangdong,

China

Grade DR severity based
on ICDR scale and detect
MA, IHE, SRH, HE, CWS,
VAN, IRMA, NVE, NVD,

PFP, VPH, TRD

No

DCNN:
Multi-task
network

using
channel-

based
attention

blocks

NA NA NA

Kappa score:
Grading:

0.80
DR feature:

0.64

Zhang, 2020
[134]

3 Hospitals in
China

Classify to retinal tear &
retinal detachment, DR

and pathological myopia
Yes

DCNN:
Inception-
ResNetv2

93.73% 91.22% 96.19% F1 score:
0.93

Abdelmaksoud,
2021 [135]

EyePACS,
MESSIDOR 1,

eOphta,
CHASEDB 1,
HRF, IDRID,

STARE,
DIARETDB0,

1

Yes U-Net +
SVM 95.10% 86.10% 86.80% 0.91

Bora, 2021
[115] EyePACS Grade DR based on ICDR

scale No DCNN:
Inception v3 NA NA NA

Three FOV:
0·79

One FOV:
0·70
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Table 2. Cont.

Author, Year Dataset Grading Details Pre-
Processing Method Accuracy Sensitivity Specificity AUC

Gangwar, 2021
[136]

APTOS 2019,
MESSIDOR 1

Grade DR based on ICDR
scale Yes

DCNN:
Inception
ResNet v2

APTOS:
82.18%MES

SIDOR 1:
72.33%

NA NA NA

He, 2021 [137]
DDR,

MESSIDOR 1,
EyePACS

Grade DR based on ICDR
scale No

DCNN:
MobileNet 1

with
attention

blocks

MESSIDOR
1: 92.1%

MESSIDOR
1: 89.2%

MESSIDOR
1: 91%

F1 score:
MESSIDOR

1: 0.89

Hsieh, 2021
[32]

National
Taiwan

University
Hospital
(NTUH),
Taiwan,

EyePACS

Detect any DR, RDR and
PDR Yes

DCNN:
Inception v4
for any DR
and RDR

and ResNet
for PDR

Detect DR:
90.7%

RDR: 90.0%
PDR: 99.1%

Detect DR:
92.2%

RDR: 99.2%
PDR: 90.9%

Detect DR:
89.5%

RDR: 90.1%
PDR: 99.3%

0.955

Khan, 2021
[138] EyePACS Grade DR based on ICDR

scale Yes

DCNN:
customized

highly
nonlinear

scale-
invariant
network

85% 55.6% 91.0% F1 score:
0.59

Oh, 2021 [2]

7 FOV fundus
images of
Catholic

Kwandong
University,

South Korea

Detect DR Yes DCNN:
ResNet 34 83.38% 83.38% 83.41% 0.915

Saeed, 2021
[139]

MESSIDOR,
EyePACS

Grade DR based on ICDR
scale No DCNN:

ResNet GB
EyePACS:

99.73%
EyePACS:

96.04%
EyePACS:

99.81%
EyePACS:

0.98

Wang, 2021
[140]

EyePACS,
images from

Peking Union
Medical
College

Hospital,
China

Detect RDR with
lesion-based segmentation

of PHE, VHE, NV, CWS,
FIP, IHE, IRMA and MA,

then staging based on
ICDR scale

No DCNN:
Inception v3 NA EyePACS:

90.60%
EyePACS:

80.70%
EyePACS:

0.943

Wang. 2021
[141] MESSIDOR 1 Grade DR based on ICDR

scale Yes

DCNN:
Multichannel-
based GAN
with semi

super-
vision

RDR: 93.2%,
DR Grading:

84.23%
RDR: 92.6% RDR: 91.5% RDR: 0.96

Characteristics and evaluation of DR grading methods. In this table, the methods that have no preprocessing or common preprocessing
are mentioned. In addition to the abbreviations described earlier, this table contains new abbreviations: Singapore integrated Diabetic
Retinopathy Screening Program (SiDRP) between 2014 and 2015 (SiDRP 14–15), Singapore Malay Eye Study (SIMES), Singapore Indian Eye
Study (SINDI), Singapore Chinese Eye Study (SCES), Beijing Eye Study (BES), African American Eye Study (AFEDS), Chinese University of
Hong Kong (CUHK), and Diabetes Management Project Melbourne (DMP Melb) and Generative Adversarial Network (GAN).

Table 3. Classification-based studies in DR detection using a special preprocessing on fundus images for DR grading in
ICDR scale.

Author, Year Dataset Pre-Processing Technique Method Accuracy

Datta, 2016 [142] DRIVE, STARE, DIARETDB0,
DIARETDB1 Yes, Contrast optimization Image processing NA

Lin, 2018 [143] EyePACS Yes, Convert to entropy images DCNN Original image: 81.8%
Entropy images: 86.1%

Mukhopadhyay, 2018 [144] Prasad Eye Institute, India Yes, Local binary patterns ML: Decision tree, KNN KNN: 69.8%

Pour, 2020 [145] MESSIDOR 1, 2, IDRID Yes, CLAHE DCNN: EfficientNet-B5 NA

Ramchandre, 2020 [146] APTOS 2019 Yes, Image augmentation with
AUGMIX

DCNN: EfficientNetb3,
SEResNeXt32x4d

EfficientNetb3: 91.4%
SEResNeXt32x4d: 85.2%

Shankar, 2020 [85] MESSIDOR 1 Yes, CLAHE
DCNN: Hyperparameter

Tuning Inception-v4
(HPTI-v4)

99.5%

Bhardwaj, 2021 [147] DRIVE, STARE, MESSIDOR 1,
DIARETDB1, IDRID, ROC

Yes, Image contrast enhancement
and OD localization

DCNN: InceptionResNet
v2 93.3%

Bilal, 2021 [16] IDRID
Yes, Adaptive histogram
equalization and contrast

stretching

ML: SVM + KNN + Binary
Tree 98.1%

Elloumi, 2021 [148] DIARETDB1 Yes, Optic disc location, fundus
image partitioning ML: SVM, RF, KNN 98.4%

AHE: Adaptive Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.
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Table 4. Classification-based studies in DR detection using OCT and OCTA.

Author,
Year Dataset Grading

Details Preprocessing Method Accuracy Sensitivity Specificity AUC

Eladawi,
2018 [149]

OCTA images,
University of

Louisville, USA
Detect DR Yes

ML: Vessel
segmentation, Local
feature extraction,

SVM

97.3% 97.9% 96.4% 0.97

Islam, 2019
[150] Kermani OCT dataset NA Yes DCNN: DenseNet 201 98.6% 0.986 0.995 NA

Le, 2020
[151] Private OCTA dataset Grade DR No DCNN: VGG16 87.3% 83.8% 90.8% 0.97

Sandhu,
2020 [75]

OCT. OCTA, clinical
and demographical
data, University of
Louisville Clinical

Center, USA

Detect mild
and

moderate
DR

Yes ML: RF 96.0% 100.0% 94.0% 0.96

Liu, 2021
[77] Private OCTA dataset Detect DR Yes

Logistic Regression
(LR), LR regularized
with the elastic net
(LR-EN), SVM and

XGBoost

LR-EN:
80.0%

LR-EN:
82.0%

LR-EN:
84.0% LR-EN: 0.83

3.3. Diabetic Retinopathy Lesion Segmentation

The state-of-the-art DR classification machines [68,69] identify referable DR identifica-
tion without directly taking lesion information into account. Therefore, their predictions
lack clinical interpretation, despite their high accuracy. This black box nature of DCNNs is
the major problem that makes them unsuitable for clinical application [86,152,153] and has
made the topic of eXplainable AI (XAI) of major importance [153]. Recently, visualization
techniques such as gradient-based XAI have been widely used for evaluating networks.
However, these methods with generic heatmaps only highlight the major contributing
lesions and hence are not suitable for detection of DR with multiple lesions and severity.
Thus, some studies focused on the lesion-based DR detection instead. In general, we found
20 papers that do segmentation of the lesions, such as MA (10 articles), Ex (9 articles)
and IHE, VHE, PHE, IRMA, NV, CWS. In the following sections, we discuss the general
segmentation approaches. The implementation details of each article are accessible in
Tables 5 and 6 based on its imaging type.

3.3.1. Machine Learning and Un-Machine Learning Approaches

In general, using ML methods with a high processing speed, low computational cost,
and interpretable decisions is preferred to DCNNs. However, the automatic detection of
subtle lesions such as MA did not reach acceptable values. In this review, we collected
2 pure ML-involved models and 6 un-ML methods. As reported in a study by Ali Shah
at el. [154], they detected MA using color, Hessian and curvelet-based feature extraction
and achieved a SE of 48.2%. Huang et al. [155] focused on localizing NV through using
the Extreme Learning Machine (ELM). This study applied Standard deviation, Gabor,
differential invariant, and anisotropic filters for this purpose and with the final classifier
applying ELM. This network performed as well as an SVM with lower computational
time (6111 s vs. 6877 s) with a PC running the Microsoft Windows 7 operating system
with a Pentium Dual-Core E5500 CPU and 4 GB memory. For the segmentation task, the
preprocessing step had a fundamental rule which had a direct effect on the outputs. The
preprocessing techniques varied depending on the lesion type and the dataset properties.
Orlando et al. applied a combination of DCNN extracted features and manually designed
features using image illumination correction, CLAHE contrast enhancement, and color
equalization. Then, this high dimensionality feature vector was fed into an RF classifier to
detect lesions and achieved an AUC score of 0.93, which is comparable with some DCNN
models [81,137,141].

Some studies used un-ML methods for detection of exudates such as that of Kaur
et al. [156], who proposed a pipeline consisting of a vessel and optic disk removal step and
used a dynamic thresholding method for detection of CWS and Ex. Prior to this study,
Imani et al. [157] also did the same process with the focus on Ex on a smaller dataset. In
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their study, they employed additional morphological processing and smooth edge removal
to reduce the detection of CWS as Ex. This article reported the SE and SP of 89.1% and
99.9% and had an almost similar performance compared to Kaur’s results with 94.8%
and 99.8% for SE and SP, respectively. Further description of the recent studies on lesion
segmentation with ML approach can be found in Tables 5 and 6.

3.3.2. Deep Learning Approaches

Recent works show that DCNNs can produce promising results in automated DR
lesion segmentation. DR lesion segmentation is mainly focused on fundus imaging. How-
ever, some studies apply a combination of fundus and OCT. Holmberg et al. [158] proposed
a retinal layer extraction pipeline to measure retinal thickness with Unet. Furthermore,
Yukun Guo et al. [159] applied DCNNs for avascular zone segmentation from OCTA images
and received the accuracy of 87.0% for mild to moderate DR and 76.0% for severe DR.

Other studies mainly focus on DCNNS applied to fundus images which give a clear
view of existing lesions on the surface of the retina. Other studies such as Lam et al. [160]
deployed state of the art DCNNS to detect the existence of DR lesions in image patches
using AlexNet, ResNet, GoogleNet, VGG16, and Inception v3 achieving 98.0% accuracy
on a subset of 243 fundus images obtained from EyePACS. Wang et al. [28] also applied
Inception v3 as the feature map in combination with FCN 32 s as the segmentation part.
They reported SE values of 60.7%, 49.5%, 28.3%, 36.3%, 57.3%, 8.7%, 79.8%, and 0.164 over
PHE, Ex, VHE, NV, CWS, FIP, IHE, MA, respectively. Quellec et al. [81] focused on four
lesions CWS, Ex, HE, and MA using a predefined DCNN architecture named o-O solution
and reported the values of 62.4%, 52.2%, 44.9%, and 31.6% over CWS, Ex, HE, and MA for
SE, respectively, which shows a slightly better performance for CWS and Ex than Wang
et al. [140] and considerably better on MA than Wang et al. [141]. On the other hand, Wang
et al. [141] performed better in HE detection. Further details of these article and others can
be found in the Tables 5 and 6.

Table 5. Segmentation-based studies in DR detection using fundus images.

Author, Year Dataset Considered Lesions Preprocessing Segmentation
Method Sensitivity/Specificity AUC

Imani, 2016 [157] DIARETDB1,
HEI-MED, eOphta Ex Yes

Dynamic decision
thresholding,

morphological
feature extraction,

smooth edge
removal

89.01%/99.93% 0.961

Shah, 2016 [154] ROC MA Yes
Curvelet transform

and rule-based
classifier

48.2%/NA NA

Quellec, 2017 [81] EyePACS, eOphta,
DIARETDB1 CWS, Ex, HE, MA Yes DCNN: o-O

solution

DIARETDB1:
CWS: 62.4%/NA

Ex: 55.2%/NA
HE: 44.9%/NA
MA: 31.6%/NA

EyePACS: 0.955

Huang, 2018 [155] MESSIDOR 1,
DIARETDB0, 1 NV Yes ELM NA/NA ACC: 89.2%

Kaur, 2018 [156]
STARE, eOphta,
MESSIDOR 1,
DIARETDB1,

private dataset
Ex, CWS Yes Dynamic decision

thresholding 94.8%/99.80% ACC: 98.43%

Lam, 2018 [160] EyePACS, eOphta Ex, MA, HE, NV NA

DCNN: AlexNet,
VGG16, GoogLeNet,

ResNet, and
Inception-v3

NA/NA EyePACS: 0.99
ACC: 98.0%

Benzamin, 2018
[161] IDRID Ex Yes DCNN 98.29%/41.35% ACC: 96.6%

Orlando, 2018 [162]
eOphtha,

DIARETDB1,
MESSIDOR 1

MA, HE Yes ML: RF NA/NA 0.93

Eftekhari, 2019 [163] ROC, eOphta MA Yes
DCNN: Two level
CNN, thresholded

probability map
NA/NA ROC: 0.660

Wu, 2019 [164] HRF
Blood vessels, optic

disc and other
regions

Yes
DCNN: AlexNet,

GoogleNet,
Resnet50, VGG19

NA/NA AlexNet: 0.94
ACC: 95.45%



J. Imaging 2021, 7, 165 18 of 26

Table 5. Cont.

Author, Year Dataset Considered Lesions Preprocessing Segmentation
Method Sensitivity/Specificity AUC

Yan, 2019 [165] IDRID Ex, MA, HE, CWS Yes DCNN: Global and
local Unet NA/NA

Ex: 0.889
MA: 0.525
HE: 0.703

CWS: 0.679

Qiao, 2020 [166] IDRID MA Yes DCNN 98.4%/97.10% ACC: 97.8%

Wang, 2021 [141]

EyePACS, images
from Peking Union

Medical College
Hospital

Detect RDR with
lesion-based

segmentation of
PHE, VHE, NV,

CWS, FIP, IHE, Ex,
MA

No DCNN: Inception
v3 and FCN 32s

PHE: 60.7%/90.9%
Ex: 49.5%/87.4%

VHE: 28.3%/84.6%
NV: 36.3%/83.7%

CWS: 57.3%/80.1%
FIP: 8.7%/78.0%

IHE: 79.8%/57.7%
MA: 16.4%/49.8%

NA

Wei, 2021 [63] EyePACS
MA, IHE, VHE,

PHE, Ex, CWS, FIP,
NV

Yes
DCNN: Transfer

learning from
Inception v3

NA/NA NA

Xu, 2021 [167] IDRID Ex, MA, HE, CWS Yes DCNN: Enhanced
Unet named FFUnet

Ex: 87.55%/NA
MA: 59.33%/NA
HE: 73.42%/NA

CWS: 79.33%/NA

IOU: Ex:0.84
MA: 0.56
HE: 0.73

CWS: 0.75

ICDR scale: International Clinical Diabetic Retinopathy scale, RDR: Referable DR, vtDR: vision threatening DR, PDR: Proliferative DR,
NPDR: Non-Proliferative DR, MA: Microaneurysm, Ex: hard Exudate, CWS: Cotton Wool Spot, HE: Hemorrhage, FIP: Fibrous Proliferation,
VHE: Vitreous Hemorrhage, PHE: Preretinal Hemorrhage, NV: Neovascularization.

Table 6. Segmentation-based studies in DR detection using OCT, OCTA images.

Author, Year Dataset Considered
Lesions Pre-Processing Segmentation

Method Sensitivity Specificity AUC

Guo, 2018 [159] UW-OCTA
private dataset Avascular area Yes DCNN

Control: 100.0%
Diabetes without
DR: 99.0% Mild
to moderate DR:
99.0% Severe DR:

100.0%

Control: 84.0%
Diabetes without
DR: 77.0% Mild
to moderate DR:
85.0% Severe DR:

68.0%

ACC:Control:
89.0% Diabetes

without DR: 79%
Mild to

moderate DR:
87% Severe DR:

76.0%

ElTanboly, 2018
[168]

OCT and OCTA
images of

University of
Louisville

12 different
retinal layers &

segmented
OCTA plexuses

No SVM NA NA ACC: 97.0%

ElTanboly, 2018
[168]

SD-OCT images
of

KentuckyLions
Eye Center

12 distinct retinal
layers Yes

Statistical
analysis and
extraction of

features such as
tortuosity,

reflectivity, and
thickness for 12

retinal layers

NA NA ACC: 73.2%

Sandhu, 2018
[169]

OCT images of
University of

Louisville, USA

12 layers;
quantifies the

reflectivity,
curvature, and

thickness

Yes DCNN: 2 Stage
deep CNN 92.5% 95.0% ACC: 93.8%

Holmberg, 2020
[158]

OCT from
Helmholtz
Zentrum
München,

Fundus from
EyePACS

Segment retinal
thickness map,

Grade DR based
on ICDR scale

No

DCNN:
On OCT: Retinal

layer
segmentation

with Unet
On fundus: Self

supervised
learning,
ResNet50

NA NA IOU:
on OCT: 0.94

4. Conclusions

Recent studies for DR detection are mainly focused on automated methods known
as CAD systems. In the scope of the CAD system for DR, there are two major approaches
known as first classification and staging DR severity and second segmentation of lesions
such as MA, HE, Ex, CWS associated with DR.

The DR databases are categorized into public databases (36 out of 43) and private
databases (7 out of 43). These databases contain fundus and OCT retinal images, and among
these two imaging modalities, fundus photos are used in 86.0% of the published studies.
Several public large fundus datasets are available online. The images might have been
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taken with different systems that affect image quality. Furthermore, some of the image-wise
DR labels can be erroneous. The image databases that provide lesion annotations constitute
only a small portion of the databases that require considerable resources for pixel-wise
annotation. Hence, some of them contain fewer images than image-wise labeled databases.
Furthermore, Lesion annotations requires intra-annotator agreement and high annotation
precision. These factors make the dataset error sensitive, and its quality evaluation might
become complicated.

The DR classification needs a standard grading system validated by clinicians. ETDRS
is the gold standard grading system proposed for DR progression grading. Since this
grading type needs fine detail evaluation and access to all 7 FOV fundus images, these
issues make the use of ETDRS limited. Thus, ICDR with less precise scales is applicable for
1 FOV images to detect the DR severity levels.

The classification and grading DR can be divided into two main approaches, namely,
ML-based and DL-based classification. The ML/DL-based DR detection has a generally
better performance than ML/DL-based DR grading using the ICDR scale which needs to
extract higher-level features associated with each level of DR [57,71]. The evaluation results
proved that the DCNN architectures can achieve higher performance scores when large
databases are used [72]. There is a trade-off between the performance on one side and the
architecture complexity, processing time, and the lack of interpretability over the network’s
decisions and extracted features on the other side. Thus, some recent works have proposed
semi-DCNN models containing both DL-based and ML-based models acting as classifier or
feature extractor [71,72]. The use of regularization techniques is another solution to reduce
the complexity of DCNN models [81].

The second approach for CAD-related studies in DR is pixel-wise lesion segmentation
or image-wise lesion detection. The main lesions of DR are MA, Ex, HE, CWS. These lesions
have a different detection difficulty which directly affects the performance of the proposed
pipeline. Among these lesions, the annotation of MA is more challenging [28,167]. Since this
lesion is difficult to detect and is the main sign of DR in early stages, some studies focused
on the pixel-wise segmentation of this lesion with DCNNs and achieved high enough
scores [166]. Although some of the recent DCNN-based works exhibit high performance
in term of the standard metrics, the lack of interpretability may not be sufficiently valid
for real-life clinical applications. This interpretability brings into the picture the concept of
XAI. Explainability studies aim to show the features that influence the decision of a model
the most. Singh et al. [87] have reviewed the currently used explainability methods. There
is also the need for a large fundus database with high precision annotation of all associated
DR lesions to help in designing more robust pipelines with high performance.
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