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Abstract: The retina is the entrance of the visual system. Although based on common biophysical
principles, the dynamics of retinal neurons are quite different from their cortical counterparts, raising
interesting problems for modellers. In this paper, I address some mathematically stated questions
in this spirit, discussing, in particular: (1) How could lateral amacrine cell connectivity shape the
spatio-temporal spike response of retinal ganglion cells? (2) How could spatio-temporal stimuli
correlations and retinal network dynamics shape the spike train correlations at the output of the
retina? These questions are addressed, first, introducing a mathematically tractable model of the
layered retina, integrating amacrine cells’ lateral connectivity and piecewise linear rectification,
allowing for computing the retinal ganglion cells receptive field together with the voltage and spike
correlations of retinal ganglion cells resulting from the amacrine cells networks. Then, I review some
recent results showing how the concept of spatio-temporal Gibbs distributions and linear response
theory can be used to characterize the collective spike response to a spatio-temporal stimulus of a
set of retinal ganglion cells, coupled via effective interactions corresponding to the amacrine cells
network. On these bases, I briefly discuss several potential consequences of these results at the
cortical level.

Keywords: retinal network; visual system; spatio-temporal spike correlations; linear response;
non stationarity

1. Introduction

Let us start with a very simple experiment. Look around you... That’s it, the experi-
ment is over. A very ordinary experience, isn’t it? Is it really though? Let us first point out
that looking around you to see, that is, having the sense of sight, is indeed ordinary—except
for those who have partially or totally lost their ability to see. We will come back to this
point at the end of the paper. Now, excluding visual impairments, vision is everything
but ordinary.

Think of it. A flux of photons, with frequencies in the visible spectrum range, emitted
by the external world around us enters into our eyes, then “something” happens, and we see.
Thanks to constant progress in experimental and theoretical neuroscience, we understand
better and better this “something”, the mechanisms of vision, although our view of it is
far from being complete. In particular, in these times of artificial intelligence, bio-inspired
computing, computer vision, it might be helpful to understand how our brain is able to
handle the complex visual information coming from the external world so rapidly and
efficiently with an energy consumption of the order of a few Watts.

Certainly, the retina plays a central role in this process. It has been known for long
time that this is definitely not a camera. The retina is smart [1] and it has to be. Think
especially of the difference of scale between the retina and the visual cortex, in terms of
size but also numbers of neurons and synapses. As everything that goes to the visual
cortex comes from the retina, this little membrane, at the back of the eye, half a millimetre
thick, with an area of order a cm2 (for humans), has to some extent to filter the visual
information, leaving out “irrelevant details” and capturing crucial events, and then, signal
them appropriately to the brain via spike trains. As a matter of fact, the question(s)
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of “efficiently” encoding information by spikes has been the subject of many fascinating
papers [2–4], especially in the seminal paper from Barlow [5] with concepts such as reducing
redundancy, information compression and efficient coding. These concepts are regularly
updated with recent experimental and theoretical investigations [6–15]. We come back to
this point at the end of the paper too.

The retina has, roughly, the following structure. For more details, see, e.g., [16]
or https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-
retina/ (accessed on 22 November 2021). It is organized in five neuronal types: photo-
receptors, rods and cones (P), horizontal cells (H cells), bipolar cells (B cells), amacrine
cells (A cells), retinal ganglion cells (RG cells), to which are added glial cells (Mueller’s
cells). These neuron types are connected by chemical and electric synapses, in specific
functional circuits or “pathways” (like the rod–cone pathway [17,18]), which are a key in
the retinal capacity to convert the light coming from a visual scene into spike patterns sent
to the visual cortex, through the Lateral Geniculate Nucleus (LGN), via the optic nerve
made of RG cells axons. In particular, in the retina, there are very specific synapses like the
ribbon synapse enabling neurons to transmit light signals from photoreceptors to B cells
over a dynamic range of several orders of magnitude in intensity [19]. Roughly, two main
connectivity structures can be distinguished: feed-forward, the P-B-G path which leads
from the photo transduction to the spike trains emitted by the RG cells towards the cortex.
There is also a lateral connectivity through H cells, at the origin of the Center-Surround
structure of the receptive fields, and the A cells whose role is still poorly understood and
which are one of the main objects of study of this paper.

The structure of the retina and its behaviour are thus well studied on the experimental
side. There are comparatively fewer modelling studies although important work has been
done on retinal coding [20–24], biophysically detailed models [25–27] and generalized
linear models applied to retinal coding [28–30]. Several powerful software has been
designed to model the retina at different scales such as COREM [31], Convis [32], Isetbio
https://github.com/isetbio/isetbio/wiki (accessed on 22 November 2021). The Virtual
Retina simulator, developed by A. Wohrer and P. Kornprobst [33] at INRIA, was one
of the first of these simulators and has given rise to subsequent simulators in our group,
the platform PRANAS [34], https://team.inria.fr/biovision/pranas-software/ (accessed on
22 November 2021) and more recently Macular https://team.inria.fr/biovision/macular-
software/ (accessed on 22 November 2021). There are quite less mathematical results on
how retinal structure, especially lateral A cells’ connectivity, shapes the spike response to
spatio-temporal stimuli [35–37].

One of the goals of this paper is to elicit reflections in this direction, grounded on math-
ematical developments fed by the recent progress in the knowledge of retina physiology
and structure. This is a humble and partial point of view, resulting from my collaboration
with neurobiologists experts in the retina. The paper contains new results, essentially
the mathematically tractable model of the layered retina integrating amacrine cells lateral
connectivity and the mathematical framework to handle piecewise linear rectification pre-
sented in Section 2, the study of rectification effects on retinal ganglion cells receptive field
(Section 3.1), the study of voltage and spike correlations of retinal ganglion cells (Section 3.2)
and the discussion about the mixed effect of network and stimulus on spike correlations
in Section 3.3. It also contains already published material, essentially the framework and
results dealing with Gibbs distributions and linear response (Sections 2.2.1 and 3.3).

The goal is to draw a common thread about the potential role of amacrine cells from
retinal spatio-temporal stimuli response to spike coding. More precisely, I am addressing
the following problems on mathematical grounds. In the main text, I focus on the neu-
roscience modelling perspective, whereas, in the Conclusions section, I discuss potential
consequences of these results out of the field of neuroscience.

Problem 1. How does the structure of the retina, in particular, amacrine lateral connectivity,
condition the retinal response to dynamic stimuli?

https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/
https://github.com/isetbio/isetbio/wiki
https://team.inria.fr/biovision/pranas-software/
https://team.inria.fr/biovision/macular-software/
https://team.inria.fr/biovision/macular-software/


J. Imaging 2022, 8, 14 3 of 37

The problem can be addressed at two levels. Level 1. Single cell response to stimuli.
The individual response of ganglion cells is usually expressed in terms of their receptive
field. This notion is on the one hand phenomenological: it is observed that each ganglion
cell responds preferentially to stimuli, localized in space, with a characteristic spatio-
temporal structure. For example, an ON-Center cell preferentially responds to an increase
in luminance in a circular area corresponding to the central part of the receiving field. This
notion is also expressed mathematically by a kernel KG , i.e., a function of space and time,
so that the response of an RG cell to a spatio-temporal stimulus S(x, y, t), takes the form:[
KG

x,y,t
∗ S

]
(t) =

∫ +∞

x=−∞

∫ +∞

y=−∞

∫ t

s=−∞
KG(x− xC, y− yC, t− s) S(x, y, s)dx dy ds, (1)

where
x,y,t
∗ means space (x, y)-time (t) convolution. xC, yC are the coordinates of the RF

center. The integrals are well defined since the kernel decreases fast enough to infinity,
in space and time, to guarantee convergence. The upper bound in time, t, expresses
causality, whereas the lower bound, −∞, implicitly assumes that the stimulus has been
applied in a distant past compared to t, quite longer than the characteristic times involved
in RG cell response.

Equation (1) corresponds to a linear response. It is therefore only valid for stimuli
of low amplitude in voltage. More generally, the voltage response to the stimulus is
a functional of the stimulus that one can, under well posed mathematical conditions,
write as a Volterra expansion [21], (1) being the lowest order (linear) term. Unfortunately,
higher-order terms are essentially inaccessible experimentally and one usually constrains
instead the nonlinearity of the response under other modalities. In particular, taking
into account that the response of a ganglion cell to a stimulus is, ultimately, a sequence
of spikes, one writes the probability density of emitting a spike between t and t + dt in

the form f
( [
KG

x,y,t
∗ S

]
(t) + b

)
, where f is a nonlinear positive increasing function

(typically, a sigmoid), and b is a threshold constraining the level of activity of the RG
cell in the absence of stimulation. This procedure defines an inhomogeneous Poisson
process called the linear-nonlinear Poisson (LNP) model [38–40]. Experimentally, the kernel
KG is determined by Spike-Triggered Average or Spike-Triggered Correlation technique,
studying the response to a white noise [38]. Nonlinearity is then determined, typically
by the Levenberg–Marquardt method [41]. This modelling asks, however, the following
questions:

(i) How is the kernel KG of the RG cells constrained by the structure/dynamics of the
upper layers of retinal cells?

(ii) The forms (1) implicitly assumes that KG does not depend on the stimulus. Can
one write mathematical conditions that guarantee such an independence?

(iii) To which extent is the notion of Ganglion cells Receptive Field compatible with non-
linear effects reported in retinal neurons and synapses, such as voltage rectification
or gain control?

Level 2. Collective response to stimuli and spike statistics. RG cells do not interact directly,
but amacrine connectivity induces an effective interaction between them. What is therefore
the structure of the spatio-temporal correlations induced by the conjunction of the spatio-
temporal stimulus and the response of the retinal network, in particular, the amacrine lateral
connectivity? A classical paradigm in neural coding is to assume that the retina decorrelates
RG cell outputs to maximize information transfer [6–11,13–15]. It is in particular believed
that A cells play a central role in this decorrelation process (see [15] and references therein).
What can be, at the mathematical level, the conditions, on the stimulus and dynamics that
allow a network of neurons interacting with each other to produce vanishing, or at least,
weak correlations? When does weak mean negligible? These questions are actually closely
related to the second problem.
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Problem 2. How do retina network and dynamics shape spike statistics in the response to stimuli?

More generally, considering the retina as a dynamical system forced by non-stationary,
spatially inhomogeneous stimuli, what could be a general form for the (non-stationary)
statistics of spike trains emitted by ganglion cells, taking into account that spike trains
emitted by the retina are all that the LGN and cortex see? One can attempt to construct
a canonical form of probability distributions of the retinal spike trains taking into ac-
count that:

(i) Stimuli, thus statistics, are not stationary;
(ii) The cortex (and, before, the LGN) only receive spikes, thus have no information

about the biophysical processes which have generated those spikes and no infor-
mation on the underlying dynamics of the retina (voltages, activation variables,
conductances). All the information is contained in the spatio-temporal structure
of spikes;

(iii) Spike train distributions may exhibit long time scale dependence (i.e., have a long
memory).

In this paper, I address these problems with the help of two models. The first, pre-
sented in Section 2.1, grounded on biology and e.g., the papers [42–45] mimics the Bipolar-
Amacrine-Ganglion cells network and is used, in Sections 3.1 and 3.2, to make progress in
elucidating problem 1. I first show how one can obtain an explicit form for the kernel (1)
featuring the A cells lateral connectivity. This RF explicitly depends on the BC cells-A
cells network through the eigenvalues and eigenvectors of an operator I call “transport
operator”. I discuss some consequences of this result, especially in terms of response to
propagating stimulus. This result is valid when cells act as linear integrators. However,
cells are in general rectified by nonlinearities. I propose piecewise-linear rectifications (as
used in several retina model) and I discuss how rectification acts on the RF of Equation (1).
A striking conclusion is that, if the convolution from (1) is preserved, this is the price
of having a RF depending on the stimulus. A consequence of this analysis is that spike
correlations may depend on the stimulus and are expected to be quite different when
considering e.g., objects moving along trajectories in comparison to static images.

The second model, introduced in Section 2.2 and analysed in Section 3.3, attempts
to propose a canonical form of probability distributions of the retinal spike trains based
on the constraints (i), (ii), (iii) above. These sections essentially present the conclusions
of works published elsewhere [46–51]. As I argue, these constraints lead to a natural
notion of spike probabilities, somewhat extending the statistical physics notion of Gibbs
distribution to the non-stationary case. In this setting, one establishes a linear response
for a network of interacting spiking cells that can mimic a set of RG cells coupled via
effective interactions corresponding to the A cells network influence. This linear response
theory not only gives the effect of a non-stationary stimulus to first order spike statistics
(firing rates) but also its effect on higher order correlations. Indeed, spike correlations are
modified by a spatio-temporal stimulus and can be computed thanks to the knowledge
of spontaneous correlations. The linear response formula is expressed as a convolution
where the kernel can be explicitly computed for an Integrate and Fire conductance based
model [51]. Moreover, as I argue, these spike train distributions have close links with
information geometry. In particular, they induce a natural metric in an abstract space of
probabilities, with close potential links with the neuro-geometry introduced by Sarti, Citti,
and Petitot et al. [52–55]. This is discussed in the Conclusions section.

More generally, the application and discussion sections shortly propose the possible
extension of this work to several domains: retinal prostheses, Section 4.1; Convolutional
networks, Section 4.2; Implications for cortical models, Section 5.1; and Neuro-geometry,
Section 5.2.
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2. Materials and Methods
2.1. Modelling the Retinal Network
2.1.1. Specifics of the Retina

Neurons in the retina have the same biophysics as their cortical counterparts. However,
they operate under different modalities. Remarkably, with the exception of the RG cells,
the retinal neurons do not emit action potentials. Their activity and interactions therefore
take place through graded (continuous) membrane potentials as opposed to the sharp peak
of an action potential. Furthermore, there is no long-term synaptic plasticity in the retina.
Finally, the main “computational” elements in the retina are functional circuits [18] made
of a few neurons and synapses, in large contrast with “computational” units in the visual
cortex, such as cortical columns, involving thousands of neurons. A modelling consequence
is that mean-field or neural masses description used in the cortex might not be relevant to
study the retina.

The goal of this paper is to address mathematical questions about the dynamics and
behaviour of the retina embedded in the visual system. To instantiate these questions on a
firm mathematical ground, we are going to consider a model of the retinal network, based
on a few fundamental facts briefly exposed in the previous section:

1. The retina is a high dimensional, non autonomous and noisy dynamical system,
layered and structured, with non-stationary and spatially inhomogeneous entries
(visual scenes).

2. Most retinal neurons are not spiking, except RG cells. Thus, the retina performs
analogic computing.

3. Local retinal circuits efficiently process the local visual information. These local
circuits are connected together, spanning the whole retina in a regular tiling. From this
perspective, it is important to consider individual neurons and synapses, in contrast,
e.g., to cortical modelling, where it is relevant to consider mean-field approaches
averaging over populations.

Thus, the model presented below and in Figure 1 is non-stationary, with a layered
retina like structure, where dynamics ruling B cells, A cells, and RG cells voltage are
piecewise linear. As we discuss, the model affords additional nonlinearities like gain
control. For RG cells, the spiking process is mimicked by a nonlinear firing rate so that our
model enters in the class of LNP models.

2.1.2. Structure of the Retina Model

We assimilate the retina to a superimposition of 3 layers, each one being a flat, two-
dimensional square of edge length L mm where spatial coordinates are noted x, y (Figure 1).
Each layer corresponds to a cell population (B cells, A cells, RG cells) where the density of
cells is taken to be uniform. We note δp the lattice spacing in mm, and Np the total number
of cells in the layer p. Without loss of generality, we assume that L, the retina’s edge size,
is a multiple of δp. We note Lp = L

δp
, the number of cells p per row or column so that

Np = L2
p. Each cell in the population p thus has Cartesian coordinates (x, y) = (ixδp, iyδp),

(ix, iy) ∈
{

1, . . . , Lp
}2. To avoid multiples indices, we associate to each pair (ix, iy) a unique

index i = ix + (iy − 1) Lp. The cell of population p, located at coordinates (ixδp, iyδp), is
then denoted by pi.
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Figure 1. Structure of the retina model introduced in Section 2.1. A moving object (here, presumably,
a car) moves along a trajectory (dashed black line). Its image is projected by the eye optics to the
upper retina layers (Photoreceptors and H cells) and stimulates them. In the model, this corresponds
to the convolution of the stimulus with the Receptive Field (RF) of B cells. This provides to B cells what
we call the “OPL” input to B cells. B cells (blue points) are connected to A cells (red points) via excitatory
synapses (pink arrows, denoted WB

A ) and to RG cells (green points) via excitatory synapses (brown

arrows, denoted WB
G). A cells are connected to B cells via inhibitory synapses (green arrows, denoted

WA
B ) and to RG cells via inhibitory synapses (cyan arrows, denoted WA

G ). The voltage of RG cells is sent
through a nonlinearity (pink curve in the black circle) so as to produce spike trains conveyed to the LGN.

One can roughly subdivide the real retina into two blocks (Figure 1). The first we
name in short, for modelling purposes OPL, (Outer Plexiform Layer), includes the P, H
cells, B cells, and the related synapses. (Note that the terminology OPL and IPL actually
refers to synaptic layers. “The outer plexiform layer has a wide external band composed of
inner fibres of rods and cones and a narrower inner band consisting of synapses between
photoreceptor cells and cells from the inner nuclear layer.” “The inner plexiform layer
consists of synaptic connections between the axons of bipolar cells and dendrites of ganglion
cells” (ref https://www.sciencedirect.com/topics/medicine-and-dentistry/, accessed on
22 November 2021). In our model, these naming are short cuts to distinguish the network
input (OPL) and the network processing (IPL)). An “input” of this block is the flow of
photons emitted by the outside world and picked up by the photo-receptors. In our model,
this corresponds to a “stimulus”, i.e., a function S(x, y, t) where x, y are (two-dimensional)
space coordinates and t is the time coordinate. As we do not consider color sensitivity here,
S characterizes a black and white scene, with a control on the level of contrast ∈ [0, 1]. The
“output” of the OPL is sent to B cells in the form of a “drive” voltage, defined in Equation (2)
below. In the real retina, the voltage of each BCell integrates, spatially and temporally,
the local visual information of the photo-receptors which are connected to it, with a lateral
modulation due to the H cells. Each B cells is thus sensitive to specific local characteristics
of the visual scene, defining its Receptive Field (RF). Thus, B cells, like RG cells, have a
receptive field. However, as they are earlier in the vertical pathway, they integrate less
features. Note that the RF of distinct B cells usually overlap creating correlations between
B cells voltages (see Section 3.2.1).

We label B cells (layer 1) with the index i = 1, . . . , NB and we model the RF of B cells
by a convolution kernel, KBi , such that the voltage of BCell i is stimulus-driven by the term:

Vidrive(t) =
[
KBi

x,y,t
∗ S

]
(t). (2)

https://www.sciencedirect.com/topics/medicine-and-dentistry/
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The center of the RF, located at xi, yi, also corresponds to the coordinates of the BCell i.
A typical shape for the RF of B cells is illustrated in Figure 2, although the explicit form
does not play a role in the subsequent mathematical developments.

Figure 2. Receptive Field of a ON BCell. (Left) Example of a spatio-temporal RF of B cells (ON center
cell) represented in 3D (one dimension of space, x and time t). There is inhibition at the surround,
physiologically due to H cells. (Right) Spatio-temporal RF representation with a color map.

The second block that we name in short IPL (Inner Plexiform Layer) comprises the A
cells and RG cells and the afferent synapses. Its “input” is the output of the OPL, and its
output the trains of action potentials emitted by the RG cells. A cells are difficult to study
experimentally because they are hardly accessible from electrophysiology measurements.
There are also a large number of cell subtypes in the A cells class (around 40), of which only
a small number have duly identified functions. It is, however, recognized that they play
an essential role in the treatment of motion [17,56,57]. Here, we address mathematically
the question of the RG cell receptive field form, resulting from the pooling of B cells,
as illustrated in Figure 1, each with a specific RF as exemplified in Figure 2, and modulated
by A cells lateral connectivity.

2.1.3. B Cells–A Cells Interactions

We label A cells (second layer) with the index j = 1 . . . NA. We note W
Aj
Bi

as the

synaptic weight from A cell j to B cell i and WBi
Aj

the synaptic weight from B cell i to

A cell j. We set W
Aj
Bi
≤ 0, (A cells are in general inhibitory although some excitatory

A cells exist, not considered here), whereas WBi
Aj
≥ 0. The synaptic weight matrices B

cells to A cells and A cells to B cells are noted WB
A , WA

B . They are not squared in general.
Electric synapses (gap junctions) between B cells and A cells also exist (e.g., in the Rod
Cone pathway [17], see also [58] and https://www.ncbi.nlm.nih.gov/books/NBK549947/
(accessed on 22 November 2021)), but we will not consider them in first place, for simplicity.
Note, however, as briefly discussed in Section 2.1.8, that adding gap junctions would simply
result in adding linear terms to Equations (3), (6) and (9) (when considering passive gap
junctions) and modify characteristic time scales, without changing the global analysis.

The voltage of B cell i, VBi , evolves according to:

dVBi

dt
= − 1

τBi

VBi +
NA

∑
j=1

W
Aj
Bi
NA

(
VAj

)
+ FBi (t). (3)

Here, τBi
is the characteristic time scale of B cell i response (in ms). The function:

NA(V) =

{
V − θA, if VA > θA;
0, otherwise

, (4)

https://www.ncbi.nlm.nih.gov/books/NBK549947/
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is a linear rectifier ensuring that the synapse j→ i becomes silent when the voltage of the
pre-synaptic A cell j, VAj , is lower than a threshold θA. This corresponds to a biophysical
fact: a synapse cannot change its sign. For simplicity, we consider θA to be the same for
all A cells, although the present formalism can be extended, e.g., to several families of A
cells having different thresholds. Note that linear rectifiers of type (4) rectify cell’s voltage
“from below”. Rectification “from above” also exist, ensuring that the cell’s voltage does not
increase without bounds. A typical mechanism is gain control, where an additional variable,
called the activity, increasing as voltage increases, triggers a gain function nonlinearly
dropping down the voltage when it exceeds an upper threshold [42,44]. Under some mild
assumptions, gain control can also be implemented as a linear function of the activity. This
is discussed in Section 2.1.8 as an extension to the present model.

Finally, FBi (t) is the OPL input term. To match classical retina models as developed
e.g., in [42,44], it reads:

FBi (t) =
Vidrive

τB
+

dVidrive

dt
=

[
KBi

x,y,t
∗
(
S
τB

+
dS
dt

) ]
(t), (5)

(where KBi (x, y, 0) = 0). In short, FBi (t) is chosen so that, in the absence of A cells interac-
tion, VBi (t) = Vidrive(t). Note that FBi (t) implements therefore a time derivative of the drive,
which makes, e.g., a B cell response to moving objects sensitive to changes in directions
or speed.

A cells are connected to B cells with chemical synapses. The differential equation
obeyed by the voltage of A cell j is:

dVAj

dt
= − 1

τAj

VAj +
NB

∑
i=1

WBi
Aj
NB
(

VBi

)
, (6)

where τAj
is the characteristic time scale of A cell j response, and NB has the same form

as (4), with a threshold θB. Note that, in contrast to B cells, A cells do not receive an
OPL input.

2.1.4. RG Cells

We label RG cells (third layer) with the index k = 1 . . . NG. They are connected to B
cells with excitatory synaptic weights, WBi

Gk
≥ 0 (e.g., glutamatergic synapses) and to A

cells with inhibitory synaptic weights, W
Aj
Gk
≤ 0 (e.g., glycinergic or GABA-ergic synapses).

Their voltage, VGk , evolves according to:

dVGk

dt
= − 1

τG
VGk +

NB

∑
i=1

WBi
Gk
NB(VBi ) +

NA

∑
j=1

W
Aj
Gk
NA(VAj). (7)

RG cells are spiking. In the model, their spiking activity (firing rate) is defined by
an LNP model [38–40]. It depends on the voltage via a nonlinear function NG(VG ) ≡
f
(

VG(t)−θG
σG

)
, where f is typically a sigmoid. Although the detailed form of f does not

matter here, it will be convenient, in the sequel, to consider:

NG(VG ) =
1√
2π

∫ VG−θG
σG

−∞
e−

x2
2 dx. (8)

The parameters θG (spiking threshold) and σG (controlling the slope of the sigmoid
at VG = θG) corresponds, in the case where NG has the form (8), to the probability that a
Gaussian centred Ornstein–Uhlenbeck processes with mean-square deviation σG crossing
the threshold θG.
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2.1.5. Joint Dynamics

The joint dynamics of all cells voltage are given by the dynamical system:

dVBi
dt = − 1

τB
VBi + ∑NA

j=1 W
Aj
Bi
NA

(
VAj

)
+ FBi (t), i = 1 . . . NB;

dVAj
dt = − 1

τA
VAj + ∑NB

i=1 WBi
Aj
NB
(

VBi

)
, j = 1 . . . NA;

dVGk
dt = − 1

τG
VGk + ∑NB

i=1 WBi
Gk
NB(VBi ) + ∑NA

j=1 W
Aj
Gk
NA(VAj), k = 1 . . . NG;

(9)

whereas RG cells spikes are produced by the LNP mechanism described above.
The system of Equation (9) can be summarized as follows (Figure 1). B cells receive the

visual input via the term FBi (t) which depends on the stimulus and on the B cell’s receptive

field. They are inhibited by A cells via the synaptic weights W
Aj
Bi

< 0. A cells are excited by

B cells via the synaptic weights WBi
Aj

> 0. B cells are connected to RG cells via the synaptic

weights WBi
Gk

> 0. A cells are connected to RG cells via the synaptic weights W
Aj
Gk

< 0. Note
that we do not impose any constraint on the connectivity here.

To study mathematically the dynamical system (9), we write it in a more convenient
form. We use Greek indices α, β, γ = 1 . . . N ≡ NA + NB + NG, and define the state vector
~X , with entries:

Xα =


VBi , α = i, i = 1 . . . NB;
VAj , α = NB + j, j = 1 . . . NA;
VGk , α = NB + NA + k, k = 1 . . . NG.

(10)

We introduce ~F (t), the non-stationary input, with entries:

Fα(t) =
{

FBi (t), α = i, i = 1 . . . NB;
0, α > NB;

and ~R( ~X ), the rectification term, with entries:

Rα( ~X ) =


NB
(

VBi

)
, α = i, i = 1 . . . NB;

NA

(
VAj

)
, α = NB + j, j = 1 . . . NA;

0, α = NB + NA + k, k = 1 . . . NG.

We use the notation 0n1n2 for the n1 × n2 matrix with zero entries. We introduce the
N × N matrices:

T =


−diag

[
τBi

]
i=1...NB

0NB NA 0NB NG

0NA NB −diag
[

τAj

]
j=1...NA

0NA NG

0NG NB 0NG NA −diag
[

τGk

]
k=1...NG

, (11)

characterizing the characteristic integration times of cells,

W =

 0NB NB WA
B 0NB NG

WB
A 0NA NA 0NA NG

WB
G WA

G 0NG NG

, (12)

summarizing chemical synapses interactions. Note that, to our best knowledge, there are
no synapses from RG cells to RG cells, but they could be added in this formalism.
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Then, the dynamical system (9) reads, in vector form:

d ~X
dt

= T −1. ~X +W .~R( ~X ) + ~F (t). (13)

We remark that (13) has a specific skew-product structure: the dynamics of RG cells
is driven by B cells and A cells with no feedback. This means that one can study first the
coupled dynamics of B cells and A cells and then the effect on RG cells. This corresponds
to a biological reality as, to our best knowledge, there is no feedback from RG cells to B
cells or to A cells.

2.1.6. Piecewise Linear Evolution

We assume here that Fα(t) is bounded, as well as synaptic weights. Thus, the phase
space Ω of (13) can be taken to be compact. Indeed, trajectories cannot escape to infinity
thanks to the rectification terms NB,NA, (Equation (4)) and thanks to the sign of synaptic

weights WBi
Aj

, W
Aj
Bi

. More precisely, VBi cannot become arbitrarily large and positive because

the input term Fα(t) ≡ FBi (t) is bounded and because ∑NA
j=1 W

Aj
Bi
NA

(
VAj

)
≤ 0. Assume

indeed that VBi increases (due to a large enough Fα > 0 making the r.h.s. of Equation (3)
positive). This leads to an increase of connected A cell voltages VAj (Equation (6)), thus to a

decrease of the term ∑NA
j=1 W

Aj
Bi
NA

(
VAj

)
≤ 0 until the point where the r.h.s. of (3) becomes

negative, thereby decreasing VBi and preventing it from becoming arbitrarily large. This
implies as well that VAj s cannot become arbitrarily large. On the opposite, if VBi (resp. VAj )
becomes smaller than θB (resp. θA), it does not play any more role in the dynamics because
of rectification.

Due to the specific form (4) of the rectification terms, the dynamical system (13) is
piecewise linear. More precisely, we can partition the phase space Ω into sub domains
Ω(n), n = 1 . . . 2NB+NA defined as follows. To each cell α = 1 . . . NB + NA (B cell or A cell),
we associate a “rectification label” ηα = 1 if the cell α is rectified and ηα = 0 otherwise.
Because of the form (4) of the rectification, the label ηα corresponds to a partition of the
voltage Xα’s domain of variation into two sub domains (e.g., for a B cell, ηα = 1 if VBi < θB

and ηα = 0 if VBi ≥ θB). Now, the set { 0, 1 }NB+NA is made of chains η =
(

η1 . . . ηNB+NA

)
composed of the rectification labels ηα of all B cells and A cells. To each such sequence is
therefore associated a convex domain Γ(n) of RNB+NA where all cells α such that ηα = 0
have their voltage Xα larger than the rectification threshold, thus, are not rectified, and all
cells such that ηα = 1 are rectified. To each such η is associated a unique integer (e.g.,
n = ∑NB+NA

α=1 ηα2α−1, η is then the binary coding of n). Finally, we set Ω(n) = Γ(n) ×RNG ,
where the product with the subspaceRNG integrates the states space of RG cells dynamics.
They are slaved by B cells and A cells dynamics, but they are not rectified. In this setting,
Ω(0) is the subset of Ω such that neither B cells nor A cells are rectified; Ω(1) the subset of
the phase space where only B cell 1 is rectified; Ω(3) the subset where only B cells 1, 2 are
rectified; Ω(2NB ) the subset where only A cell 1 is rectified and so on.

It is easy to check that the sets Ω(n) are disjoint and cover RN , and thus make a
partition of the phase space. The vector ~R( ~X ) now has the form:

Rα( ~X ) =


(1− ηα) ( Xα − θB ), α = 1 . . . NB;
(1− ηα) ( Xα − θA ), α = NB . . . NB + NA;
0, α = NB + NA + k, k = 1 . . . NG,
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and is piecewise-linear in ~X . For ~X ∈ Ω(n), the transformation T −1. ~X +W .~R( ~X ) can
therefore be written L(n). ~X + ~C(n), where ~C(n) is the vector with entries:

~C(n) =


−θB (1− ηα) ∑j W

Aj
Bα

, α = 1 . . . NB;
−θA (1− ηα) ∑i WBi

Aα
, α = NB . . . NB + NA;

0, α = NB + NA + 1, . . . , N.

(14)

This is a time-constant vector, coming from the presence of a threshold in rectification
(it is zero when θA, θB = 0), depending on the rectification state of cells, thus depending on
the domain Ω(n). Rectified cells have zero entries in ~C(n). The matrix:

L(n) =


−diag

[
1

τBi

]
i=1...NB

WA
B .D(n)

A 0NB NG

WB
A .D(n)

B −diag
[

1
τAj

]
j=1...NA

0NA NG

WB
G .D(n)

B WA
G .D(n)

A −diag
[

1
τGk

]
k=1...NG

, (15)

is called the transport operator in the domain Ω(n). This terminology is further explained in
Section 2.1.9, but, in short, L(n) acts as a flow (or a propagator) characterizing the evolution
of a trajectory within Ω(n). In Equation (15), the matrices D(n)

B = diag[ 1− ηα ]α=1...NB
,

D(n)
A = diag[ 1− ηα ]α=NB+1...NB+NA

are projecting onto the subspace of non-rectified cells

in the domain Ω(n). In other words, when the state ~X is in Ω(n), a rectified cell α gives
a zero contribution to the dynamics of other cells, which corresponds to have a row and
column α made of zeros in D(n)

A , D(n)
B .

The dynamical system (13) reads now:

d ~X
dt

= L(n). ~X + ~F (n)(t), ~X ∈ Ω(n), (16)

where we wrote ~F (n)(t) = ~C(n) + ~F (t). Thanks to the decomposition of the phase space
into convex sub-domains Ω(n), (16) is now linear. This technique of phase space decom-
position is classical and has been used in domains such as ergodic theory and billiards,
self-organized criticality [59,60] or neurosciences [61–64]. See especially the recent paper
by A. Rajakumar et al. [65], very much in the spirit of the present model.

2.1.7. Spectra and Fixed Points

It is important to consider in detail the spectrum of L(n) for further studies. (Anothe
approach consists of considering the Schur decomposition instead of the diagonalisation [65–67].)
We note λ

(n)
β , β = 1 . . . N, the eigenvalues of L(n), and its right eigenvectors are noted,

P (n)
β . These vectors are the columns of the matrix P (n) transforming L(n) in diagonal

form (assuming it is diagonalizable).
(
P (n)

)−1
is the inverse matrix. Its rows are the left

eigenvectors of L(n).
As D(n)

A , D(n)
B are projection matrices, it is easy to see, from the form (15), that a rectified

cell generates an eigenvalue − 1
τα

and an eigenvector~eα, the canonical basis vector ofRN in
the direction α. The non-rectified cells span a subspace of RN and the projection of L(n)
on this subspace has a spectrum depending on the connectivity matrices WB

A , WA
B and on

other parameters like characteristic times.
The corresponding eigenvalues λ

(n)
β , β = 1 . . . N can be real or complex, with a positive

or a negative real part. In the case where WB
A and WA

B commute, it is actually possible to
explicitly compute the eigenvalues and the eigenvectors and obtain conditions for stability
(all eigenvalues have real negative part) and real/complex eigenvalues [45]. If we further
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assume that WB
A and WA

B have no zero eigenvalues, the sign constraints on these matrices
imply that L(n) is invertible for all n. This is what we are going to assume from now.

It follows that, in the absence of external stimulus (~F (t) = ~0), Equation (16) has,

for each n, a unique fixed point ~X (n) = −
(
L(n)

)−1
.~C(n). Note, however, that this point

may not be in Ω(n). This is a typical situation for piecewise linear dynamical systems (like
Iterated Function Systems [68–70]) where dynamics can have complex attractors even if
maps are linear (and contracting) into sub-domains of the phase space. The simplest non
trivial case is when dynamics generates a periodic orbit, but more complex attractors (fractal
sets) can be obtained. Here, it is reasonable to assume at least that cells at rest are not

rectified. Mathematically, this means that the fixed point of L(0), ~X ∗ = −
(
L(0)

)−1
.~C(0),

belongs to Ω(0), and this is what we are going to assume for now. This imposes a set of
constraints linking synaptic weights and thresholds. A simple assumption consists of having
vanishing thresholds θA = θB = 0, in which case the rest state is~0. We will also assume
that ~X ∗ is stable (eigenvalues of L(0) have a negative real part), which imposes additional
assumptions on synaptic weights and cell integration times. On biophysical grounds, it
means that the rest state is stable to small perturbations, like noise. Because rectified cells
produce stable eigenvalues, the following holds. Taking an initial condition in any domain
Ω(n), spontaneous dynamics (without stimulus) eventually drive the trajectory back to Ω(0)

and, then, to the rest state. This is further commented below (Section 2.1.9, remark 2).

2.1.8. Extensions: Gain Control and Gap Junctions
Gap Junctions

Electric synapses, e.g., between B cells and A cells, play an important role in the
retina, for example in the rod–cone pathway [17]. We consider here passive gap junctions
corresponding to electric synapses with a constant conductance (in contrast to conductances
depending on variables such as light illumination, see https://webvision.med.utah.edu/
book/part-iii-retinal-circuits/myriad-roles-for-gap-junctions-in-retinal-circuits/ (acessed
on 22 November 2021)). Let us consider, for example, a gap junction between B cell i and A

cell j. We note g
Aj
Bi
≥ 0 the electric conductance from j to i (with g

Aj
Bi

= 0 if there is no electric

connection between the two cells). As gap junctions are symmetric, g
Aj
Bi

= gBi
Aj

. We also note
CBi the membrane capacitance of B cell i and CAj the membrane capacitance of A cell j and

introduce the notation G
Aj
Bi

=
g

Aj
Bi

CBi
, GBi

Aj
=

g
Bi
Aj

CAj
. Remark therefore that G

Aj
Bi

= GBi
Aj

if and only

if B cell i and A cell j have the same capacitance. The electric synapse generates a (signed)

current −G
Aj
Bi

(
VBi −VAj

)
feeding B cell i and a current −GBi

Aj

(
VAj −VBi

)
feeding A cell

j. Note that, in contrast to chemical synapses, voltages are not rectified, ionic currents are
simply following the gradients of electric potentials and can, therefore, go both ways.

The presence of electric synapses between B cells and A cells modifies therefore
Equation (9) as:

dVBi
dt = − 1

τ′Bi
VBi + ∑NA

j=1

[
W

Aj
Bi
NA

(
VAj

)
+ G

Aj
Bi

VAj

]
+ FBi (t), i = 1 . . . NB;

dVAj
dt = − 1

τ′Aj
VAj + ∑NB

i=1

[
WBi

Aj
NB
(

VBi

)
+ GBi

Aj
VBi

]
, j = 1 . . . NA;

where 1
τ′Bi

= 1
τB

+ 1
CBi

∑NA
j=1 g

Aj
Bi

, 1
τ′Aj

= 1
τA

+ 1
CAj

∑NB
i=1 gBi

Aj
are inverse of characteristic time.

Thus, gap junctions have the effect of reducing the characteristic time of cell response
(increase their conductance). Gap junctions between A cells and RG cells, or between RG
cells, would be implemented the same way.

https://webvision.med.utah.edu/book/part-iii-retinal-circuits/myriad-roles-for-gap-junctions-in-retinal-circuits/
https://webvision.med.utah.edu/book/part-iii-retinal-circuits/myriad-roles-for-gap-junctions-in-retinal-circuits/
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Gain Control

This mechanism plays a prominent role in the nervous system. In short, this is the
property that neural systems have to adjust the nonlinear transfer function relating input to
output to dynamically span the varying range of incoming stimuli [71]. It has been reported
in the retina and invoked in several motion processing features: anticipation, alert response
to motion onset and motion reversal [42,44]. In particular, B cells have gain control. Here,
this is a desensitization when activated by a steady illumination [72], mediated by a rise in
intracellular calcium Ca2+, at the origin of a feedback inhibition thus preventing prolonged
signalling of the ON B cell [44,73]. It can be modelled as follows [42,44,45]. Each B cell has
a dimensionless activity variable aBi obeying the differential equation:

daBi

dt
= −

aBi

τa
+ hBNB

(
VBi

)
. (17)

The gain function is a strongly nonlinear function, almost step-wise, of the form:

GB(aBi ) =

{
0, if aBi ≤ 0;

1
1+a6

Bi

, else. (18)

The effect of gain control acts at the level of synaptic transmission from B cells to A
cells, where the rectification term NB

(
VBi

)
is replaced by NB

(
VBi

)
GB(aBi ). That is the

equation ruling the A cell j’s voltage reads now:

dVAj

dt
= − 1

τA
VAj +

NB

∑
i=1

WBi
Aj
NB
(

VBi

)
GB(aBi ).

It has the following meaning. When the voltage of B cell i increases, its activity aBi
increases as well, up to a range where gain control takes place. When aBi becomes too
large, GB(aBi ) drops down, thereby reducing the action of B cell i on A cell j. As mentioned
earlier, this is a way to rectify voltages from above.

Gain control has also been reported for (OFF) RG cells [42,44] and shape their firing
rate. Gain control at the level of B cells and RG cells induces retinal anticipation. When
combined with A cells’ lateral connectivity or gap junctions’ connectivity, it results in a
wave of activity ahead of the propagating stimulus (e.g., a moving bar) for specific ranges
of parameters (characteristic times of cells response, weight intensities) as studied in [45].

Piecewise Linear System with Gain Control and Gap Junctions

Here, we want to expose how the piecewise linear formalism developed above can be
applied in the case of gain control and gap junctions. Note that gap junctions actually do
not pose any problem from this perspective because they add linear contributions. In the
presence of gain control and gap junctions, the dynamical system (9) becomes:

dVBi
dt = − 1

τ′Bi
VBi + ∑NA

j=1

[
W

Aj
Bi
NA

(
VAj

)
+ G

Aj
Bi

VAj

]
+ FBi (t), i = 1 . . . NB;

dVAj
dt = − 1

τ′Aj
VAj + ∑NB

i=1

[
WBi

Aj
NB
(

VBi

)
GB(aBi ) + GBi

Aj
VBi

]
, j = 1 . . . NA;

dVGk
dt = − 1

τG
VGk + ∑NB

i=1 WBi
Gk
NB(VBi ) GB(aBi ) + ∑NA

j=1 W
Aj
Gk
NA(VAj), k = 1 . . . NG;

daBi
dt = − aBi

τa
+ hBNB

(
VBi

)
, i = 1 . . . NB;

(19)

We do not know about experimental evidence of gain control in A cells. This is why A
cells are not gain controlled in (19), but the extension is straightforward. RG cells are gain
controlled at the level of their firing rate (see [44]).
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To make (19) a piecewise linear dynamical system, the trick is to replace the func-
tion (18) with a step function where GB(aBi ) = 1 if aBi ∈ [ 0, θa ], where θa is a threshold
(typically 2

3 coming from a linear interpolation of (18); see [45]) and GB(aBi ) = 0, otherwise.
In addition to the rectification variables ηα, we introduce gain control variables gα = 1 if
aBi ∈ [ 0, θa ] and gα = 0 otherwise, α = 1 . . . NB. The definition of the domains Ω(n) extends
easily in this context by partitioning RN+NB into sub-domains taking the product of the
voltage partition { ]−∞, θB], ]θB,+∞] } with the activity partition { ]−∞, θa], ]θa,+∞] }.
The transport operator generalizes to:

L(n) =



−diag

 1
τ′Bi


i=1...NB

WA
B .D(n)

A + GA
B 0NB NG

0NB NB

WB
A .D
′ (n)
B + GB

A −diag

 1
τ′Aj


j=1...NA

0NA NG
0NA NB

WB
G .D
′ (n)
B WA

G .D(n)
A −diag

[
1

τGk

]
k=1...NG

0NG NB

hB INB NB
0NB NA

0NB NG
−diag

[
1

τa

]
i=1...NB



, (20)

where INB NB is the NB-dimensional identity matrix and D
′(n)
B = diag[ (1− ηα) gα ]α=1...NB

.

Thus, D
′(n)
B has zero entries whenever a B cell is either rectified (ηα = 1) or gain controlled

(gα = 0) leading to a projection on the subspace of B cells which are neither rectified nor
gain controlled. Extending the phase space with activity variables corresponds to adding
NB eigenvalues − 1

τa
to the spectrum. The corresponding eigenvectors are generalized

eigenvectors though because the activities variables add a Jordan block to the matrix [45].

2.1.9. Solutions

We now consider the general situation where dynamics is in the rest state at times t < 0,
and, from time t = 0 on, the stimulus S(x, y, t) is applied, resulting in a non-stationary
drive ~F (t). In general, the stimulus is applied over a finite time. After this, the system
eventually returns to rest. Under this stimulation, the trajectory

{
~X (t)

}
t≥0

is going to

cross a sequence of domains Ω(nk), k = 1, . . . , with n1 = 0, entirely determined by the

stimulus and the network characteristics. Call t(nk+1)
− the time where the trajectory enters

the domain Ω(nk+1) and t(nk+1)
+ the time where it gets out. Note that t(nk+1)

− = t(nk)
+ . By direct

integration of Equation (16), we have:

~X (t) = eL
(nk+1)(t−t

(nk+1)
− ). ~X (t(nk+1)

− ) +
∫ t

t
(nk+1)
−

eL
(nk+1)(t−s).~F (nk+1)(s) ds, t ∈

[
t(nk+1)
− , t(nk+1)

+

]
, (21)

where ~X (t(nk+1)
− ), corresponding to the state of ~X when entering Ω(nk+1), is given by the

integration of the past trajectory and can be computer explicitly. This is:

~X (t(nk+1)
− ) = ~X (t(nk)

+ ) =
k

∑
m=0
Hk

m ~Φm, (22)

whereHk
m is a sequence of matrices satisfying:

Hk
k = IN ; Hk

m = Hk
k−1H

k−1
m ; Hk

k−1 = eL
(nk)(t

(nk)
+ −t

(nk−1)
+ ), (23)

where IN is the identity matrix of dimension N. The matrixHk
m transports the flow from

the exit point of Ω(nm) to the exit point of Ω(nk). The vectors ~Φm are defined by:

~Φ0 = ~X (0); ~Φm =
∫ t(nm)

+

t(nm)
−

eL
(m)(t(nm)

+ −s).~F (m)(s) ds. (24)

The proof of (22) is easily done by recurrence.
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2.1.10. Remarks

Let us now make some remarks on the structure of these solutions.

1. The interpretation of (22) is the following. Starting from an initial condition ~X (0) ∈
Ω(n1), the dynamics (19) is integrated up to the possible time t = t(n2)

− = t(n1)
+

when ~X (t) gets out of Ω(n1) and enters a new domain Ω(n2). This arises if, dur-
ing the time evolution of the system, some cells get rectified (or gain controlled) at
time t. Then, there is a drastic change in time evolution because rectified cells do
not participate in dynamics anymore. The value of the state vector at this time is

~X (t(n1)
+ ) = eL

(n1)(t
(n1)
+ −t

(n1)
− ). ~X (0) +

∫ t
(n1)
+

t
(n1)
−

eL
(n1)(t−s).~F (n1)(s) ds which can be written

~X (t(n1)
+ ) = H1

0.~Φ0 +H1
1.~Φ1 = ∑1

m=0H1
m ~Φm using t(n1)

− = 0. The system is now in the

domain Ω(n2) and follows its evolution until the (possible) time t(n3)
− = t(n2)

+ when
some new cells are rectified or some rectified cells become non-rectified. The system
enters a new domain Ω(n3) and so on. In general, the state at the entrance of domain
Ω(nk+1) is given by (22). This is a linear combination of terms Hk

m ~Φm where ~Φm
(Equation (24)) integrates the stimulus contribution from the entrance time into do-
main Ω(nm) up to the exit time of this domain and Hk

m transports the state from the
exit point of Ω(nm) to the exit point of Ω(nk).

2. In the definition ofHk
m, the operators Lnk do not commute in general.

3. Eigenvalues of some Hk
m can have a positive real part leading to an exponential

increase along the corresponding eigendirection. This means that some cell voltage
increases exponentially in absolute value. However, when voltage becomes too large,
voltage rectification (or gain control) takes place, corresponding to the trajectory
entering a new continuity domain. Here, unstable cells do not contribute to dynamics
anymore, which are projected on the subspace of non-rectified cells. This has the
effect of transforming unstable eigenvalues into stable ones preventing the trajectories
~X (t) from diverging. Actually, the spectrum of Hk

m, controlling stability, resembles
the Lyapunov spectrum in ergodic theory [74], with two main differences. First, we
are simply considering product of matrices without multiplying by the adjoin so
that eigenvalues can be complex. Second, we are not assuming stationarity and the
existence of an invariant measure. Instead, the product Hk

m is constrained by the
non-stationary stimulus and dynamical system parameters which fixes the sequence
of times nks.

4. Rectification induces a weak form of nonlinearity where e.g., the contraction/expansion
in the phase space depends on the domain Ω(nk) (whereas, in a differentiable nonlinear
system, it would depend on the point in the phase space). This has deep consequences
on cells response, as mentioned in the Results section.

2.2. Spike Statistics

As pointed out in the Introduction, it might be helpful to propose a mathematical
setting taking into account non-stationarity and potentially long memory in spike trains’
probabilities. Such a setting has existed for a long time but has not been applied to spike
train statistics until recently. It is inherited from statistical physics on one hand [75] and on
extensions of Markov chains to unbounded memory on the other hand [76]. The material
briefly sketched here has been published in [46–51].

2.2.1. Mathematical Setting for Spike Trains

Neuron variables such as membrane potential or ionic currents are described by
continuous-time equations. In contrast, spikes resulting from the experimental observation
are discrete events, binned with a certain time resolution δ, say on the order of a millisecond.
We consider a network of N spiking neurons, labelled with an index k = 1 . . . N. We define
a spike variable ωk(n) = 1 if neuron k has emitted a spike in the time interval [nδ, (n + 1)δ[,
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and ωk(n) = 0 otherwise. We denote by ω(n) = [ωk(n) ]
N
k=1 the spike-state of the entire

network at time n, which we call a spiking pattern. A spike block denoted by ωn
m, n ≥ m,

is the sequence of spike patterns ω(m), ω(m + 1) . . . ω(n). The range of a block ωn
m is

n−m + 1, the number of time steps from m to n. We call a spike train an infinite sequence
of spikes both in the past and in the future, and, to simplify notations, we note a spike
train ω (instead of ω+∞

−∞). Of course, on operational grounds, spike trains are finite, but it is
mathematically more convenient to work on a space of bi-infinite spike sequences.

2.2.2. Mathematical Setting for Spiking Probabilities

We now consider a family of transition probabilities of the form Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
,

which represents the probability that, at time n, one observes the spiking pattern ω(n) given
the network spike history, extending to an infinite past. This is an extension of Markov
chains where probabilities have the form Pn

[
ω(n)

∣∣ωn
n−D

]
, where D is the memory depth

of the Markov chain. Letting the memory be possibly infinite corresponds to a situation
where one cannot precisely fix the memory depth necessary to characterize the probability
of a spike pattern given the past spike history. An example of a model requiring this
context is presented in Section 2.2.3 below. Having infinite memory imposes mathematical
constraints on the memory decay that has to be sufficiently fast (typically, exponential)
so that the situation is close to Markov chains. In addition to the model presented below,
neural models with infinite memories have been considered by several authors such as E.
Loecherbach and A. Galves [77]. A few remarks about this form of probability:

1. We do not assume stationarity. Pn may depend explicitly on time. This is actually the
reason why we have an index n. A time translation invariant probability will simply
be written P.

2. For such probabilities to be well defined and useful, one needs to make assumptions
on their structure. Beyond technical assumptions such as measurability, summability,
non-nullness and continuity [78,79], the most important assumption here is that the
dependence in the past (memory) decays fast enough, typically, exponentially, so that,
even if this chain has infinite memory, it is very close to Markov.

3. As one can associate to Markov chains an equilibrium probability (under conditions
actually quite more general than detailed-balance), the system of transition probabil-
ities {Pn}n∈Z also admits, under the mathematical conditions sketched in the item
2 above, an equivalent notion called “chains with complete connections” or a “chain
with unbounded memory” [76].

4. These distributions are formally (left-sided) Gibbs distributions where the Gibbs

potential is Φ(n, ω)
def
= logPn

[
ω(n)

∣∣∣ωn−1
−∞

]
(the non-nullness assumption imposes

that Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
> 0). This establishes a formal link to statistical physics.

In particular, when the chain is stationary, expanding the potential in product of spikes
events up to the second order, one recovers the maximum entropy models used in
the literature of spike trains analysis, including the so-called Ising model [22,48,80,81].
However, the chains we consider are not necessarily stationary.

2.2.3. A Model of Effective Interactions between RG Cells

The visual cortex has no clue on which biophysical processes are taking place in the
retina. All the visual information it receives is encoded in spike trains. This leads to the idea
of proposing models of a spiking RG cells network where dynamics of RG cells voltage are
only constrained by RG cells’ spikes history. Here, one assumes that RG cells dynamics are
controlled by the interactions with hidden layers, for example, the B cells–A cells layers in
the model (13), in a situation where an observer is just recording the spikes emitted by RG
cells, while having no clue of the dynamics in the upper layers. These hidden layers result
in providing effective interactions between RG cells that one can interpolate by fitting the
statistics. The idea is then to construct a dynamical model where the spiking of an RG cell
depends on the spike history emitted by the network, with virtual interactions that mimic
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hidden causal effects [82]. This strategy leads us to propose the model presented in the next
paragraph. The advantage of this approach is that one can explicitly write the transition
probabilities Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
> 0 and infer, from this, a linear response formula telling

us how statistical quantities such as firing rates, but also spike correlations are modified by
a time dependent stimulus. These results are presented in the “Results” Section 2.2.3.

The model is inspired from the generalized Integrate and Fire model (gIF) proposed by
Rudolph and Destexhe [83] and generalizes the Leaky-Integrate and Fire (LIF) model [84,85].
We have N neurons (say RG cells) characterized by their voltage Vk, k = 1 . . . N. One fixes
a voltage threshold θ such that, whenever Vk(t) = θ, a spike is emitted by neuron k at
time t, and is reset to a reset value (typically, Vreset = 0). Below θ, the dynamics of voltage
(sub-threshold dynamics) are governed by Equation (27) below.

In the LIF model, synaptic conductances are constant. In the gIF model, in contrast,
the synaptic conductance gkj between the pre-synaptic neuron j and the post-synaptic
neuron k depends on spike history as:

gkj(t, ω) = Gkj αkj(t, ω), (25)

where:

αkj(t, ω) =
t

∑
n=−∞

αkj(t− n)ωj(n). (26)

The notation gkj(t, ω) means that function gkj depends on spikes occurring before time
t. Gkj ≥ 0 is the maximal conductance between j and k. It is zero when there is no synaptic
connection between neurons j and k. In (26), the function αkj(t), called α-kernel, summarizes
the complex dynamical process underlying the generation of a post-synaptic potential after

the emission of a pre-synaptic spike [86]. It has the typical form αkj(t) = P(t)e
− t

τkj H(t)
where P(t) is a polynomial in time and H(t) is the Heaviside function. What matters on
mathematical grounds is the exponential tail of αkj(t) [46]. The function αkj(t, ω) depends
on the spike history preceding t. It records the spikes emitted by the pre-synaptic neuron
j before t, corresponding to ωj(n) = 1 and adds up a contribution αkj(t− n) to the post
synaptic conductance from pre-synaptic neuron j to post-synaptic neuron k.

Now, the gIF dynamics reads [46,47,62]:

Ck
dVk
dt

+ gL(Vk − EL) + ∑
j

gkj(t, ω)(Vk − Ej) = Sk(t) + σBξk(t), if Vk(t) < θ,

where gL, EL are respectively the leak conductance and the leak reversal potential, Ej the
reversal potential characterizing the synaptic transmission between j and k. Finally, ξk(t) is
a white noise, introducing stochasticity in dynamics. Its intensity is σB.

Setting Wkj = GkjEj, ik(t, ω) = gLEL + ∑j Wkjαkj(t, ω) + Sk(t) + σBξk(t), gk(t, ω) =

gL + ∑N
j=1 gkj(t, ω), one can finally write the gIF dynamics in the form:

Ck
dVk
dt

+ gk( t, ω )Vk = ik(t, ω), if Vk(t) < θ, (27)

where ik(t, ω) depends on the network spike history via αkj(t, ω), on the stimulus, and con-
tains a stochastic term. As the reversal potential Ej can be positive or negative, the synaptic
weights Wkj define an oriented and signed graph, whose vertices are the neurons. These
weights are what we call effective interactions.

What makes the gIF model very rich is that it proposes a biophysically grounded way
to construct a dynamical system where the variables (here, voltages) are constrained by the
only information of spike train history. The price to pay is that dynamics actually depend
on the whole spike history, which is potentially infinite. Actually, the gIF model has an
infinite memory. This is essentially because the conductance depends on the whole history,
and, contrarily to voltages, is not reset when the neuron fires. Nevertheless, the exponential
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decay in the alpha profile actually ensures the existence (and uniqueness) of transition
probabilities of the form Pn

[
ω(n)

∣∣∣ωn−1
−∞

]
[47–50].

Note that the integration of (27) does not only require the knowledge of voltages Vk,
stimulus and noise at time t. It requires, in addition, the knowledge of the spike train ω
emitted by the network before t. In this sense, this is not a classical dynamical system.
Nevertheless, Equation (27) can be explicitly integrated [47,51].

3. Results
3.1. How Could Lateral A Cells Connectivity Shape the Receptive Field of a Ganglion Cell?

The response of an RG cell to visual stimuli is shaped by the retina structure depicted
in Figure 1. Here, with the model introduced in Section 2.1, we would like to characterize
the respective effects of the stimulus and of the network connectivity, especially A cells,
and understand under which condition can the conjugated effect of network dynamics and
stimulus be represented by a convolution of the form (1) where the kernel KGα

is intrinsic
to the cell, i.e., does not depend on the stimulus?

3.1.1. Non-Rectified Case

The answer is relatively easy when no rectification takes place, i.e., when the trajectory
of (13) stays in the domain Ω(0) (see Section 2.1.6 for the definition). Indeed, in this case,
evolution is ruled by Equation (21) which holds from the initial time t = t0, where the stim-
ulus starts to be applied, to the current time t. Actually, we can consider that t0 starts far in
the past and let it tend to −∞. This corresponds to considering that the stimulus is applied
on a time scale quite longer than the characteristic times in the problem (i.e., the inverse
of the real part of eigenvalues). Then, Equation (21) reads ~X (t) =

∫ t
−∞ eL

(0)(t−s).~F (0)(s) ds,

which is ~X (t) =

[
eL

(0) t∗ ~F0

]
(t). This equation actually makes sense only if all eigen-

values of L(0) are stable, as we assumed above. Note also that ~F (0) = ~C(0) + ~F where
~C(0) is a constant, depending on thresholds (Equation (14)) and whose integration in the

convolution product gives −
(
L(0)

)−1
.~C(0) = ~X ∗, the base line activity of ~X (t) without

stimulus. We may ignore this constant in the sequel and focus on the time varying part

of the response,
[

eL
(0) t∗ ~F

]
(t). As ~F is itself defined in terms of a convolution (Equa-

tion (5)) with the stimulus and its derivative, ~X (t) is a convolution with the stimulus and
its derivative. Here, it is useful to express ~X (t) in components.

One can then show that [45]:

Xα(t) = Vαdrive(t) + E (0)αnet(t), α = 1 . . . N, (28)

where:

E (0)αnet(t) =
N

∑
β=1

NB

∑
γ=1
P (0)

αβ

(
P (0)

βγ

)−1
v
(0)
βγ

∫ t

−∞
eλ

(0)
β (t−s) Vγdrive(s) ds, (29)

where v
(0)
βγ = λ

(0)
β + 1

τBγ
. The term Vαdrive(t) in Equation (28) is the stimulus drive and

acts only on B cells (it vanishes for α > NB). The term (29) contains the network effects.
The drive imposed on B cells impacts A cells via the connectivity and, thereby, have a
feedback effect on B cells. In addition, the join activity of B cells and A cells drive the RG
cells response (α > NB + NA). In particular, this equation allows for computing explicitly
the RF of an RG cell.



J. Imaging 2022, 8, 14 19 of 37

For this, we introduce the function e(0)β (t) ≡ eλ
(0)
β t H(t) so that

∫ t
−∞ eλ

(0)
β (t−s) Vγdrive(s)

ds ≡
[

e(0)β

t∗ Vγdrive

]
(t), which according to (2) is

[
e(0)β

t∗ KBγ

x,y,t
∗ S

]
(t). Thus, by identifi-

cation with (1), the kernel of RG cell α = NB + NA + 1 . . . NG is:

KGα
(x, y, t) =

N

∑
β=1

NB

∑
γ=1
P (0)

αβ

(
P (0)

βγ

)−1
v
(0)
βγ

[
e(0)β

t∗ KBγ

]
. (30)

This provides an explicit equation for the kernel of an RG cell, embedded in a network
of B cells, A cells, RG cells with dynamics (13), when no rectification takes place.

3.1.2. Interpretation

The kernel obtained in (30) is the response of the RG cell to a Dirac pulse corresponding,
in experiments, to a brief light (or dark) full-field flash. It can also obtained from a white
noise stimulus, corresponding, in experiments, to the so-called Spike Triggered Average
(STA) [38–40]. It corresponds therefore to the functional definition of the receptive field
of RG cells used in experiments. In addition, Equations (28) and (29) give us the voltage
of all cells in the network at time t under the influence of a stimulus. Interestingly, thus,
these equations allow us to visualize the join evolution of B cells and A cells as well as
their action of RG cells. Note that B cells and A cells are difficult to access experimentally.
Given a prescribed connectivity (matrices WB

A , WA
B , WB

G , WA
G ), Equation (28) provides us,

therefore, a mathematical insight on the potential, hidden, dynamics of B cells and A cells
leading to the experimentally observed response of RG cells. Thus, this gives us possible
scenarios characterizing the potential effects of A cells networks on RG cells response.
In addition, Equation (30) also provides the RF for B cells (α = 1 . . . NB) and A cells
(α = NB + 1 . . . NB + NA). We observe in particular that, in a network, the RF of a B cell
is therefore not only what comes from the OPL—the term Vαdrive(t)—it integrates as well
lateral A cells connectivity. This is similar to the center-surround shaping of OPL output
due to H cells, but here, we might have different effects, due to the different physiology of
A cells.

3.1.3. Space-Time Separability

The RG cell kernel, in general, does not factorise into a product of a function of space
and a function of time (separability). Even in the case where the B cells RF is separable,
i.e., KBγ(x, y, t) = KBSγ

(x, y)KBTγ
(t) where KBSγ

is the spatial part, centred at xγ, yγ and
KBTγ

the temporal part, the RG cell kernel reads:

KGα
(x, y, t) =

N

∑
β=1
P (0)

αβ

(
NB

∑
γ=1

(
P (0)

βγ

)−1
v
(0)
βγ

[
e(0)β

t∗ KBTγ

]
×KBSγ

(x, y)

)
, (31)

and is not separable either. Now, if B cells have the same temporal kernel KBT , independent

of γ and the same characteristic time τB, such that v
(0)
βγ = λ

(0)
β + 1

τB
is independent of γ,

we can write:

KGα
(x, y, t) =

N

∑
β=1
P (0)

αβ v
(0)
β

[
e(0)β

t∗ KBT

]( NB

∑
γ=1

(
P (0)

βγ

)−1
KBSγ

(x, y)

)
. (32)

This kernel is not yet strictly separable as the term ∑NB
γ=1

(
P (0)

βγ

)−1
KBSγ

(x, y) still

depends on β, the eigenmode index, via
(
P (0)

βγ

)−1
. Now, the eigenmodes depend on

connectivity. In particular, the B cell to RG cell connectivity corresponds to a pooling of
B cells located in the vicinity of RG cell α. The simplest case is when there is no lateral
connectivity and where each RG cell α is contacted by only B cell with index γα (this
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implies NB = NG). In this case: P (0)
αβ = δαβ,

(
P (0)

βγ

)−1
= δβγ so that KGα

(x, y, t) =

v
(0)
α

[
e(0)α

t∗ KBT

]
KBSα

(x, y) is separable. More generally, pooling implies that P (0)
αβ and(

P (0)
βγ

)−1
are locally spread around α resulting in a spatial part ∑NB

γ=1

(
P (0)

βγ

)−1
KBSγ

(x, y)
depending only on α.

3.1.4. Resonances

The eigenvalues of L(0) can be complex, going by conjugated pairs. It is actually
quite easy to obtain such a situation mathematically, even considering nearest neighbours’
interactions [45]. A straightforward consequence is the existence of preferred time fre-
quencies (resonance) for an RG cell. In other words, applying periodic sequences of brief
flashes with a varying frequency, one might observe a peak in the amplitude of the RG cell
response, for specific frequencies. This remark could, e.g., explain the “bump” observed in
experiments when the retina is submitted to the so-called “Chirp” stimulus [87], a stimulus
composed of different phases of flashes stimulation where one varies duration, frequency,
and amplitude. In the phase where the amplitude is constant but frequency is varying,
some RG cells exhibit a resonance like peak (see e.g., Figure 1b in [87]). Of course, such
resonances could also be explained by intrinsic cells’ properties, like ion channel response.
The potential effect of lateral A cells connectivity would have to be tested experimentally
by, e.g., inhibiting A cells synaptic transmission for RG cells exhibiting resonance peaks.

3.1.5. Stimulus Induced Waves

This is a general fact that networks of coupled units can produce waves. Spontaneous
waves are actually reported in the developmental retina, induced, in the so-called stage II
and stage III by A cells [88]. They are generated by nonlinear mechanisms and closeness to
bifurcations [27]. This is not the type of wave we are dealing with here, though. Instead,
we are referring to waves triggered by a moving stimulus, say a moving bar. The idea is
that such a stimulus can induce, via A cells connectivity, a wave of connectivity which
can be ahead of the stimulus, for a certain range of parameters (e.g., synaptic coupling
intensity) compatible with physiology. Stimulus induced waves, in advance with respect
to the stimulus, have been reported in the visual cortex [89]. They are due to lateral
cortical activity and induce cortical anticipation. The mathematical analysis made in [45]
suggests that such anticipatory waves could also exist in the retina thanks to A cells’ lateral
connectivity, conjugated with nonlinear gain control already known to induce a form of
retinal anticipation [42,44].

3.1.6. Stimulus Adaptation

Short term plasticity has been reported in the retina at the synapses between B cells–A
cells and A cells–RG cells [43,90]. Note actually that, although most models of plastic-
ity referring to cortical neurons, are considering spiking neurons [91], the physiology of
short-term synapse adaptation does not necessarily require spikes and is compatible with
inner retinal networks dynamics. The effect of synaptic plasticity can be integrated in the
model (13). It will result in variations of eigenvalues and eigenvectors of the transport
operator L with potential changes in dynamics. Although potential and highly relevant
phenomena such as bifurcations induced by plasticity would require considering a nonlin-
ear version of (13) (at least, rectification to avoid exponential instability), we can ask about
the simple linear effect of plasticity on the RG cell response. A straightforward potential
effect could be frequency adaptation to periodic flashes.

3.1.7. Rectification

Let us now investigate the role of rectification. In the general case, a trajectory crosses
several domains, and is characterized by Equation (21). Starting from the domain Ω(n1)

(rest state), the state of the network submitted to a stimulus, enters a new domain Ω(n2)
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at time t(n2)
+ where some cells are rectified and so on. Can one still define a response

formula of type (1)? This raises several technical difficulties, first because some eigenvalues
can be unstable. As we have seen above, this does not lead to an exponential explosion,
though precisely rectification prevents cell voltage from diverging. Mathematically, this
is expressed by the exit of the trajectory from the domain with a positive eigenvalue
and a projection on the subspace spanned by non-rectified cells. Another difficulty also
comes from the constants ~C(n) defined in (14) coming from the threshold in the rectification
function. They can be removed by assuming that all thresholds are equal to 0. This is
what we are going to do now for the sake of simplicity. One can then define domain-
dependent flows Φ(n)( ~X , t) ≡ eL

(n) t Θ
(
~X (t) ∈ Ω(n)

)
, where Θ is the indicator function

so that
[

Φ(n)( ~X , .)
t∗ ~F

]
(t) = ∑nm=n

∫ t(nm)
+

t(nm)
−

eL
(m)(t(nm)

+ −s).~F (s) ds, where the sum holds on

indices nm in the trajectory such that nm = n. This allows us to express the recurrence
Formula (22) in terms of a convolution and thereby to express the whole trajectory in terms
of a convolution with a transport operator.

However, there are several important differences with the non-rectified case. First,
the kernel defined this way depends on the trajectory. As the sequence of domains met
by the trajectory (and the time where the trajectory enters in these domains) depend
on the stimulus, the RF of rectifiable cells depends now on the stimulus. Note that the
situation would actually be even worse for nonlinear cells. Indeed, the question hidden
behind these remarks is: “to what extent the linear response assumption defining a RF via a
convolution equation such as (2) is valid”. We will actually come back to a similar question
in Section 3.3 for a network of spiking neurons. Linear response essentially requires the
perturbation to be “weak enough”, which, in our case, means that cells are not rectified.
The formulation in terms of a piecewise linear system allows for extending the notion of RF
to rectified cells, but the price to pay is that RF now depends on the stimulus. With respect
to biology, this effect would for example mean that cells identified e.g., to be ON with an
STA approach, responds differently (e.g., ON-OFF) to a more sophisticated stimulus like
the “chirp“ stimulus [87].

In the rectified cases, the eigenvalues λ
(n)
β , β = 1 . . . N and eigenvectors P (n)

β depend

on the domain, i.e., on the list of rectified cells and are different from the domain Ω(0) of the
rest state. They actually differ in two ways. First, rectified cells provide eigenvalues − 1

τβ

and eigenvectors~eβ so that P (n)
αβ = δαβ for these cells so that they do not contribute any

more to the network response. The second effect is more intricate. Indeed, the mere fact of
rectifying one cell, has, in general, the effect of modifying the whole spectrum and eigenvectors,
with strong effects on the cell response. This can be easily understood. Consider the (not
really retinal-realistic) situation where a cell is a hub in a network. Silencing it has in
general dramatic effects on the global dynamics of this network.

3.1.8. Conclusions of This Section

In this section, we have given a mathematical answer to the problem 1, level 1, posed in
the Introduction. On the basis of a simplified model of B cells–A cells–RG cells interactions,
we have produced a formalism allowing us to compute this network response to spatio-
temporal stimuli. We have been able to write explicitly the RF of individual RG cells
appearing in Equation (1) where the kernel depends explicitly on lateral connectivity.
As we showed, however, the linear response Formula (1), where the kernel is independent
of the stimulus, holds when the stimuli have a weak enough amplitude so that cells are not
rectified. As soon as rectification takes place, the convolution form (1) implies, in general,
that the kernel can change with the stimulus. This effect could be observed in experiments
if the cell type, characterized via STA, provides a different type of response to other stimuli.
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3.2. How Could Spatio-Temporal Stimuli Correlations and Retinal Network Dynamics Shape the
Spike Train Correlations at the Output of the Retina?

In this section, we extrapolate the previous analysis of the model (13) to analyse how
spike trains emitted by RG cells can be correlated via the network and especially A cells
connectivity. We especially want to make mathematical statements on how could A cells
decorrelate RG cells, as claimed on the basis of experiments [15]. We consider first the
non-rectified case and then analyse how rectification can modify correlations.

3.2.1. Voltage Correlations

We first compute the voltage correlations induced by a non-stationary spatio-temporal
stimulus in the model (13). Note that correlations require some notion of probability and,
thus, of randomness. Moreover, it is more convenient when such a probability is stationary,
while we want here to consider a non-stationary problem. This is not contradictory though.
There are two simple (not incompatible) ways to address this point. First, one may consider
that the dynamical system (13) has random initial conditions, drawn with respect to a
stationary probability measure. Second, one can add to the dynamics (13) noise, which is
always present in biological systems. We can make the assumption that noise is stationary
and that it is Brownian (which is a pure mathematical convenience). In biology, spike
correlations are usually obtained by averaging over repeats of the same experiment where
a stimulus is presented to the retinal network. This corresponds therefore to averaging over
initial conditions in the presence of noise. Here, to make things simpler, we assume that
initial conditions are deterministic (the network is in the rest state when the stimulus is
applied) and randomness is induced by a Brownian noise.

Stimulus Induced Correlations in the Non-Rectified Case

Let us therefore consider a stimulus with the form S(x, y, t) = Sd(x, y, t) + σS ξ(x, y, t)
where Sd(x, y, t) is deterministic and ξ(x, y, t) is a spatio-temporal white noise. σS controls
the intensity of this noise. The spatial integration of B cells RF induces then an obvious
correlation between B cell voltages. Consider indeed the term Vidrive(t) in Equation (2) in the
presence of this stimulus. Denoting E[ ] the expectation with respect to the Wiener measure,
we have E[ ξ(x, y, t) ] = 0 and E[ ξ(x, y, t) ξ(x′, y′, t′) ] = δ(x− x′) δ(y− y′) δ(t− t′). Then,

E
[

Vidrive(t)
]
=

[
KBi

x,y,t
∗ Sd

]
(t) and the correlation between drives is:

E
[ (

Vidrive
(t)−E

[
Vidrive

(t)
] )(

Vjdrive
(t′)−E

[
Vjdrive

(t′)
] ) ]

= σ2
S
∫ +∞

x=−∞

∫ +∞
y=−∞

∫ t
s=−∞ KBi (x− xi, y− yi, t− s)KBj (x− xj, y− yj, t′ − s) dx dy ds,

(33)

assuming t ≤ t′ without loss of generality. We recall that xi, yi are the coordinates of the
center of BCell i RF. Equation (33) expresses that drives are correlated due to the overlap
of B cell RFs, a well known result. In particular, correlations decrease with the distance d
between the two RF centers (like e−d2

if RFs are Gaussian).
More generally, the term FBi (t) in Equation (5) has mean:

E
[

FBi (t)
]
=

[ (
1
τB
KBi +

∂

∂t
KBi

)
x,y,t
∗ Sd

]
(t),

and correlation:

CFij(t, t′) = σ2
S



1
τ2

B

∫ +∞
x=−∞

∫ +∞
y=−∞

∫ t
s=−∞ KBi (x− xi , y− yi , t− s)KBj (x− xj, y− yj, t′ − s) dx dy ds

+ 1
τB

∫ +∞
x=−∞

∫ +∞
y=−∞

∫ t
s=−∞ KBi (x− xi , y− yi , t− s) ∂

∂tKBj (x− xj, y− yj, t′ − s) dx dy ds

+ 1
τB

∫ +∞
x=−∞

∫ +∞
y=−∞

∫ t
s=−∞

∂
∂tKBi (x− xi , y− yi , t− s)KBj (x− xj, y− yj, t′ − s) dx dy ds

+
∫ +∞

x=−∞

∫ +∞
y=−∞

∫ t
s=−∞

∂
∂tKBi (x− xi , y− yi , t− s) ∂

∂tKBj (x− xj, y− yj, t′ − s) dx dy ds

,


(34)
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for i, j = 1 . . . NB. This implies that the forcing term ~F in (13) has a N×N time dependent
correlation matrix CF (t, t′) with a NB × NB block corresponding to (34), and the rest of the
matrix has zeros (A cells and RG cells have no direct stimulus drive).

Let us now consider the full dynamics (16), in the non-rectified case: the trajectory
stays in Ω(0). Under the stimulus Sd(x, y, t) + σS ξ(x, y, t), ~X (t) is a stochastic process,
with mean:

E
[
~X (t)

]
=

[
eL

(0) t∗ E
[
~F (0)

] ]
, (35)

and correlation matrix:

C ~X (t, t′) =
∫ t

s=−∞

∫ t′

s′=−∞
eL

(0)(t−s) .CF (s, s′). eL̃
(0)(t′−s′) ds ds′ (36)

where L̃(0) is the transpose of L(0). This is the general form of correlations induced by the
network. Note that correlations are stationary (they only depend on t− t′). This does not
hold any more in the rectified case as discussed below.

Correlations Structure and Decorrelation

Equation (36) combines B cells RF overlap (in the matrix CF (s, s′)) to network effects,
A cells and/or gap junctions, via the transfer operator L(0). One can actually better see
these combined effects by projecting on the eigenvectors basis of L(0), where L(0) =

P (0).Λ(0).P (0)−1
and L̃(0) = P̃ (0)

−1
.Λ(0).P̃ (0). Denoting:

∆F (s, s′) = P (0)−1
.CF (s, s′).P̃ (0)

−1
, (37)

Equation (36) becomes;

C ~X (t, t′) =
∫ t

s=−∞

∫ t′

s′=−∞
P (0). eΛ(0)(t−s) .∆F (s, s′). eΛ(0)(t′−s′). P̃ (0) ds ds′,

which interprets as follows, whereas CF (s, s′) is a rank NB matrix containing the B cell
drives’ correlations, ∆F (s, s′) is a full rank matrix which integrates B cell drives and

network correlations (due to the product with transfer matrices P (0)−1
and P̃ (0)

−1
). These

correlations are transported in time by the diagonal matrix eΛ(0)(t−s). In general, there
is no way to anticipate a priori what will be the combined effect of B cells RF overlaps
and network on voltage correlations. Depending on the model parameters (characteristic
times, synaptic weights), it can be anything. In particular, there is no general, mathematical
reason, to think that A cells would decorrelate RG cell outputs.

This mathematical consequence is in apparent contrast with the claim, found in deep
experimental papers stating that “the inhibition” (mediated by A cells) “decorrelates
visual feature representations in the inner retina [15]”. What could be the origin of this
discrepancy? The first reason is that correlations in the retina are often thought in terms
of the drive correlations (33). Reducing the overlap between B cell RFs, i.e., decreasing
the magnitude of the product KBi (x − xi, y − yi, t − s)KBi′

(x − xi′ , y − yi′ , t′ − s) in the
integral (33) lowers the drive correlations. The idea is then that A cells lateral inhibition
reduces the center part of the RF and increases the surround, thereby reducing the RF
overlap. Is there a way to mathematically validate this statement in (36)? Under which
conditions on model parameters does it hold true?

Let us investigate what “decorrelation” means in our setting. Strictly speaking, it
means that C ~X (t, t′) is diagonal that is that the variable change corresponding to the transfer
matrix P (0) diagonalizes the stimulus correlation matrix CF (s, s′). Now, CF (s, s′), as a
correlation matrix, is diagonalisable by an orthogonal basis change with real eigenvalues,
whereas P (0) has to do with B cells–A cells network, and it is easy to find situation where
it is complex, with complex eigenvalues. Thus, in general, the network effects do not
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diagonalize C ~X (t, t′). Nevertheless, it is indeed possible to construct networks diagonalising
CF (s, s′) by using the spectral decomposition theorem. In addition, if one does not stick
to strict decorrelation, one can also figure out conditions on networks reducing stimuli
correlations. The question is whether real A cell networks match these conditions. This is
an interesting question for further studies. We, however, see below that there are, however,
other potential sources of decorrelation, especially nonlinearities.

Non-Correlated Drives

The correlation structure, complex in the non-rectified case, is actually even worse
when considering rectification. In the rest of this section, we want to consider in more
detail the effects of rectification on RG cell spike correlations. We want to show that they
induce non-stationary stimulus dependent correlations which are not due to the drives’
correlations (33).

For this, we are going to consider the situation where CF is δ-correlated that is we
discard drive correlations. This corresponds to setting:

~F (t) = ~m(t) + σSξ(t), (38)

where ~m(t) is deterministic. In this situation, Equation (36) greatly simplifies, giving a
correlation matrix:

C ~X (t, t′) = σ2
S eL

(0)(t′−t).
∫ t

−∞
eL̃

(0)(t−s).eL
(0)(t−s)ds, (39)

for t′ ≥ t.
In the general case, L(0) is not symmetric and does not commute with L̃(0). One

can then compute C ~X (t, t′) in terms of the (common) spectrum of L(0), L̃(0) using the

spectral decomposition theorem L(0) = ∑N
α=1 λ

(0)
α v(0)α .w̃(0)

α where v(0)α is the right eigenvec-

tor α of L(0) (the α-th column of P (0)) and w̃(0)
α is the left eigenvector α of L(0) (the α-th

row of
(
P (0)

)−1
). In general, right (left) eigenvectors are not mutually orthogonal but

w̃(0)
α .v(0)β = δαβ so that v(0)α .w̃(0)

α is the projector on eigendirection α. From this, one obtains
the correlation matrix:

C ~X (t, t′) = −σ2
S

N

∑
α=1

eλ
(0)
α (t′−t) v(0)α .w̃(0)

α

N

∑
β=1

v(0)β .w̃(0)
β

λ
(0)
α + λ

(0)
β

, (40)

where eigenvalues are real or complex conjugate and are assumed to be stable (negative
real part). Note that eigenvalues and projectors combine so that, finally, the correlation
matrix is real.

We will keep this general form for further discussions on the rectified case, but here, it
is insightful to consider the case where L(0) is symmetric. Here, it is diagonalizable on an

orthogonal basis, with
(
P (0)

)−1
= P̃ (0) and with real eigenvalues λβ ≡ −sβ, β = 1 . . . N.

where sβ is real, positive. Then, (40) reduces, in form of components, to:

Cα2,α1(t
′ − t) =

σ2
S

2

N

∑
β=1

Pα2β Pα1β

sβ
e−sβ(t′−t). (41)

It is useful to express, from (41), the variance of cell αi1 ’s voltage (independent of time
due to stationarity):

σ2
α1

=
σ2

S
2

N

∑
β=1

Pα2β Pα1β

sβ
. (42)



J. Imaging 2022, 8, 14 25 of 37

These computations provide the network correlations between cell voltage in the
absence of drive correlations.

3.2.2. Spike Correlations

We now compute spike correlations of RG cells induced by network correlations (40).
We assume a spiking probability of the form (8). The probability that RG cell α1(> NB +
NA) spikes at time t1 is induced by the voltage probability P and is given by να1( t1 ) ≡
E
[

f
(

VG(t)−θG
σG

) ]
, where the expectation is taken with respect to P. Taking the form (8) for

f , this is:

να1( t1 ) = f

 mα1(t1)− θG√
σ2

G + σ2
α1

, (43)

where mα1 is the entry α1 of the deterministic drive term in (38). As pointed out above, two
sources of noise add up here: the implicit noise, with variance σ2

G appearing in the LNP
formulation (8), which is intrinsic to the cell, and the network induced noise, explicit in the
term σ2

α1
.

Likewise, the probability that RG cell α1(> NB + NA) spikes at time t1 and RG cell
α2(> NB + NA) spikes at time t2 is:

να1α2 (t1, t2) =
∫

f
( √

µ1 cos(φ) y1−
√

µ2 sin(φ) y2+mα1 (t1)−θG
σG

)
f
( √

µ1 sin(φ) y1+
√

µ2 cos(φ) y2+mα2 (t2)−θG
σG

)
DY, (44)

where the integral holds on R2 and where DY = 1
2π e−

y2
1+y2

2
2 dy1 dy2. Here, µ1, µ2 are

the eigenvalues of the pairwise correlation matrix C =
(

σ2
α1

Cαi1αi2 (t1 − t2)
Cαi2αi1 (t2 − t1) σ2

α2

)
which is diagonalizable on an orthogonal basis with an orthogonal transformation, a rota-
tion with angle φ determined by the coefficients of C.

3.2.3. Decorrelation Induced by Nonlinearities

It is evident that the double integral (44) factorizes only in the case where C is diagonal
(φ = 0, µ1 = σα1 , µ2 = σα2), and it reduces to να1α2(t1, t2) = να1(t1)να2(t2). Thus, spikes of
RG cell α1 at time t1 and of RG cell α2 at time t2 are decorrelated if and only if the correlation
matrix (41) is diagonal. This matrix is diagonal only when there are no A cells. Otherwise,
A cells have the effect of correlating voltages and thereby spikes. We already discussed
above the possible effect of A cells in decorrelating the B cell drive term. Here, as we have
removed this effect, we are in a position to discuss other potential effects inducing RG cell
spike decorrelation.

First, note that, if the correlations we compute are non-vanishing, they can nevertheless
be weak. The weakness of pairwise correlations in the retina has actually be reported by
many authors [22,80]. It has been known since Ref. [92] that the passage of two correlated
Gaussian variables through a subsequent nonlinearity always reduces the correlation of
the two signals, regardless of the shape of the nonlinearity. Thus, in our case, the nonlinear
function of the LNP model reduces the decorrelation.

Now, the LNP nonlinearity is not the only source of decorellation. Rectification also
plays a crucial role. What happens, indeed, in the rectified case? Mathematically, one can
use Equation (21) to compute the correlation matrices (40) (or even (36)), but the main, quite
intricate problem is now that the entrance and exit time of domains t(nk)

− , t(nk)
+ appearing

in (21) are themselves random. This is again a consequence of the stimulus dependence of
these times. The computation of the voltage correlations in this case being, for the moment,
out of reach, I am going to give some straightforward although insightful remarks.

The non-rectified case corresponds to a trajectory staying in the domain Ω(0) (for-
getting about conditions on noise ensuring that this holds for an infinite time). Now,
the computation of voltage correlation is essentially the same if the trajectory stays in the
domain Ω(n). The only difference is that eigenvalues and projectors have a superscript
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(n) instead of (0). This difference is essential though because rectification induces a pro-
jection on the space of non-rectified cells. The contribution to rectified cells to voltage
correlations with other cells vanishes thereby transforming the voltage correlation matrix.
By permutation of rows and columns, one can convert this matrix in a form containing
a diagonal block (correlations rectified cells↔ rectified cells) and a block characterizing
the correlations’ non-rectified cells↔ as all cells. This reduces the model dimensionality
and the global correlations. This effect, composed with the LN nonlinearity, can reduce
correlations even more.

The last important remark here is that rectification implies that RG cell correlations
are stimulus dependent even if we have removed the drive correlations because the exit times of
continuity domains are stimulus dependent. In addition, the obtained correlations are non-
stationary. This effect might not be noticeable with full field stimuli or white noise, which
weakly solicit the lateral A cell connectivity, but it could be more prominent when studying
spatio-temporal stimuli, in particular moving trajectories or non-stationary stimuli, which
constitute most of the real visual scenes.

3.2.4. Conclusions of This Section

In this section, we have mathematically investigated the structure of correlations
induced by the model (13), Figure 1. Our conclusion is essentially that the stimulus gen-
erates RG cell spike correlations modulated, on one hand, by the drive correlations, and,
on the other hand, by the B cells–A cells networks—more precisely, by the eigenvalues-
eigenmodes of the transport operator. In addition, rectification and nonlinearities further
impact correlations. This fact was reported by Pitkow and Meister in their paper “Decorre-
lation and efficient coding by retinal ganglion cells” [12], where they insist on the prominent
role of nonlinearities: “Most of the decorrelation was accomplished not by the receptive
fields, but by nonlinear processing in the retina”. From these remarks, they conclude about
information transmission by the retinal network: “At very high thresholds, the information
transmission is poor. Notably, transmission also drops at low thresholds. Thus, the choice
of threshold involves a trade-off between rarely using reliable symbols, such as high spike
counts, or frequently using unreliable symbols, such as low spike counts”. Thus, nonlinear-
ities play a role in retinal coding making the spike rate of RG cells as sparse as possible,
so that these cells are silent most of the time and fire at a high rate only when salient
features of the stimulus make it necessary. This effect should be even more prominent for
moving objects, which is clearly an example of a stimulus with salient features and strong
spatio-temporal correlations induced by its trajectory, especially if this trajectory shows
sharp changes. This could be mathematically analysed in the present setting although at
the expense of consequent technical efforts.

Let us also remark that rectification makes the stochastic process of voltages non
Gaussian because the times of entering and exiting domains are now random variables too.
As a consequence, spike statistics involve higher order correlations. Although it has to be
further investigated on experimental grounds, this would lead to important consequences
in terms of coding. As pointed out, again, by Pitkow and Meister [12], “for highly non-
Gaussian signals, such as neural spike trains and natural images, correlation may be only
weakly related to redundancy.”

Sticking to the model, we may ask the following questions. Assume that we submit
the model to different types of stimuli: the “classical” ones such as white noise, “Chirp”
stimulus, natural images; but also more elaborated ones such as moving objects with
different types of trajectories, or “natural movies” including motion and “surprise”—
for example, a bird crossing the visual scene, with, on the background, a forest of trees in
the wind. It is known that the retina is able to filter the “noisy” motion of tree leaves while
signalling the bird, thanks to dedicated circuits involving A cells [1,56]. Such circuits can
be easily implemented in the model (13) [45]. What will the structure of its spike trains be,
depending on the different type of stimuli? How can one “efficiently” decode the stimulus
from the mere knowledge of those spike trains? How efficient is a decoding scheme based



J. Imaging 2022, 8, 14 27 of 37

on independent, decorrelated RG cells? In contrast, would cooperative network effects
make the code more precise, affording faster responses to motion [14]?

Although we are not going to answer these questions here (there is still a long way to
it), we give, in the next sections, several insightful mathematical results in this direction.

3.3. Computing the Mixed Effect of Network and Stimulus on Spike Correlations
3.3.1. Context

Let us now consider the retina from the point of view of its output. We sit on the
optic nerve and measure the spikes sent to the LGN and cortex via the optic nerve. We
have no access to the biophysical machinery taking place in the retina and generating those
spikes, but we know that the spike trains contain information about the external world
stimuli that we want to extract. We can measure as many quantities as we want such as
firing rate or higher correlations. More generally, we are seeking the (time dependent) joint
probability of spikes adopting the approach described in Section 2.2, Methods.

In this context, assume a retina “at rest” i.e., receiving no stimulus or stationary
stimuli like noise. We can describe the spike trains emitted by this retina by a stationary
transition probability P, associated with a stationary probability µ(sp) (for “spontaneous”).
In general, this probability has spike correlations of order 2 and higher. Assume now that,
from time t0, a stimulus (say a moving object) is getting through the visual field of this
retina. As exposed in Section 3.2, one expects the spike correlations (at any order) to be
modified by this stimulation. Typically, a moving object carries spatio-temporal correlations
in its trajectory which will superimposed upon the network correlations, resulting in a
mixed effect where nonlinearities can also play a role. Can we predict, for a given stimulus,
how correlations will be modified?

Let us give an example. Consider a linear chain of neurons, as depicted in Figure 3 (top).
Each neuron (black points), is connected to its neighbours with an excitatory connection
(red arrows) and to its second nearest neighbours with an inhibitory connection (blue
arrows). The model here is a classical leaky integrate and fire model in the presence of
noise, where parameters have been tuned to have a spontaneous asynchronous activity as
depicted in Figure 3 (bottom,left). See [51] for more details. Consider a moving stimulus
S(x, t) propagating from left to right (cyan, bell shaped curve) Figure 3 (top). S(x, t) acts
as an input current of the form S(x, t) = f (x− vt), where v is the propagation speed and
f , typically, a Gaussian. This stimulus is going to modify the spike patterns, as seen in
Figure 3 (bottom,left), where one clearly sees nearest neighbours excitation and second
nearest neighbours inhibition. The remarkable fact is that the stimulus not only modifies
the firing rates of neurons, but also their correlations. The question is: can we compute
this effect?

This question has been solved in the paper [51] for the gIF model (27). Here, we
briefly state the main results (see the paper for technical details). Consider a function
f (t, ω) (observable) depending on time and spike history up to time t. Let µ(sp) be
the join probability distribution of spikes in spontaneous activity (no stimulus), and µ
the join probability distribution of spikes in the presence of a spatio-temporal stimu-
lus S(x, t). We note δµ[ f ](t) = µ[ f ](t) − µ(sp)[ f ], where µ[ f ](t) is the average of
f , at time t, in the presence of the stimulus and µ(sp)[ f ] the average of f in sponta-
neous activity (which does not depend on time because spontaneous dynamics are sta-
tionary). δµ[ f (t) ] characterizes how much the time dependent mean of f (t, ω) under
stimulation departs from the spontaneous mean at time t. In the simplest case, δµ[ f (t) ]
characterizes the variation in the firing rate of neuron k, if f (t, ω) = ωk(t), or the vari-
ation in the correlation between neuron k1 at time t1 and neuron k2 at time t1 + t if
f (t, ω) =

(
ωk1(t1)− µ(sp)[ωk1

] )(
ωk2(t1 + t)− µ(sp)[ωk2

] )
, and so on.
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Figure 3. (Top) Network of spiking neurons sensing a stimulus (Redrawn from ref. [51]). Each neuron,
represented as a black point, is connected to its neighbours with an excitatory connection (red arrows)
and to its second nearest neighbours with an inhibitory connection (blue arrows). In addition, each
neuron is able to sense external stimuli S(x, t) (cyan, bell shaped curve). (Bottom Left) Spontaneous
spiking activity. (Bottom Right) Spiking activity in the presence of the moving stimulus.

One can show that, when the stimulus amplitude is weak enough, δµ[ f (t) ] is given
by a linear response formula of the form:

δµ[ f (t) ] =
[

K f ∗ S
]
( t ) (45)

That is, by the convolution of the stimulus with a specific kernel, K f , depending on the
observable f and on the spontaneous distribution µ(sp). We do not give the expression of this
kernel here, for simplicity, but the reader can refer to the paper [51].

3.3.2. Consequences
Convolution

Similarly to (1) (RG cells response to stimuli) or (2) (B cells response to stimuli), we
have here again a linear response where the effect of a stimulus on a system is expressed by
a convolution. We are, however, in a completely different perspective. Indeed, while we
were formerly considering voltage response of individuals cells (shaped by network effects),
we are now working on a more abstract level, where we attempt to measure the effect
of a stimulus on statistics. This is of course due to the difference in what is accessible by
experiments, what the observer is able to deal with in his observations—here spikes. Thus,
the mathematical machinery allowing for extracting the response requires defining spike
statistics in a non-stationary setting, where the influence of the stimulus can be inferred.
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Kernel

The kernel K f can be explicitly computed in the gIF model. It depends on several
features. First, on network characteristics (especially the effective interaction Wkj, and, more
generally, the parameters shaping the model dynamics). It also depends on the observable f .
However, the main content of this result is that the kernel K f is actually determined by spike
correlations in spontaneous activity. In other words, it is possible to anticipate the response
to a non-stationary stimulus from the knowledge of the spontaneous activity. Although this
result is expected from Kubo theory in non-equilibrium statistical physics [93,94] or from
Volterra–Wiener expansions [21], it has interesting consequences when dealing with neural
dynamics, and more specifically here, with retina outputs. First, it provides a consistent
treatment of the expected perturbation of higher-order correlations, beyond the known
linear perturbation of firing rates and instantaneous pairwise correlations; in particular, it
extends to time-dependent correlations. In addition, it reveals how the stimulus–response
and dynamics are entangled in a complex manner. For example, the response of a neuron k
to a stimulus applied on neuron i does not only depend on the synaptic weight Wki but,
in general, on all synaptic weights because the dynamics create complex causality loops
which build up the response of neuron k [49,95,96]. The linear response formula is written
in terms of the parameters of a spiking neuronal network model and the spike history of the
network. In the presence of stimuli, the whole architecture of synaptic connectivity, history
and the dynamical properties of the networks are playing a role in the spatio-temporal
correlations structure.

Linear Response and Higher Order Corrections

The derived formula provides a good agreement with simulations in the gIF model
under time dependent stimuli (typically, a moving object). It requires, however, that the
stimulus amplitude is weak enough. That is, higher corrections are weaker than the leading
order. For larger amplitude stimuli, one would compute higher order correlations. This
can be done using the same formalism [97], although it might not be the best approach.
Indeed, this method requires measuring spontaneous correlations which are difficult to
obtain experimentally for orders higher than 2. This is actually one of the reasons why
LNP-like models exist. The expected nonlinearity in the response is handled by a static
nonlinear function. Exploring what could be the best nonlinear correction to the linear
response in such models is definitely an interesting mathematical challenge.

3.4. Conclusions
3.4.1. Beyond Naive RF Description

This linear response theory actually shows how the neuronal network substrate and
stimulus response are entangled. Indeed, in contrast to naive RF representation where the
convolution kernel is assumed to depend only on the cell|, here, mathematics show that it
depends as well on the observable. The explicit form of the kernel is also tightly constrained
by the neurons’ connections. Finally, a convolution implies an integration over histories,
requiring thereby to consider spike probabilities with memory, instead of “instantaneous”
spikes probabilities (not or weakly depending on the past). Of course, one may always
argue that, on experimental grounds, long tail memory is just impossible to measure so
“instantaneous” [22] or first order Markov [98] models are largely sufficient. However, what
does “sufficient” mean? This is a difficult question, which requires sophisticated methods to
determine the “best performing” memory depth from data [34,99,100]. Actually, numerical
computations of the kernel use, of course, Markovian approximations [51], although with a
memory depth that can be controlled.

3.4.2. Link with the Retina Model

Can we relate the formalism developed here with the retinal model presented in
Section 2.1? As RG cell voltage is Gaussian, it is in principle possible to compute transition
probabilities using the transport operator formalism. However, even in the non-rectified
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case, the computation promises to be a formidable task, unless one adds some additional
constraints. For example, a big advantage of Integrate and Fire models is that a spik-
ing neuron loses memory after spiking, a property which is not implemented in LNP
like models.

3.4.3. Information Geometry

There is a close link between Gibbs distributions and information geometry. This the-
ory, developed by Shun’ichi Amari and his collaborators (see [101] and references therein)
on the basis of early work from Rao [102], establishes a geometric theory of information
where probabilities are considered as points on Riemannian manifolds. A prominent family
of probability measures is called the exponential family. It contains the Gibbs distributions
in the standard statistical physics sense, i.e., probabilities having the form e−βH

Z where the
energy H does not depend on time. In this case, the metric is given by the Hessian of
log(Z), the free energy, and is tightly linked to Fisher information on one hand and to linear
response on the other hand. The linear response is actually a correlation function from the
fluctuation dissipation theorem. Thus, correlation functions induce a natural geometry for
Gibbs distributions providing strong insights on how these distributions are modified by
smooth, local, transformations of their parameters (like learning [103]) or under a stimula-
tion of weak amplitude. In this last case, the stimulus action corresponds to a perturbation
in the tangent space of the manifold [104,105]. Although information geometry has not
been extended, to our best knowledge, to the type of Gibbs distribution we study here
(they are non-stationary), the mathematical formalism is similar. This essentially tells us
that the structure of spatio-temporal correlations observed in spike trains reveals a hidden
geometrical structure which, somewhat, shapes the response of the retina, and, henceforth
of cortex, to stimuli. We come back to this point in the Conclusions section.

4. Applications

The OPL-B cells-A cells processing is based on graded potentials departing from the
classical paradigm of binary spike processing. Mathematically, this has strong consequences
in terms of response to a spatio-temporal stimulus: existence of eigenmodes, potentially
modulated by nonlinear effects, inducing properties such as activity waves ahead of the
stimulus (anticipation), resonances and correlations modified by the stimulus. In this
section, and although this paper is essentially theoretical, I would like to shortly propose
possible applications of these results, outside the field of neuroscience.

4.1. Retinal Prostheses

Retinal pathologies, such as Age Macular Degeneration or Retinitis Pigmentosa, are
due to the degeneration of photo-receptors [106]. In addition, they induce morphological
and structural changes in the retina with significant pathogenic effects: inflammation,
change in connectivity, the appearance of large-scale spontaneous electrical oscillations,
and, of course, attenuation of response to visual stimuli [107–110]. In this process of
degeneration, however, the RG cells are the last to be deficient, maintaining, therefore,
a link between the retina and the brain, provided they are suitably stimulated. The strat-
egy of retinal prostheses is to stimulate the retina electrically by an array of electrodes.
Stimulation of an electrode generates, in the visual cortex, a phosphene, the perception
of a light spot. By stimulating the electrodes, one induces in the cortex an image “pix-
elised” by the phosphenes, with resolution limited, on the one hand, by the number of
electrodes, and, on the other hand, by the size of the phosphenes, which can be enlarged
by diffusion and nonlinear effects [111]. Technological solutions, taking into account the
physiological limitation on the electrical power that can be injected in an electrode, improve
resolution [112]. However, there are still obstacles which cannot be resolved by purely
technological solutions (hardware). In addition, a valid stimulation strategy at a given
period of the pathology may not be later because the retina degeneration evolves over time.
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Stimulation strategies use processor pre-processing to calculate, from a given image
(captured by a camera), the pattern of stimulation of the prosthesis, by mimicking the
calculation that a healthy retina would make, or by incorporating corrections taking into
account the pathology [113]. These algorithms might be improved using what we know
about the retinal structure, especially A cells’ lateral connectivity, where a model like (13)
can be easily implemented with a relatively low energy consumption cost. The idea would
be to improve electrode stimulation sequences in order to allow an implanted patient to
perceive in real time a moving object. The model (13) with A cells’ lateral connectivity and
gain control is known to produce a wave of activity ahead of a stimulus, performing a form
of anticipation [45]. This could be used to compensate for the processing times imposed
by the equipment, in the same way that the visual system knows how to compensate for
the delays induced by photo-transduction [42]. The ideal would also be to have adaptive
algorithms, i.e., depending on parameters adjustable according to the patient and the course
of his pathology.

4.2. Convolutional Networks

Several recent studies attempt to understand how retinal response to stimuli is related
to circuit processes using convolutional neural network models [114] to grasp the structure
of retinal prediction [115]. Reciprocally, these networks can be used to design deep-
learning models to encode dynamic visual scenes with important potential outcomes in
the domain of computer vision. In particular, a recent work by Zheng et al. [116] shows
the important role played by recurrence in encoding complex natural scenes. To my best
knowledge (which is quite scarce in this field), there is no mathematical analysis of the
dynamics of these models, especially the dependence on parameters and robustness of the
training schemes. The present study could bring some insights on this perspective. Even
if the model (13) is different from what these researchers were using, the techniques of
piecewise linear phase decomposition and eigenmode study could be insightful to better
understand the dynamical evolution of these convolutional networks and the role played
by rectification.

5. Discussion

In this paper, we have addressed mathematically the potential effect of A cells lateral
connectivity on retinal response to spatio-temporal stimuli. We have seen how, mathemat-
ically, the retina structure and the collective dynamics of retinal cells organized in local
circuits spanning the whole retina might constrain this response. In particular, the struc-
ture of correlations is expected to depend on the stimulus, as soon as nonlinear effects
are involved. This goes beyond the expected effect of stimulus correlations induced by
RF overlap.

These properties are established on the basis of theoretical results which are based
on incomplete modelling of the retina and specific assumptions. Their validation would
require experiments, some of which may require time and others are not yet accessible,
for example, simultaneously measuring retina and cortex. As a matter of fact, one may argue
that the models presented here are far too simplistic compared to the real retina(s) having a
large number of B cells, A cells and RG cell types, making complex circuits [18] and whose
characteristics depend, in addition, on species, age or pathologies. However, the idea
behind mathematical modelling is precisely to try and infer some generic mechanism
underlying the real object under study, here the retina. This is the simplicity of the structure
which makes it generic. The question is: “Would the addition of more elaborated retinal
features make the response to stimuli simpler?”

In the next section, I discuss some further implications of this work leading to some
new questions.
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5.1. Cortical Response

If a dynamical stimulus, combined with the retinal network and nonlinearities, pro-
duces non-negligible dynamical spatio-temporal correlations, what could be the conse-
quences at the cortical level? (For simplicity, I am going to consider the LGN as a simple
relay). There is a physiological transformation, called retinotopy, which maps smoothly
the retina topology to the cortical V1 topology. In models, it is usually considered to
be the identity map, although it is not. This is a nonlinear transformation, depending,
in addition, on the species [117–119]. Nevertheless, what matters here is that this mapping
is smooth and invertible. Therefore, retinotopy transports, in a smooth and invertible way,
the spatio-temporal retinal correlations to the visual cortex. This leads to a question: “How
can a cortical model taking into account spatio-temporal spike correlations be defined?”

Cortical models are usually based on mean-field approximations where one features
firing rates evolution, but not spike correlations. This is the case of the Wilson–Cowan
model [120–122] or neural field models [123–125]. I know about two mean-field approaches
taking care of spike correlations.

The first approach is the one initiated by S. El Boustani et A. Destexhe [126] using a
Markovian approach to write down mean field equations of second order (i.e., including
pairwise spatial correlations) and a non static thalamic entry that can feature the retinal-
LGN input. This model can be used to construct a retino-cortical model [127], although the
mathematical consequences of having correlated retinal entries have not been explored yet.

The second approach is based on the so-called Ott-Antonsen Ansatz [128] and has been
used by Montbrio, Pazo and Roxin to propose an exact mean field approach with second
order statistics [129]. Since their paper, there has been a lot of activity in developing this
model, especially in connection with cortical imaging, with impressive results [130–133]. It
is a promising track.

All these approaches could certainly provide powerful numerical and mathematical
tools to better understand how spatio-temporal retinal correlations could be processed.
In particular, having a retino-(LGN)-cortical model allows for doing a task that is currently
impossible experimentally: measuring simultaneously the retina and cortex.

5.2. Retinal Correlations and Neurogeometry

We have also seen that retinal correlations and Gibbs distributions naturally define a
metric on a Riemannian manifold where probabilities are points on this manifold. In par-
ticular, the application of a weak amplitude stimulus corresponds to a perturbation along
the tangent space of this manifold. What is the image of this metric under the retinotopic
transformation? Let us make this question a bit more precise.

The visual system has evolved to map as efficiently as possible retinal output to
cortical structures. The shaping of the visual system during development is actually a
highly dynamical process involving retinal waves and synaptic plasticity [88]. These
processes provide the visual system a structure allowing it to respond in a fast and efficient
way to the stimuli coming from the external world, via the retina. In particular, the capacity
of the visual cortex to respond to spike trains with spatio-temporal correlations induced by
natural stimuli should be somewhat imprinted in the cortical connectivity.

Visual perception is actually highly geometrically structured and shaped by the struc-
ture of cortical connectivity. This leads researchers to introduce a link between the geometry
of cortex and the geometry of vision in the concept of neurogeometry (or neuromathe-
matics) where the functional architecture of V1 is considered as a Lie group of symmetry
with a Riemannian geometry (see [52–55] and reference therein). In this approach, cortical
columns are point-like processors detecting visual features where functional connectivity
is represented in terms of geodesics. To my best knowledge, neurogeometry essentially
deals with V1 and static percepts, although extensions to motor cortex [134] and motion
areas [135] have been done. Now, a natural question is: “Is there a relation between the cor-
tical metric of neurogeometry and the metric induced by spatio-temporal spike correlations
observed by the retina?”.



J. Imaging 2022, 8, 14 33 of 37

Let us address the problem the other way round: Projecting the cortical metric back
to the retina via the inverse retinotopy map, what do we find? Is there a physiological
correspondence with the retina structure and especially lateral connectivity? What could be
the consequences of spike train statistics and on the way retina processing visual stimuli?

What do cortical metrics tell us about retinal spike correlations? Dealing with neural
coding of vision, the simplest assumption consists of assuming that RG cells are indepen-
dent encoders and that the cortex makes the job of restoring the spatio-temporal correlations
exist in the visual scene (e.g., in the trajectory of a moving object). The alternative proposi-
tion, where spatio-temporal correlations imprinted in the RGC spike trains are deciphered
by the cortex, makes the question of stimuli decoding by the cortex more challenging,
but opens up far more possibilities. Answering to these questions could be based, as a first
step, on important results existing in the literature—in particular, recent works asking the
extent to which retinal connectivity and dynamics affect higher order features later derived
from its outputs (e.g., orientation, spatial frequency speed etc) in V1 via LGN [136–138].
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