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Abstract: Despite the success of hand-crafted features in computer visioning for many years, nowa-
days, this has been replaced by end-to-end learnable features that are extracted from deep convolu-
tional neural networks (CNNs). Whilst CNNs can learn robust features directly from image pixels,
they require large amounts of samples and extreme augmentations. On the contrary, hand-crafted
features, like SIFT, exhibit several interesting properties as they can provide local rotation invari-
ance. In this work, a novel scheme combining the strengths of SIFT descriptors with CNNs, namely
SIFT-CNN, is presented. Given a single-channel image, one SIFT descriptor is computed for every
pixel, and thus, every pixel is represented as an M-dimensional histogram, which ultimately results
in an M-channel image. Thus, the SIFT image is generated from the SIFT descriptors for all the
pixels in a single-channel image, while at the same time, the original spatial size is preserved. Next,
a CNN is trained to utilize these M-channel images as inputs by operating directly on the multiscale
SIFT images with the regular convolution processes. Since these images incorporate spatial relations
between the histograms of the SIFT descriptors, the CNN is guided to learn features from local
gradient information of images that otherwise can be neglected. In this manner, the SIFT-CNN im-
plicitly acquires a local rotation invariance property, which is desired for problems where local areas
within the image can be rotated without affecting the overall classification result of the respective
image. Some of these problems refer to indirect immunofluorescence (IIF) cell image classification,
ground-based all-sky image-cloud classification and human lip-reading classification. The results
for the popular datasets related to the three different aforementioned problems indicate that the
proposed SIFT-CNN can improve the performance and surpasses the corresponding CNNs trained
directly on pixel values in various challenging tasks due to its robustness in local rotations. Our
findings highlight the importance of the input image representation in the overall efficiency of a
data-driven system.

Keywords: deep learning; CNN; local rotation invariance; SIFT descriptors; HEp-2 cell image
classification; all-sky image-cloud classification; lip-reading classification

1. Introduction

Hand-crafted features have been extensively used in computer vision problems, mainly
for the task of image classification [1–3]. These features are derived from a non-learning
process by directly applying various operators on image pixels and can provide several
properties, like rotation and scale invariance [3,4], due to their ability to efficiently encode
local gradient information. However, there are three main limitations of the hand-crafted
features. First, hand-crafted features extract a low-level representation of the data, and, in
this manner, they cannot provide a prominent abstract representation, which is essential
for recognition tasks [5–7]. Secondly, the local descriptors, like SIFT (scale-invariant feature
transform), do not provide a fixed-length (vector) representation of the input image, and
thus extra logic for local descriptor encoding is needed [6,8,9]. Thirdly, the capacity of the
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hand-crafted features is limited and determined by a predefined mapping from the data to
the feature space, which is fixed regardless of the needs of any recognition problem.

Over the last decade, hand-crafted-based methods have been replaced by deep convo-
lutional neural networks (CNNs), which follow an end-to-end learning scheme, usually in
a supervised manner [10]. Each input image is associated with a ground-truth label (reliant
upon the corresponding computer vision task) and the CNN predictive model output as
a score, which is compared with the respective label, and the weights of the model are
updated until the output has reached an acceptable level of accuracy. In this manner, CNNs
build a hierarchically organized feature representation of the input data via a learning
process that minimizes a given criterion presented as a (differentiable) cost function. Thus,
the CNNs learn both feature representation and feature encoding directly from images.
The result is a learnable model that can provide high-level feature representations of input
data once trained on a particular dataset and task. The main drawback of CNNs is the
requirement of extremely large amounts of data as well as their dependency on the quality
of the data (along with the corresponding labels). After all, the training of deep architecture
comes with challenges, including a lot of annotated data and difficulty to ensure scale,
rotation, or geometrical invariance properties [11].

In this work, we discuss the use of a local descriptor representation in combination
with deep learning architecture. Our objective is to evaluate the ability of local descriptors
to provide higher-level information to the CNNs and improve the latter’s behavior with
respect to rotations, complex textures, and patterns. Initially, the SIFT descriptors are
calculated on a dense grid of image locations (for all the pixels’ neighborhoods within the
image). The center pixel of every image neighborhood is mapped to a histogram, thus,
forming a new image representation, namely the SIFT image [12]. In this manner, the
spatial resolution of the SIFT image can be, at most, the same as the input image (unless
the image is subsampled using a stride greater than one), and the depth of the SIFT image
equals to the dimensionality of the SIFT descriptor. The new image representation is used
as input to the CNN, and the total framework is called SIFT-CNN. Thus, the proposed
SIFT-CNN consists of two stages. First, the unsupervised calculation of the dense SIFT
descriptors is incurred in order to provide the local descriptor representation [13], and
next, the produced SIFT images are utilized as inputs for the supervised training of a
CNN model in a classification task. Our approach exhibits several interesting properties.
Therefore, our contributions are summarized as follows: (1) the SIFT-CNN incorporates a
local scale and local rotation invariance property and, hence, robustness to a substantial
range of the affine distortion, change in viewpoint, illumination, and noise. The SIFT
descriptors are used here as a mapping of the input pixels into a robust representation
equipped with the SIFT properties, and thus, the local rotation invariance is integrated
implicitly into the framework because the SIFT-CNN training is implemented using SIFT
images instead of directly operating on image pixels. Additionally, (2) the SIFT-CNN
takes advantage of both domains, the hand-crafted SIFT descriptors as well as the learning
features from the CNNs, and the evaluation of three different problems proves that this
novel consecutive combination increased efficiency. Finally, (3) the SIFT-CNN emphasizes
the representation of the input images in place of the CNN architectures or loss functions
and reveals an alternative to improve the performance. The local rotation invariance is
desired on problems where local areas within the image are rotated without affecting the
overall classification category as well as without the need of rotating the entire image.
Some such examples include indirect immunofluorescence (IIF) cell images, ground-based
all-sky cloud images, and human lip-reading-image sequences, where cell, cloud, or part of
the mouth area can be rotated inside the image, but the final image class decision should
be preserved, as one can observe from some example data in Figure 1. In the case of the
biomedical problem of human epithelium type-2 (HEp-2) cell images [14], the proposed
SIFT-CNN framework surpasses networks trained directly on image pixels. Besides, the
experiments on the largest all-sky image-cloud dataset [15] revealed the top performance,
especially when the fusion of SIFT-CNN and ordinary CNN was utilized. Finally, on the
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sequence modelling task of lip-reading, the SIFT-CNN outperformed the state-of-the-art
methods on a very challenging and very large dataset of word-level recognition (LRW) [16].
The proposed SIFT-CNN has higher efficiency than the CNNs trained directly on pixel
images for all the evaluated tasks. The experimental results for three various tasks indicate
that the proposed SIFT-CNN can provide significant improvements across many different
computer vision problems and, therefore, can be considered an efficient approach.

The rest of this paper is organized as follows: a brief overview of the existing com-
bination of the hand-crafted SIFT features with the deep learning topologies is given in
Section 2. The proposed method is detailed in Section 3. The experimental procedure on
the three different classification tasks, incorporating human epithelium type-2 (HEp-2) cell
microscope images, ground-based remote-sensing all-sky fisheye cloud images (GRSCD),
and lip-reading video (LRW), along with the corresponding results, is given in Section 4.
Finally, the conclusions are drawn in Section 5.
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Figure 1. Some representative data examples of the related problems. The first row corresponds to
the lip-reading classification task, where each sample is an image sequence (29 frames) for when
one word is spoken; the second row shows fisheye images of different types of clouds for the all-sky
cloud classification task, and the third row presents IIF cell images for the HEp-2 cell classification
task. Obviously, local rotation invariance is a sought-after property for all tasks.

2. Related Work

The development of different calculation methods for the hand-crafted features using
local descriptors (de facto SIFT), along with feature encoding mechanisms to provide a
robust image representation, was the core of computer vision research for many years
until the domination of CNNs in the last 10 years. The combination of SIFT descriptors
along with CNNs has attracted increasing interest recently [17]. In most of the proposed
works, the SIFT features are merged with the CNN features at the final stage just before
the classification topology [18,19]. Thus, two streams are utilized independently; on the
one hand, is the implementation of the calculation of the SIFT descriptors along with
a k-means algorithm for the bag-of-words encoding, and, on the other hand, the CNN
features are extracted utilizing a deep learning model. The outputs of the streams are
fused, and the result is fed to a classifier consisting of fully connected layers. Next, only
the CNN stream is updated through backpropagation on the respective stream. In this
manner, many different approaches are proposed for the calculation of the local descriptors,
either exploiting key-point SIFT [20,21] or jointly exploited with dense SIFT features [22].
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Besides, the fusion method is varied from a simple concatenation to more sophisticated
attention mechanisms [18,23,24]. Additionally, the previous dual-stream logic is modified
by redoubling each stream and implementing a Siamese scheme [25]. Additionally, the
hybrid CNN and SIFT methods were evaluated using sequence-modelling tasks to capture
video dynamics in opposition to an optical flow [26,27].

Local descriptors are very useful when insufficient data are available, something
that happens frequently in biomedical problems [28,29]. In an attempt to reduce the
number of learnable parameters of a CNN model, we proposed replacing the learnable
parameters of the first layers with user-specified functions (such as with the use of Gabor
filter bank and Hybrid Networks) [30,31]. The performance of these networks can be
improved with active rotating filters [32], which ensure “within class” rotation invariance.
In order to cope with arbitrary global rotation, translation, and scale, a spatial transformer
network (STN) [33] was introduced. These networks learn the parameters of an affine
transformation which is then used to wrap the entire input image during the early stages
of the CNN to improve the final classification performance of the network. Providing
some kind of invariance in the first layers of the CNNs [22] seems to be very important for
learning more robust representations without requiring large amounts of data or extreme
data augmentation [34]. In this fashion, the use of a hand-crafted feature representation
as the input for CNNs combines the best of both words: hand-crafted descriptors and
learning schemes, constructing a simple hybrid framework [35,36]. For a similar rationale
of deploying the underlying physics into the input representation, the physics-informed
neural networks integrate (noisy) data and mathematical models in order to be trained
from additional information obtained by enforcing the physical laws [37,38].

In this work, we present, for the first time, a new method for utilizing dense SIFT
descriptors directly into CNNs as inputs. The concept of SIFT images and the fusion of
SIFT and CNN features have already been proposed in the past; however, the benefits
of using SIFT images as inputs to a CNN have not been studied yet to the best of our
knowledge. In our approach, the dense SIFT is used, and the SIFT image transformation
maps a single channel image to an M-channel image, where M equals the dimensions of
the SIFT descriptor and, consequently, the number of the SIFT image channels (when the
spatial resolution of the original image is preserved). Next, we differentiate our method
from other works because the SIFT images are utilized as multi-channel inputs for training
the CNN model for various classification problems. Thus, the feature extraction capabilities
of the CNN model and the local rotation invariance of SIFT descriptor were used to
collaborate implicitly together in a unified system via the consecutive style of the proposed
SIFT-CNN framework.

3. Proposed Method
3.1. The SIFT-CNN Framework

A typical CNN-based system has, as an input, the pixel values of an image, and its
output is the classification result for the input image. For the rest of the paper, we will refer
to this approach as Pixel-CNN. When the SIFT descriptors are calculated for every pixel
in the image (dense SIFT), the SIFT image representation is obtained. The SIFT image is
fed into a CNN and the whole framework is called SIFT-CNN. The overview of the two
frameworks is presented in Figure 2. In this manner, the SIFT-CNN is directly learning
the spatial relations from the histograms of the gradients from neighbor pixels. When
compared to learning directly from intensity pixels, this enables the network to emphasize
the relations between the statistical properties of the pixel region. More specifically, the
CNN is learning relations from the histogram bins that encode the frequency of gradient
directions in a region around each pixel. At the same time, the spatial resolution of the input
image is not affected, allowing the CNN to learn features with high-spatial detail, utilizing
the total spatial image domain [12]. Ultimately, the SIFT-CNN exploits the SIFT properties,
and thus the local rotation invariance is integrated implicitly into the framework.
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Figure 2. Overview of the Pixel-CNN and SIFT-CNN frameworks for image classification. Top
scheme: Pixel-CNN, the regular implementation of CNN where pixel values of the grayscale image
are used directly as inputs into CNN. Bottom scheme: SIFT-CNN, the SIFT image representation
is used as input into a CNN, and thus, the SIFT-CNN is guided to learn features from the local
gradient information of images, which allows SIFT-CNN to implicitly incorporate a local rotation
invariance property.

3.2. Mapping Pixels to SIFT Descriptors

The SIFT descriptor is computed for every pixel in a grayscale image via a procedure
known as dense SIFT feature extraction [39]. While multiple scales can be incorporated,
in this work, the dominant scale approach was used, where a single scale was able to
capture the required information, following the findings of [7,40]. The dominant scale is
computed by executing the SIFT detector using the training images and then estimating
the distribution mean for all the scales. For every pixel of an image, a neighborhood of
size N × N pixels is defined around it, where N is specified by the scale parameter and
is set to N = 8. This local area is divided into 4 × 4 regions called cells. For each cell, an
8-bin histogram is computed and therefore, each pixel is represented as an M-dimensional
feature vector, where M = 128 equals the number of bins of the SIFT histograms for all
cells stacked together. As a result, each grayscale input image is represented as a new
image with M-channels, formed by the M-dimension descriptors but with the same spatial
size. This stage is presented in Figure 3. The descriptors encode statistical information
related to the orientation of the gradients in the local neighborhood of a pixel’s area. This
representation is of the local rotation and scale invariant and also enlarges the receptive
field of view in the first layer of the CNN. The larger input receptive field could help the
CNN to capture higher-level features, with its first layer taking advantage of the previous
SIFT encoding. Besides, the learning process of the CNN is guided by the properties of
the SIFT descriptors. Hence, the training of a deep CNN with the M-channel SIFT images
could provide a better generalization with less augmentations or training data as well as
transfuse implicitly a sense of local rotation invariance into the CNN.



J. Imaging 2022, 8, 256 6 of 18J. Imaging 2022, 8, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. Given a grayscale image, one SIFT descriptor is computed for each pixel of the image that 
captures a neighborhood around every pixel. Thus, each pixel is mapped to an M = 128-dimensional 
SIFT descriptor. For all the pixels in the grayscale image, the corresponding result is a new image 
that is called a SIFT image. The SIFT image is created with the SIFT descriptors for all the pixels of 
the grayscale image. Therefore, the SIFT image has the same spatial size as the grayscale image, and 
M = 128 channels are equal to the dimension of a SIFT histogram representation. In the SIFT-CNN 
framework, every input convolutional layer of the CNN (e.g., CNN filter 1) operates directly on the 
SIFT image, such as in a multiscale input image, with the regular convolution process. In this way, 
the output of the first convolutional layer is an ordinary CNN feature map. After all, the utilization 
of SIFT images as inputs supplies the CNN with the local rotation invariant property. This property 
is immanent in the SIFT descriptors and is implicitly incorporated into the CNN model via data-
driven training. 

4. Experimental Results 
4.1. Materials and Methods 

The efficiency of the proposed SIFT-CNN was evaluated using three different chal-
lenging tasks. In all cases, the ability of the SIFT-CNN to perform better than (or to be 
combined with) regular pixel-CNNs is presented. First, experiments were performed on 
biomedical datasets under an image classification task with very complex texture patterns 
and a limited number of training samples. Secondly, the largest ground-based remote-
sensing cloud database was used. This dataset is appropriate for studying the ability of 
the SIFT-CNN, with respect to local rotation invariance as well as to variations in illumi-
nation and appearance, on the cloud images. Thirdly, the SIFT-CNN framework is evalu-
ated on the word-level lip-reading problem, which is an image sequence classification 
task. ResNet-18 architecture was used as the standard CNN in the SIFT-CNN framework 
since ResNet architecture has proven to be the most appropriate architecture for transfer 
learning [41]. Optimization was conducted by minimizing loss using stochastic gradient 
descent (SGD) for 100 epochs, with an initial learning rate of 0.1 (divided by 10 every 30 
epochs if no alternative is mentioned). The size of the minibatch is determined by the 
maximum memory on a GPU, meaning that 64 images were used for image classification 
problems and 8 for the sequence classification task. However, our preliminary investiga-
tion with smaller minibatches (i.e., 8, 16, 32, etc.) results in performance degradation of 
less than 1% for each reduction. Unless otherwise stated, no particular data-augmentation 

Figure 3. Given a grayscale image, one SIFT descriptor is computed for each pixel of the image that
captures a neighborhood around every pixel. Thus, each pixel is mapped to an M = 128-dimensional
SIFT descriptor. For all the pixels in the grayscale image, the corresponding result is a new image
that is called a SIFT image. The SIFT image is created with the SIFT descriptors for all the pixels of
the grayscale image. Therefore, the SIFT image has the same spatial size as the grayscale image, and
M = 128 channels are equal to the dimension of a SIFT histogram representation. In the SIFT-CNN
framework, every input convolutional layer of the CNN (e.g., CNN filter 1) operates directly on
the SIFT image, such as in a multiscale input image, with the regular convolution process. In this
way, the output of the first convolutional layer is an ordinary CNN feature map. After all, the
utilization of SIFT images as inputs supplies the CNN with the local rotation invariant property. This
property is immanent in the SIFT descriptors and is implicitly incorporated into the CNN model via
data-driven training.

4. Experimental Results
4.1. Materials and Methods

The efficiency of the proposed SIFT-CNN was evaluated using three different challeng-
ing tasks. In all cases, the ability of the SIFT-CNN to perform better than (or to be combined
with) regular pixel-CNNs is presented. First, experiments were performed on biomedical
datasets under an image classification task with very complex texture patterns and a limited
number of training samples. Secondly, the largest ground-based remote-sensing cloud
database was used. This dataset is appropriate for studying the ability of the SIFT-CNN,
with respect to local rotation invariance as well as to variations in illumination and appear-
ance, on the cloud images. Thirdly, the SIFT-CNN framework is evaluated on the word-level
lip-reading problem, which is an image sequence classification task. ResNet-18 architecture
was used as the standard CNN in the SIFT-CNN framework since ResNet architecture has
proven to be the most appropriate architecture for transfer learning [41]. Optimization was
conducted by minimizing loss using stochastic gradient descent (SGD) for 100 epochs, with
an initial learning rate of 0.1 (divided by 10 every 30 epochs if no alternative is mentioned).
The size of the minibatch is determined by the maximum memory on a GPU, meaning that
64 images were used for image classification problems and 8 for the sequence classification
task. However, our preliminary investigation with smaller minibatches (i.e., 8, 16, 32, etc.)
results in performance degradation of less than 1% for each reduction. Unless otherwise
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stated, no particular data-augmentation scheme was incorporated into the training pro-
cedures. All experiments were performed using the PyTorch open-source deep-learning
framework [42], and the SIFT descriptors were computed using SIFT-flow implementation
(only the dense SIFT feature extraction) [12]. The implementation of the experimental results
will be made publicly available at: https://github.com/dimkastan/sift-cnn-all-sky-images
(accessed on 15 September 2022) after publication of the paper.

4.2. Datasets

Two publicly available biomedical datasets, which have single channel (grayscale)
images of human epithelium type-2 cells (HEp-2 cells), were used for the problem of cell
image classification. These datasets have been presented in two contests and are very
challenging [14]. The first one is the ICPR 2012 HEp-2 cell dataset, which consists of
721 training and 734 test images from a total number of six categories [43]. The split (into
training and test sets) is provided by the contest. The second dataset is the ICIP 2013
HEp-2 cell contest dataset, with 13,652 cell images and 6 cell classes [44]. Of the total of
13,652 images, 1186 were used for training and the rest (12,466) were used for testing. All
the grayscale cell images were resized to a 128 × 128-pixel resolution for all the experiments,
i.e., for input into the pixel-CNN and for generating the SIFT images.

The TJNU ground-based remote-sensing cloud database (TJNU-GRSCD) [15] contains
8000 cloud images captured by the sky camera with a fisheye lens. The images were col-
lected for a long period of time, from 2017 to 2018, in Tianjin, China. Every ground-based
sample is an RGB image of the sky dome with a resolution of 1024 × 1024 pixels and pre-
served in the JPEG format. The sky conditions are divided into seven sky types: (1) cumulus,
(2) altocumulus and cirrocumulus, (3) cirrus and cirrostratus, (4) clear sky, (5) stratocumu-
lus, stratus, and altostratus, (6) cumulonimbus and nimbostratus, and (7) mixed cloudiness,
according to the cloud genera definitions of the World Meteorological Organization (WMO)
and the visual similarity of clouds in practice. The GRSCD is composed of 4000 training
samples and 4000 test samples from 7 classes, as provided by the creators. The RGB images
are converted to grayscale and resized to 280 × 280 pixels in order to allow the image
augmentations of random crops into resolutions of 256 × 256 and random horizontal flips
during training.

The lip-reading problem was addressed within the challenging large-scale LRW-500
dataset [16]. This LRW (lip reading words) dataset contains words cropped from short video
clips captured automatically from BBC TV broadcasts. Each spoken world is represented
by 29 grayscale frames, and in total, there are 500 different classes with 488,766 training and
25,000 validation and testing samples. In order to keep a fixed length for the frames, the
creators have cropped fixed windows with the target class world being in the center. During
our evaluation, each image was cropped to 88 × 88 pixels around the mouth area, and this
image was mapped to a SIFT image. In this manner, every grayscale image sequence was
mapped to a SIFT image sequence before being further processed by the CNN architecture.

4.3. Classification Results on ICPR 2012 and ICIP 2013 HEp-2 Cell Image Datasets

Given the two HEp-2 cell datasets, ICPR 2012 and ICIP 2013, the experimental proce-
dure was two-fold. On the one hand, the CNN was evaluated using each dataset individu-
ally, and, on the other hand, the transferability of the features learned by the CNN across
the datasets was investigated. More specifically, in the first case, ResNet-18 was utilized
only for the training set of each dataset for learning its weights; next, it was evaluated on
the same cell dataset using the test images. We refer to this approach as “without transfer
learning” in Table 1 below. In the second case, ResNet-18 was trained with the training
images of one dataset, and then the trained model (weights of the network) was used
as an initialization point for further training in the other dataset, following the transfer
learning procedure. This case is referred to as “with transfer learning”, and the accuracy is
presented in the test set of the final dataset. All experimental results for the classification
task of the cell images are presented in Table 1, including both implementations with and

https://github.com/dimkastan/sift-cnn-all-sky-images
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without transfer learning between the two cell datasets. For fair comparison purposes, the
pixel-CNN was tested too, following exactly the same protocols as SIFT-CNN.

Table 1. Classification results for the Hep-2 cell image biomedical datasets.

Hep-2 Cell Image Classification Systems Classification
Accuracy (%)

Method ICPR 2012 ICIP 2013

SIFT + VHAR [7] 73.4 -
SIFT-SURF + BoW [45] 75.0 -
Pixel-CNN(ResNet-18) without transfer learning 66.3 84.47
SIFT-CNN(ResNet-18) without transfer learning 73.0 89.18
Pixel-CNN(ResNet-18) with transfer learning 68.5 86.12
SIFT-CNN(ResNet-18) with transfer learning 75.0 89.21

The SIFT-CNN provides an improvement of about 4% as compared to the regular
Pixel-CNN representation in the cases where no transfer learning was performed, and about
3% when transfer learning took place. The superior performance of SIFT-CNN indicates
that the SIFT image can efficiently combine with a CNN model, allowing the CNN to take
advantage of the dense SIFT properties in order to cope with the complex texture of the cell
images as opposed to the utilization of the pixel values. Given that images captured from
fluorescence microscopy are noisy, it has been proven that SIFT descriptors can provide
more robust representations when compared to noisy pixels. Last but not least, the SIFT-
CNN is statistically tied with the traditional but extremely effective (in the biomedical
case problem) methods that utilize the SIFT descriptors along with the encoding of either
vector of locally aggregated descriptors (VHAR) or the frequency-related bag-of-words
(BoW). The hand-crafted features’ efficiency (as opposed to that of pixel-CNN features) is
connected more to the existence of noise in the pixels of the mages from the microscope and
less with the small number of training samples. However, the ability of both pixel-CNN
and SIFT-CNN to transfer knowledge between tasks is observed in all cases.

4.4. Classification Results on Cloud Type GRSCD Dataset

The SIFT-CNN was compared with a variety of available state-of-the-art methods
which were evaluated using the GRSCD dataset (utilizing only the visual information),
including both traditional techniques and deep learning architectures, as is shown in
Table 2. The traditional-based features are calculated using the SIFT descriptors together
with bag-of-words (BoW), with the uniform invariant local binary patterns (LBP with the
(P, R) set to (24, 3), respectively), and the completed LBP that is a joint combination of local
central information, signs, and magnitudes of the local differences (CLBP with P = 24 and
R = 3). Many popular CNN topologies are also presented in Table 2, such as the VGG-16,
the AlexNet-like for CloudNet and deep convolutional activation-based features (DCAFs),
as well as different variations relying on ResNets. For the ground-based cloud classification
problem, the deep learning methods have an advantage over the hand-crafted methods
by a large margin, as we can notice from Table 2. This is reasonable when considering the
degenerate nature of cloud images, which are characterized by large intraclass and small
interclass variances, in terms of texture (i.e., similar clouds at different heights) and color
(i.e., different time of day). Thus, CNNs are the most prominent models to learn efficiently
distinctive representations from the challenging all-sky fisheye images. In this way, the
incorporation of conventional the CNN backbone with additional mechanisms helps to
mine the inherent structure information of the clouds and improves the performance. The
CNN (i.e., ResNet) in conjunction with dual guided loss (DGL) [46] or the hierarchical
fusion of intermediate feature maps of only deep visual features [47] or the attention
mechanism for exploiting local visual features (Attentive Network) [15] is beneficial. In
order to optimize the decision boundary, a support vectors machine (SVM) classifier at
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the top of the final extracted features seems advantageous for the cloud-type classification
task [15,47,48].

Taking into consideration the above positive impact improvement points, in addition
to the experiments using SIFT-CNN, we assumed that it was fair to implement the combi-
nation of SIFT-CNN and Pixel-CNN, following the simplest fusion mechanism with the
concatenation of the final feature vectors. The proposed late fusion of the Pixel-CNN and
SIFT-CNN scheme is presented in Figure 4 and allows for the investigation of SIFT-CNN to
provide complementary information. In the end, the final representations of the training
samples are also used to train an SVM classifier.
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Figure 4. The proposed late fusion of the pixel-CNN and SIFT-CNN scheme. A given image is fed into
the pixel-CNN, producing a 512-dimensional vector as well as to the SIFT-CNN, producing another
512-dimensional vector. These two vectors are concatenated (resulting in a final combined feature
vector with 1024 dimensions) and then fed to a fully connected layer for the final class prediction into
seven cloud categories.

All the experiments performed with the stochastic gradient descent (SGD) optimizer
started with a learning rate 0.001 and a weight decay and momentum set to 0.0002 and 0.9,
respectively. The learning rate was decreased every 30 epochs using a step function by a
factor of 0.1 for a total of 100 epochs when the minibatch had 64 images. The hyperparame-
ter selection for the SVM was performed by following a five-fold cross validation strategy
on the available training data. The experimental results are included in Table 2.

Table 2. Classification results for the ground-based image-cloud database (TJNU-GRSCD).

Different Methods on GRSCD Classification
Accuracy (%)

Method GRSCD

SIFT + BoW [15,49] 66.13
LBP (P = 24, R = 3) [15,50] 50.20
CLBP (P = 24, R = 3) [15,51] 69.18
VGG-16 [15,52] 77.95
CloutNet [15,53] 79.92
DCAFs-SVM [15,49] 82.67
ResNet-50 [46] 83.15
ResNet-50 + DGL [46] 85.28
ResNet-50 + hierarchical fusion-SVM [47] 85.12
ResNet-50 + Attentive Net-SVM [15] 86.25
Pixel-CNN (ResNet-18) 82.52
SIFT-CNN (ResNet-18) 83.90
Late Fusion Pixel-CNN and SIFT-CNN (Resnet 18) 87.22
Late Fusion Pixel-CNN and SIFT-CNN (Resnet 18)-SVM 87.55
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The results from Table 2 (as well as the bar graph in Figure 5) indicate that SIFT-CNN
provides an efficient way to encode and utilize the SIFT descriptors. By comparing it
with the standard approach for encoding SIFT descriptors into a histogram of occurrences
(BoW) [15,49], SIFT-CNN provides an improvement of about 16%. Moreover, SIFT-CNN
surpasses pixel-CNN with ResNet-18 and ResNet-50. However, on its own, it cannot
achieve a score greater than the state-of-the-art method (86.25%). Following the relevant lit-
erature and state-of-the-art processes, where various fusion schemes are presented, the late
fusion scheme in Figure 4 was included in the experiments. The proposed fusion scheme
surpasses other implementations, suggesting that SIFT-CNN can provide complementary
information too. Finally, as also observed by other works, the addition of an SVM further
enhances the performance (confusion matrix of Figure 6) since it maximizes the classifier’s
decision margin.
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GRSCD dataset.

4.5. Classification Results on Lip-Reading LRW Dataset

Previous experiments demonstrated the benefits of SIFT-CNN for the task of single
image classification. In this section, the ability of SIFT-CNN in sequence-modelling prob-
lems was investigated. For this purpose, the lip-reading (LR) problem is approached using
a very challenging and large-scale dataset consisting of 500 English spoken words. LR
is a challenging image sequence classification task where the CNNs are asked to learn
very high-level, abstract patterns of mouth motion from sequences of frames [54]. Besides
RNNs, like GRU and LSTMs that have been traditionally used for the task of sequence
encoding, temporal convolutional networks (TCNs) have gained attention in LR [55,56]
and other sequence learning tasks, like action recognition [57] and weather predictions [58].
Towards this direction, a state-of-the-art implementation has been obtained by combining
spatiotemporal convolutions, also known as 3D convolutions, with ResNet-18 CNNs and
multiscale temporal convolutional networks [55], named MS-TCN. In this approach, the
frames of the sequence are passed through a 3D convolutional network and then processed
independently frame-by-frame with ResNet-18 extracting a feature vector from each frame.
Finally, the TCNs are used to map the sequence of the vectors into a fixed length vectorial
representation, providing the sequence encoding. Our purpose is to study the power of the
input image representation, utilizing the SIFT image along with a deep architecture. Thus,
we trained the MS-TCN-based lip-reading system proposed by [55] using the SIFT images
as the input, following fair comparison with as plain rules as possible. More specifically,
given a grayscale image of 88 × 880-pixel resolution as an input, the SIFT image was
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computed. Therefore, the SIFT image is a tensor of a size of 88 × 88 × 128 (height × width
× channels). Then, two convolutional layers with a kernel size equal to 3 and stride equal to
2 were utilized in order to map the channels from 128 to 64 and from 64 to 64, respectively.
Subsequently, a third convolutional layer, in which the size of the stride was defined as 1
and the kernel as 3, was used for the 64 channels to 64, was used. In all cases, the images
were padded by 1. This downscaling of the dimension of the SIFT image by a factor of four,
resulting in an input tensor size of 22 × 22 × 64, was guided by the work in [55]. Moreover,
the fundamental 3D learning module at the beginning of the LR system was utilized as
per [55] but with the corresponding SIFT image sequence as the input. The corresponding
training curves are presented in Figure 7.
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The classification accuracy of the state-of-the-art methods on the word-level LRW
dataset is presented in Table 3 (as well as in Figure 8 using the bar plot). The experimental
results indicate that there was an advantage for SIFT-CNN–MS-TCN over pixel-CNN–MS-
TCN [55]. For completeness of comparison, we also trained the pixel-MS TCN from [55]
from scratch; however, we achieved only 79.38% accuracy, which indicates that pixel–MS-
TCN needs some particular treatment, as mentioned by its authors, like the pre-training
of a few words and then gradually increasing the number of words as well as a transfer
learning process by training it on a different task first. The increased classification accuracy
of SIFT-CNN can be connected with the robustness in brightness, constancy, and piecewise
smoothness of the SIFT-flow. Also, the local rotation invariance properties, along with the
higher-level information (from local gradient encoding) from the SIFT-descriptors, lead the
proposed system to achieve better performance than the framework with a regular pixel
image as an input.

Table 3. Summary of the state-of-the-art results using the LRW-500 dataset.

Method Data LRW

Authors’
Name (Year) Frontend Backend Input Image Size

Input and
Data Managing

Policy

Classification
Accuracy
WRR (%)

Chung et al.
(2016) [16] 3D &VGG M - 112 × 112 Mouth 61.10%

Chung et al.
(2017) [59]

3D & VGG M
version

LSTM &
Attention 120 × 120 Mouth 76.20%

Petridis et al.
(2018) [60] 3D & ResNet-34 Bi-GRU 96 × 96 Mouth 82.00%

Stafylakis et al.
(2017) [61] 3D & ResNet-34 Bi-LSTM 112 × 112 Mouth 83.00%
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Table 3. Cont.

Method Data LRW

Authors’
Name (Year) Frontend Backend Input Image Size

Input and
Data Managing

Policy

Classification
Accuracy
WRR (%)

Cheng et al.
(2020) [62] 3D & ResNet-18 Bi-GRU 88 × 88 Mouth &

3D augmentations 83.20%

Wang et al.
(2019) [63]

2-Stream
ResNet-34 &

DenseNet3D-52
Bi-LSTM 88 × 88 Mouth 83.34%

Courtney et al.
(2019) [64]

alternating
ResidualNet

Bi-LSTM

alternating
ResidualNet

Bi-LSTM

48 × 48, 56 × 56,
64 × 64

Mouth (&
pretraining)

83.40%
(85.20%)

Luo et al.
(2020) [65]

3D & 2-Stream
ResNet-18 Bi-GRU 88 × 88 Mouth and

gradient policy 83.50%

Weng et al.
(2019) [66]

deep 3D &
2-Stream

ResNet-18
Bi-LSTM 112 × 112 Mouth &

optical flow 84.07%

Xiao et al.
(2020) [67]

3D & 2-Stream
ResNet-18 Bi-GRU 88 × 88 Mouth &

deformation flow 84.13%

Zhao et al.
(2020) [68] 3D & ResNet-18 Bi-GRU 88 × 88 Mouth and mu-

tual information 84.41%

Zhang et al.
(2020) [69] 3D & ResNet-18 Bi-GRU 112 × 112 Mouth

(Aligned) 85.02%

Feng et al.
(2020) [70] 3D & SE ResNet-18 Bi-GRU 88 × 88

Mouth
(Aligned) &

augmentations
85.00%

Pan et al.
(2022) [71] 3D & MoCo Transformer 112 × 112 Mouth (&

pretraining) 85.00%

Martinez et al.
(2020) [55] 3D & ResNet-18 MS-TCN 88 × 88 Mouth

(Aligned) 85.30%

Kim et al.
(2022) [72] 3D & ResNet-18 Bi-GRU 112 × 112 Mouth (&

pretraining) 85.40%

Tsourounis et al.
(2021) [73]

alternating
ALSOS &

ResNet-18 layers
MS-TCN 88 × 88 Mouth

(Aligned) 85.96%

Proposed SIFT- 3D &
CNN(ResNet-18) MS-TCN 88 × 88 Mouth

(Aligned) 86.46%
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5. Conclusions

The combination of hand-crafted descriptors with the deep learning methods is an
open research domain since it can connect existing computer vision community experience
(of hand-crafted features) with model-learning-feature representation methods based on
deep learning. Our attempt to combine these two worlds resulted in the SIFT-CNN
framework, which consists of mapping that produces a new image representation based
on SIFT descriptors and a learning process based on efficient CNN architecture. For
every pixel in an input single-channel (grayscale) image, the SIFT descriptor is calculated,
generating the SIFT image with a channel size equal to 128 (as a SIFT-descriptor dimension)
and spatial size as the input grayscale image. Next, the SIFT images are fed into a CNN
model under a final classification task. As for every approach, SIFT-CNN has benefits and
drawbacks. To begin with, the limitations: the SIFT-CNN does not immanent-encode color
information; therefore, in cases where a grayscale image is insufficient, and consequently
color information is crucial for the discrimination of various classes, the SIFT-CNN must
be computed per color channel of the image (and then utilize a fusion mechanism for the
outputs), which increases the number of operations linearly to the number of channels.
Additionally, since the SIFT-CNN requires the computation of dense SIFT, this adds extra
initial procedures which increase the computational processing sources and time needed,
as opposed to a framework that works with pixel images as an input. Although, the
time-cost during training and testing is not noteworthy due to the implementation of SIFT
computations for the GPU as well as only the descriptor calculation stage, and not the
detector, being executed. At last, the utilization of a larger input volume (H × W × 128
instead of H × W × 3 or H × W × 1) had a negligible impact on processing time but
requires more memory, which evidently restricts the size of the minibatch. However, we
observed that the proposed framework does not expect large minibatches to be efficient. On
the other hand, SIFT-CNN has several advantages. First, for every pixel, the surrounding
pixels’ gradient information is encoded into a histogram, and thus, information is encoded
channel-wise in SIFT image. In this context, every pixel across the channels encodes the
occurrence of the gradient patterns. This mapping allows the CNN to be trained directly
on the values formed by the SIFT histograms using an end-to-end learning scheme. In
this manner, SIFT-CNN can be advantageous within small datasets, where regular deep
learning methods are prone to overfitting as they try to learn all the feature representations
and the encoding, while SIFT-CNN enforces these networks to be trained on statistical
information that is later encoded in an end-to-end manner by the CNN. Secondly, the
SIFT representation provides strong local rotation invariance, which can be implicitly
incorporated into the SIFT-CNN framework.

Our experiments were performed on three different problems, where the local rotation
invariant property was crucial for the solution. Thus, the SIFT-CNN evaluated on the
biomedical datasets of cell images from a microscope with noisy and highly complex
textured patterns, on the largest ground-based cloud-type dataset with all-sky images, and
on the challenging task of lip-reading with video data, has greater efficiency over regular
CNNs as well as other state-of-the-art approaches. The proposed SIFT-CNN operates better
than the CNNs trained directly on images (i.e., pixel values) in all three investigated tasks,
establishing that the use of SIFT images as an input into a CNN could be an effective and
easy alternative for increasing the efficiency of the system. Thus, by balancing the SIFT-
based features and CNN-based features in a consecutive manner, the SIFT-CNN benefits
from local rotation invariance and data-driven learning capability.

The proposed SIFT-CNN scheme can open new directions for future works in the
combination of classic descriptors, such as SIFT, together with deep CNN architectures,
especially in small-sample sized problems or in tasks where the number of samples per
class is limited (e.g., biomedical and/or biometrics tasks). Also, the requirement of a
single-channel image to calculate the SIFT descriptors has advantages since it can be an
effective way for different data distributions or different modalities to find common ground
through a proper transformation process. Moreover, the SIFT-CNN approach empowers
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research beyond CNN architectures and loss functions, emphasizing the inputs and the
transformations that can provide some interesting properties for existing deep learning
methods. Our future plans include the investigation of self-supervised visual representation
learning [74–76] with the SIFT-CNN as a new entry stream.
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