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Abstract: Vegetation alters soil fabric by providing biological reinforcement and enhancing the
overall mechanical behaviour of slopes, thereby controlling shallow mass movement. To predict
the behaviour of vegetated slopes, parameters representing the root system structure, such as root
distribution, length, orientation and diameter, should be considered in slope stability models. This
study quantifies the relationship between soil physical characteristics and root growth, giving special
emphasis on (1) how roots influence the physical architecture of the surrounding soil structure
and (2) how soil structure influences the root growth. A systematic experimental study is carried
out using high-resolution X-ray micro-computed tomography (µCT) to observe the root behaviour
in layered soil. In total, 2 samples are scanned over 15 days, enabling the acquisition of 10 sets
of images. A machine learning algorithm for image segmentation is trained to act at 3 different
training percentages, resulting in the processing of 30 sets of images, with the outcomes prompting a
discussion on the size of the training data set. An automated in-house image processing algorithm is
employed to quantify the void ratio and root volume ratio. This script enables post processing and
image analysis of all 30 cases within few hours. This work investigates the effect of stratigraphy on
root growth, along with the effect of image-segmentation parameters on soil constitutive properties.

Keywords: particle-scale behaviour; micromechanics; soil fabric; computed tomography; deep
learning

1. Introduction

Roots are commonly employed as a bio-engineering technique for slope stability,
particularly for infrastructure earthworks [1–3]. Plants stabilise the soil through mechanical
reinforcement, as the root system causes an increase in the tensile strength of the soil [1,4].
This is most effective at shallow depths, where surface erosion and shallow slope failures
occur [2] as seen in Figure 1. The root contribution to soil stability is governed by the
root architecture and root mass, where shallow mat root systems are effective for erosion
stability but are not suitable against shallow slope failures [5]. Stability is also provided
through hydrological reinforcement, which results from evapotranspiration-induced matric
suction increasing the shear strength of the soil, thus reinforcing the soil [1].

To aid in understanding the relationship between roots and soil for geotechnical en-
gineering applications, the soil micro-structural changes induced by root growth must
be quantified [6,7]. The influence of soil fabric on root growth has been extensively re-
searched [8–10]. The soil fabric determines the strength and bulk density of the soil, which
in turn governs the mechanical resistance of the soil. This establishes the response of
a growing root, where roots grow into existing pores in the soil in order to avoid areas
of high mechanical resistance [11]. Recently, there has been a growing interest in the
influence of root growth on soil fabric. A major focus of this research is on whether root
growth induces compaction in the immediate soil of the rhizosphere, or an increase in
porosity [6,11–13]. X-ray micro-computed tomography (µCT) was employed by several

J. Imaging 2022, 8, 5. https://doi.org/10.3390/jimaging8010005 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-0788-115X
https://orcid.org/0000-0002-7510-6737
https://orcid.org/0000-0002-0971-7089
https://doi.org/10.3390/jimaging8010005
https://doi.org/10.3390/jimaging8010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging8010005
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8010005?type=check_update&version=1


J. Imaging 2022, 8, 5 2 of 13

research groups to reveal the micro-structure of geomaterials [14,15] and specifically to
study soil–root interaction [12,16,17].

The aim of this paper is to understand how root growth alters the mechanical and
physical properties of natural, layered soil. X-ray µCT is used to understand the behaviour
of a growing root in two samples of a layered soil over 15 days. Image segmentation
and deep learning allows the quantification of the soil mechanics parameter (i.e., the
void ratio), and the root property (i.e., the root volume ratio). The importance of these
parameters is evident in constitutive modelling [18–21], where these parameters contribute
to the calculation of the soil strength, or quantifying the root reinforcement. These models
allow the behaviour of soil to be predicted to assess the stability of slopes. In addition to
supporting the engineering design of slopes and shallow landslides, this paper provides a
methodology to process large volumes of imaging data efficiently using machine learning.

,Q�VRPH�SODQW�VSHFLHV�URRWV�FURVV�WKH�VKHDU�SODQH�DQFKRULQJ�WKH�VRLO

5RRW�PDWV��EUDQFKLQJ�DQGLQWHUORFNLQJ�ZLWK�FRDUVH�IUDJPHQWVHQKDQFH�ODWHUDO�URRW�VWUHQJWK�LQVKDOORZ�VRLOV

)LEURXV�URRWV���URRW�ZDWHU�XSWDNHLQGXFHV�VXFWLRQ� K\GURORJLFDO�UHLQIRUFHPHQW�

Evapotranspiration
3RWHQWLDOIDLOXUH�VXUIDFH

5RRWUHLQIRUFHPHQW

Figure 1. Root reinforcement in slope stability (inspired from [5]).

2. Materials and Methods
2.1. Sample Preparation

Six cylindrical acrylic containers (32 mm inner diameter, 50 mm height, 3.2 mm wall
thickness) are produced with two samples, A and B, for scanning. The remaining four
samples are used for observation, as seen in Figure 2a. They are used to form a controlled
sample, ensuring that root growth is not unduly affected by X-ray radiation. After 5 scans
within 15 days of growth, no visual difference in the growth between the scanned and the
controlled samples is observed. More accurate quantitative observation campaigns can be
followed, measuring soil and biological quantities, such as the leaf index, water content
and water uptake.

In vegetated slopes, soil is typically heterogeneous, and roots can migrate into soils
with different gradation. Man-made embankments are constructed layer by layer with
different grading depending on other engineering parameters. Studying the effect of the
soil layering on root growth can be used to inform the design of vegetated slopes to better
understand the root behaviour at soil interfaces. For sample A, the container is filled with
ca. 1 cm clay at the base (soft to firm light brown clay of high plasticity − PI = 43), followed
by ca. 1 cm silt, 1 cm sand and 1 cm gravel, whereas sample B consists of ca. 1 cm gravel
at the base, followed by ca. 1 cm sand, 1 cm silt and 1 cm clay. Air pluviation of the silt,
sand and gravel produces an unstructured homogeneous packing [6,22]. Seeds of Achillea
millefolium germinate for 24 h before planting, and one seed is placed in each sample at
a shallow depth in the centre of the container. This species is selected as the one used in
engineering practice for soil stabilisation [23]. The samples are watered each day, ensuring
watering is not carried out less than 24 h before scanning.
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Figure 2. (a) Images of samples A and B on day 14 of the investigation, (b) µCT image reconstruction
cross-section of sample A, day 15, (c) µCT image reconstruction cross-section of sample B, day 15.
(d) labelled image of Sample A, (e) labelled image of Sample B.
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2.2. X-ray Micro-Computed Tomography

µCT is a non-invasive, non-destructive method that allows the 3D visualisation of root
systems in situ in a soil column [24]. The µCT images obtained for this study are acquired
using the SkyScan 1176 µCT system, located in the Preclinical In Vivo Imaging Facility at
Newcastle University Medical School, United Kingdom. The µCT enables quantification
of the void ratio and root volume during 15 days of growth. The acquisition and image
reconstruction parameters are kept constant to enable automation in post-processing. This
ensures that same materials are represented by voxels of the same intensity, allowing the
training of the image classifier based on images from one sample and applying it to classify
the images of other samples with same materials. The samples are scanned, with a source
voltage of 90 kV and a current of 278 µA, on days 1, 4, 8, 11 and 15 after germination.
Image reconstruction generates greyscale cross-sectional slices using the reconstruction
algorithm from [25], with a pixel size of 35.2 µm, as seen in Figure 2b,c. The original images
(dimensions 1360 × 1040 × 920) are re-sampled during post-processing to halve their size
(680 × 520 × 460) for computational efficiency purposes, increasing the pixel size from
35.2 µm to 70.3 µm.

2.3. Image Segmentation

Using the reconstructed images, the three phases of root, soil and voids are defined
and identified using segmentation. The algorithmic steps of this process can be seen in
Figure 3a. Segmentation is undertaken, using the open source software FIJI and the plug-in
Trainable Weka Segmentation 3D [26]. The three classes of root, soil and voids are manually
assigned to a set of input pixels of an image substack, with the classifiers developed based
on training 5%, 10% and 20% of the image stacks. Each image stack representing one
scan contains 680 re-sampled 2D slices of dimensions 520 × 460 pixels with 8-bit depth
µm. Each classifier is trained and applied to all image substacks, creating labelled image
stacks. The images used for training are selected to represent all three phases clearly.
During supervised training, samples of each phase are identified to represent the range
of intensity values corresponding to each of them. The exact operations of the machine
learning algorithm used in this study are explained in [26]. The time taken to create and
train a classifier is shown in Table 1. After labelling, small and isolated voxel clusters
originally assigned to the root class (byproducts of segmentation) are removed during a
noise elimination step, aimed at ensuring the root is identified accurately. In particular,
isolated regions with fewer than 10 pixels are removed.

Table 1. Time taken to create and train the classifier.

Percentage of Images
Used to Train Classifier

Time to Create
Classifier (min)

Time to Train
(min)

5% 38 14
10% 58.5 40
20% 128.5 42

2.4. Quantifying the Void Ratio

An automated MATLAB script is developed to perform parameter quantification,
following the algorithmic steps seen in Figure 3b. Regions of interest (ROI) are defined,
which are laminar cylinders in shape, as seen in Figure 4. These cylinders are defined at
known distances around the root, moving along the length of the root. The void ratio is
calculated as the total number of voxels representing the voids over the total number of
voxels representing the solids, as seen in Equation (1). The local void ratio is quantified
at cylinders with radii 3.5 mm (50 pixels), 7.1 mm (100 pixels), 10.6 mm (150 pixels),
and 14.1 mm (200 pixels) from the centroid of the root, in addition to the global void ratio,
as seen in Figure 5. Each section of the laminar cylinders is 2D, i.e., it has the width
of 1 pixel size, as shown in Figure 4, while the radii of the various laminar cylinders
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considered in this study are visualised in Figure 5. These are calculated for each sample
over 15 days, and using each classifier to determine the efficiency of the machine learning
algorithm for calculating the soil mechanics parameters.

e = ∑ voxelsvoid

∑ voxelssolid
(1)

Reconstructed 
image stack

Label pixels as root, soil or void

Pixels 
incorrectly 
classified

YES

Labelled image 
stack

Train classifier

Classify 5%, 10% and 20% of image 
stack

Save classifier

End

Labelled image 
stack

Separation of root and container

Denoising

Isolated rootNO

‘Clean’ rootNO

Calculate void ratio ! and root volume 
ratio "! based on laminar cylinders at 
radii 3.5 mm, 7.1 mm, 10.6 mm and 

14.1 mm from root centroid

! profile and 
"! profile with 

elevation

End

(a) (b)

Figure 3. Flow charts representing the algorithmic steps of: (a) automatic classification process using
deep learning (b) the MATLAB parameter quantification process.

(a)
(b)

Figure 4. Schematic of laminar cylinder around root used as region of interest (ROI) to calculate
parameters of geotechnical interest for varying elevation: (a) side view (b) perspective view.
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Figure 5. Sizes of the defined regions of interest: (a) radius of 3.5 mm, (b) radius of 7.1 mm, (c) radius
of 10.6 mm, (d) radius of 14.1 mm, (e) whole container.

2.5. Quantifying the Root Volume Ratio

The root volume ratio is also quantified using the algorithm steps in Figure 3b. This
root property is the total volume of roots per unit volume of soil, and is calculated as the
total number of voxels representing the root over the total number of voxels representing
the solids, as seen in Equation (2) [21]. This parameter is also calculated using the local
and global ROIs to quantify the root and soil voxels. The global ROI corresponds to a
calculation of the void ratio and root volume ratio considering the cross section of the
whole container (32 mm), as shown in Figure 5e. The void ratio and root volume ratio are
calculated for ROIs centred around a reference point found as the centroid of the the root
pixels, for each 2D image slice. For slices with no root pixels,the void ratio is calculated
considering each ROI centred around the centre of the container/image slice.

Rv =
∑ voxelsroot

∑ voxelssolid
(2)

3. Results and Discussion
3.1. The Influence of Root Growth on Soil Fabric

The void ratio is calculated with elevation in each sample, as seen in Figure 6. In both
samples, the highest void ratio is found in the gravel layers, followed by the sand layers,
with different trends observed with the distance from the root.
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In sample A, the void ratio increases in the gravel layer from day 1 to day 15, as seen in
Figure 6, with the highest void ratio in the immediate vicinity of the root, in the rhizosphere.
At this distance, there is a large range in the void ratio with very high values reaching up
to 1.0, whereas similar values of void ratio are obtained for the larger ROI sizes, as seen
in Figure 6. This indicates that the void ratio quantified using the ROI with the radius
of 3.5 mm may not be representative of the void ratio in the gravel layer. The larger ROI
sizes are more likely to represent the void ratio of the soil, as with an increasing ROI
size, the soil and root voxels increase proportionally. Therefore, the selection of these ROI
sizes, as seen in Figure 5, is key to representing the void ratio in each sample accurately.
In the gravel layer, the root induces an increase in the void ratio, suggested to be due
to this fabric offering large voids that provide areas of low mechanical resistance [11].
Elongation of a root can result in the rearrangement and displacement of grains along its
pathway [12,16,27]. It is suggested that the gravel offers the environment for this process
to occur, resulting in an increased void ratio. The underlying sand layer experiences a
decrease in void ratio, with the lowest void ratio observed closest to the root. This is
attributed to the expanding root compressing the soil in the surrounding rhizosphere. This
is supported by [28], who found that a growing root reduces the largest inter-aggregate
pores by exerting stress that induces compaction. Extremely low values of void ratio are
recorded in the silt and clay layers, due to the image resolution limiting the identification
of the small pore spaces and, therefore, the root-induced changes in the rhizosphere. Local
increases in the void ratio are observed in sample B on day 15 (Figure 2c) at the clay–silt
interface near the container related to boundary effects.

Despite this, increases in the global void ratio at the clay–silt interface are evident in
sample B (Figure 6). This can be attributed to cracking at this interface that is particularly
evident at the container boundaries. Micro-crack formation can occur, as water uptake
can cause localised variations in the water content, resulting in soil shrinkage [13]. When
the root encounters the sand layer, an increase in the void ratio is induced. There is also a
visible trend of a rising void ratio moving from the bulk soil into the rhizosphere, as seen
in Figure 6. The change in soil fabric is proposed to have contributed to this increase, as the
root moves from the silt layer to the sand layer where larger voids are present. This allows
the root to displace sand grains for elongation, thereby inducing a higher void ratio in the
root’s immediate vicinity. Although the root tip is visible in the top gravel layer by day 15,
there is an increase in the void ratio where the root is present. This is observed for the ROI
of 3.5 mm, where grain displacement likely occurs.

3.2. The Influence of Soil Fabric on Root Growth

The root volume ratio characterising each sample increases over time. For both
samples, the root volume ratio decreases with distance from the root into the bulk soil,
as seen in Figure 7. The sizes of the ROI also impact the root volume ratio profiles. As the
size of the ROI increases, the number of root voxels remains constant, but the number of soil
voxels increases. Increasing the size of the ROI results in a lower root volume ratio, thereby
highlighting the significance of choosing a representative ROI that is able to quantify the
impact of soil fabric on root growth meaningfully.

The gravel layer of sample A obtains the highest root volume ratio, with the ROI with
the radius of 3.5 mm recording the highest root volume (Figure 7a). The thickest roots
are also observed in this layer, highlighting the root response to this soil fabric. Roots
generate an increase in diameter in response to a high mechanical resistance soil, as this
limits the elongation rate [29,30]. Although the gravel contains large voids that the root
will preferentially grow into to avoid areas of high mechanical resistance [11], the root
also requires a large force to displace the large grains of gravel. This indicates that the
root’s response to this layer is an increased diameter in order to displace grains and exploit
the voids.
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(a) (b)

(c) (d)
Figure 6. Void ratio profiles with elevation of (a) Sample A, day 1, (b) sample A, day 15, (c) sample B,
day 1, and (d) sample B, day 15, using the 10% classifier (the layer thickness corresponds to averaged
elevation for each stratum).

Once the root passes the gravel layer, the root volume ratio decreases with decreased
elevation. The clay layer yields the lowest root volume ratio, as exhibited by a thin
root. Image analysis enables the growth direction to be observed, with the root growing
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mainly vertically through the layers of sample A. It is observed that the root in sample
A demonstrates a more complex structure in the coarser gravel and sand layers, where it
grows around the soil grains, while it follows a more linear growth pattern in the finer silt
and clay layers. The small grain size of fine soils allows the root to displace them, instead
of growing around them (see Figure 7a).

(a) (b)
Figure 7. Root volume ratio profiles with elevation of (a) sample A, day 15 and (b) sample B, day 15,
using the 10% classifier (the layer thickness corresponds to averaged elevation for each stratum).

Sample B demonstrates the greatest root volume at the silt–sand interface (Figure 7b).
At this point, horizontal growth of the root occurs. The root re-orientates its growth
upwards when encountering the sand interface, which is suggested to be due to the root
facing an obstacle, such as a sand grain. The obstacle causes the root to alter its growth
direction, as the root grows horizontally until meeting a void in the sand layer that it can
exploit. The root then returns to its initial downward trajectory through the sand layer.
This restriction to root elongation is also indicated by a visibly thicker root in the silt and
sand layer, in contrast to the root characterising the clay layers. The root response to the
gravel in sample B is not observed due to the root tip only being visible in this layer on
day 15. It is observed that the root in sample B follows a simple, linear growth path in the
finer clay and silt layers, and evolves to a more complex growth pattern when reaching the
interface with the coarser sand layer (see Figure 7b).

It can be asserted that in both samples, the root structure exhibits more complex
growth patterns when moving to areas of higher mechanical resistance (coarser soils),
where roots need to grow around obstacles, and more linear growth patterns when moving
to areas of lower mechanical resistance (finer soils).

3.3. Effectiveness of the Machine Learning Training Data Set Size

As the classifiers are trained to act at different training percentages, the outcomes illus-
trate the discrepancies in the accuracy of the segmentation. The results from each classifier
display similar trends in void ratio and root volume ratio; however, the degree of change
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in the values varies. As expected, the 10% and 20% classifiers generate image labelling
of higher quality in comparison to the 5% classifier (Figure 8). As seen in Figure 8b,c,
the void ratio outcomes using the 10% and 20% classifier are similar. However, there are
observable differences between these results, as the 10% classifier produces a lower void
ratio in comparison to the 20% classifier. In Figure 8, there is also a marked difference in
the volume of root identified across the different classifiers, as the 5% and 20% classifiers
demonstrate that features of the root are lost. This suggests that the 10% classifier is able
to obtain more accurate segmentation, as over-segmentation in the 20% classifier results
in the root voxels being broken into smaller groups, whereas the 5% classifier produces
poor results due to under-segmentation (Figure 9). This analysis suggests that in most
cases, the 10% classifier obtains enhanced results, with marked differences in segmentation
depending on the extent of training undertaken. The values of the void ratio and root
volume ratio are provided as supplementary material for all samples, days of scanning and
training data set sizes.

3.4. The Effect of ROI Size

A representative ROI size depends on the observed parameter of interest, as it can be
different when measuring values of the void ratio or values of the root volume ratio. For the
void ratio, the larger the ROI, the more probable it is to establish a representative area of
the sample, as the number of pixels of solids and voids should increase proportionally once
a representative ROI is established (see Figure 5). The same cannot be said for the root
volume ratio, as the number of root voxels in each image is constant, while the volume of
solids increases for ROIs of increasing radii. Thus, the larger the ROI, the smaller the root
volume ratio values.

A rigorous calculation of a representative ROI size should relate to the grain size.
Looking into the full range of results provided in the supplementary material, it becomes
evident that the radius 14.1 mm (200 pixels) provides close void ratio values compared
to the global ROI. Regarding the root volume ratio, the ROI size can be informed by the
constitutive modellers, as their assumptions can vary.

(a) (b) (c)

Figure 8. Void ratio profiles with elevation for sample A, day 11 using the classifier trained based
on (a) 5%, (b) 10%, and (c) 20% of the image stacks (the layer thickness corresponds to averaged
elevation for each stratum).
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5% 10% 20%

(a) (b) (c)

Figure 9. Segmented image slices of sample A, day 11 corresponding to the classifier trained based
on (a) 5%, (b) 10%, and (c) 20% of the image stacks.

4. Conclusions

In this paper, the use of µCT for observing the soil–root interaction was demonstrated,
allowing root-induced changes in the rhizosphere and the bulk soil to be compared, along
with the variations in root growth. These changes were quantified through the void ratio
and the root volume ratio, with the importance of these parameters being evident in
constitutive models. Segmentation was undertaken to classify the features of root, soil and
voids using a machine learning algorithm along with deep learning to perform parameter
quantification. The effectiveness of the machine learning algorithm technique was also
examined for different sizes of training data sets, revealing that a greater amount of training
does not necessarily lead to better classification of the materials of interest. Instead, user
dependency is present, during the assignment of voxels to material classes, which are used
to train the machine learning algorithm.

The outcomes highlighted the importance of the soil fabric and the distribution of
stratigraphy on root growth. In most cases, the root growth resulted in an increase in the
void ratio. However, root-induced compaction was also observed in the sand layer due to
the expansion of the growing root. The influence of the soil fabric on the direction of root
growth was also demonstrated, where the root’s response to encountering a sand grain
was a large deviation in its growth trajectory. This paper highlighted the complex nature of
the rhizosphere, with the root-induced changes in this zone being dependent upon the soil
fabric. Further investigations using an enhanced image resolution should be undertaken to
visualise changes in the clay and silt layers, along with the use of varying water contents to
observe the effect of suction on changes in the rhizosphere. Additionally, possible future
work includes reducing the user dependency of the machine-learning classifier, establishing
a physics-based ROI size for geotechnical parameters and acquiring 3D images of soils from
natural slopes. Understanding the changes at the soil–root interface and their implications
aids the prediction of soil behaviour in geotechnical design.
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18. Świtała, B.M.; Wu, W.; Wang, S. Implementation of a coupled hydromechanical model for root-reinfroced soils in finite element
code. Comput. Geotech. 2019, 112, 197–203. [CrossRef]

19. Liang, T.; Knappett, J.A.; Leung, A.; Carnaghan, A.; Bengough, A.G.; Zhao, R. A critical evaluation of predictive models for rooted
soil strength with application to predicting the seismic deformation of rooted slopes. Landslides 2020, 17, 93–109. [CrossRef]

20. Fraccica, A.; Romero, E.; Fourcaud, T.; Sondon, M.; Gandarillas, L. Tensile strength of a vegetated and partially saturated soil. E3S
Web Conf. 2020, 195, 03001. [CrossRef]

21. Ng, C.W.W.; Ni, J.J.; Leung, A.K.; Wang, Z.J. A new and simple water retention model for root-permeated soils. Géotech. Lett.
2016, 6, 106–111. [CrossRef]

22. Nadimi, S.; Fonseca, J. Enhancing soil sample preparation by thermal cycling. Géotechnique 2016, 66, 953–958. [CrossRef]
23. Yildiz, A.; Graf, F.; Springman, S.M. On the dilatancy of root-permeated soils under partially saturated conditions. Géotech. Lett.

2020, 10, 227–230. [CrossRef]

data.ncl.ac.uk
https://doi.org/10.25405/data.ncl.16734565
http://doi.org/10.1680/jgeot.19.SiP.018
http://dx.doi.org/10.1016/j.compgeo.2017.09.001
http://dx.doi.org/10.3390/geosciences11050212
http://dx.doi.org/10.1007/s11104-009-0159-y
http://dx.doi.org/10.1007/s11104-014-2044-6
http://dx.doi.org/10.1023/A:1004240706284
http://dx.doi.org/10.1093/jxb/erj003
http://dx.doi.org/10.1007/s11104-011-1022-5
http://dx.doi.org/10.1038/s41598-019-52665-w
http://dx.doi.org/10.1038/s41598-017-14904-w
http://dx.doi.org/10.1680/jgeot.18.T.030
http://dx.doi.org/10.1680/geot.2010.60.5.315
http://dx.doi.org/10.1016/j.jbiomech.2016.04.023
http://www.ncbi.nlm.nih.gov/pubmed/27155747
http://dx.doi.org/10.1016/j.compgeo.2019.04.015
http://dx.doi.org/10.1007/s10346-019-01259-8
http://dx.doi.org/10.1051/e3sconf/202019503001
http://dx.doi.org/10.1680/jgele.15.00187
http://dx.doi.org/10.1680/jgeot.15.T.033
http://dx.doi.org/10.1680/jgele.19.00048


J. Imaging 2022, 8, 5 13 of 13

24. Mooney, S.J.; Pridmore, T.P.; Helliwell, J.; Bennett, M.J. Developing X-ray Computed Tomography to non-invasively image 3-D
root systems in architecture in soil. Plant Soil 2012, 352, 1–22. [CrossRef]

25. Feldkamp, L.; Jesion, G. Chapter 2: Imaging, Inversion and Reconstruction. In Review of Progress in Quantitative Nondestructive
Evaluation; Springer: New York, NY, USA, 1986; pp. 555–566.

26. Arganda-Carreras, I.; Kaynig, V.; Reuden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka
Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [CrossRef]

27. Koebernick, N.; Daly, K.R.; Keyes, S.D.; Bengough, A.G.; Brown, L.K.; Cooper, L.J.; George, T.S.; Hallett, P.D.; Naveed, M.; Raffan,
A.; et al. Imaging microstructure of the barley rhizosphere: Particle packing and root hair influences. New Phytol. 2019, 221,
1878–1889. [CrossRef] [PubMed]

28. Aravena, J.E.; Berli, M.; Ghezzehei, T.A.; Tyler, S.W. Effects of root-induced compaction on rhizosphere hydraulic properties-X-ray
microtomography imaging and numerical simulations. Environ. Sci. Technol. 2011, 45, 425–431. [CrossRef]

29. Clark, L.J.; Whalley, W.R.; Barraclough, P.B. How do roots penetrate strong soil? Plant Soil 2003, 255, 93–104. [CrossRef]
30. Kolb, E.; Legué, V.; Bogeat-Triboulot, M.B. Physical Soil-Root Interactions. Phys. Biol. 2017, 14, 1–40. [CrossRef]
31. Kemp, N.; Angelidakis, V.; Luli, S.; Nadimi, S. Supplementary material to “How do roots interact with layered soils?”. Data Set

2021. [CrossRef]

http://dx.doi.org/10.1007/s11104-011-1039-9
http://dx.doi.org/10.1093/bioinformatics/btx180
http://dx.doi.org/10.1111/nph.15516
http://www.ncbi.nlm.nih.gov/pubmed/30289555
http://dx.doi.org/10.1021/es102566j
http://dx.doi.org/10.1023/A:1026140122848
http://dx.doi.org/10.1088/1478-3975/aa90dd
http://dx.doi.org/10.25405/data.ncl.16734565

	Introduction
	Materials and Methods
	Sample Preparation
	X-ray Micro-Computed Tomography
	Image Segmentation
	Quantifying the Void Ratio
	Quantifying the Root Volume Ratio

	Results and Discussion
	The Influence of Root Growth on Soil Fabric
	The Influence of Soil Fabric on Root Growth
	Effectiveness of the Machine Learning Training Data Set Size
	The Effect of ROI Size

	Conclusions
	References

