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Abstract: The intrinsic features of documents, such as paper color, texture, aging, translucency, the
kind of printing, typing or handwriting, etc., are important with regard to how to process and enhance
their image. Image binarization is the process of producing a monochromatic image having its color
version as input. It is a key step in the document processing pipeline. The recent Quality-Time
Binarization Competitions for documents have shown that no binarization algorithm is good for
any kind of document image. This paper uses a sample of the texture of the scanned historical
documents as the main document feature to select which of the 63 widely used algorithms, using five
different versions of the input images, totaling 315 document image-binarization schemes, provides a
reasonable quality-time trade-off.

Keywords: document binarization; historical documents; DIB dataset; scanned documents; binarization
competitions; binarization algorithms

1. Introduction

The process of converting a color image into its black-and-white (or monochromatic)
version is called binarization or thresholding. The binary version of document images are,
in general, more readable by humans, and save storage space [1,2] and communication
bandwidth in networks, as the size of binary images is often orders of magnitudes smaller
than the original gray or color images; they also use less toner for printing. Thresholding
is a key preprocessing step for document transcription via OCR, which allows document
classification and indexing.

No single binarization algorithm is good for all kinds of document images, as is
demonstrated by the recent Quality-Time Binarization Competitions [3–7]. The quality of
the resulting image depends on a wide variety of factors, from the digitalization device
and its setup to the intrinsic features of the document, from the paper color and texture to
the way the document was handwritten or printed. The time elapsed in binarization also
depends on the document features and varies widely between algorithms. A fundamental
question arises here: if the document features are deterministic for the quality output of the
binary image and there is also a large time-performance variation, and there is a growing
number of binarization algorithms, how does one choose an algorithm that provides the
best quality-time trade-off? Most users tend to binarize a document image with one of the
classical algorithms, such as Otsu [8] or Sauvola [9]. Often, the quality of the result is not
satisfactory, forcing the user to enhance the image through filtering (salt-and-pepper, etc.)
or to hand-correct the image.

The case of the binarization of photographed documents is even more complex than
scanned ones, as the document image has uneven resolution and illumination. The ACM
DocEng Quality-Time Binarization Competitions for Photographed Documents [5–7] have
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shown that in addition to the physical document characteristics, the camera features and its
setup (whether the in-built strobe flash is on or off) influence which binarization algorithm
performs the best in quality and time performance. The recent paper [10] presents a new
methodology to choose the “best” binarization algorithm in quality and time performance
for documents photographed with portable digital cameras embedded in cell phones.
It assesses 61 binarization algorithms to point out which binarization algorithm quality-
time performs the best for OCR preprocessing or image visualization/printing/network
transmission for each of the tested devices and setup. It also chooses the “overall winner”,
and the binarization algorithms that would be the “first-choice” in the case of a general
embedded application, for instance.

The binarization of scanned documents is also a challenging task. The quality of the
resulting image varies not only with the set resolution of the scanner (today, the “standard”
is either 200 or 300 dpi), but it also depends heavily on the features of each document, such
as paper color and texture, how the document was handwritten or printed, the existence
of physical noises [11], etc. Thus, it is important to have some criteria to point out which
binarization algorithm, among the best algorithms today, provides the best quality-time
trade-off for scanned documents.

Traditionally, binarization algorithms convert the color image into gray-scale before
performing binarization. Reference [12] shows that the performance of binarization algo-
rithms may differ if the algorithm is fed with the color image, its gray-scale converted
image or one of its R, G, or B channels. Several authors [13,14] show that texture analysis
plays an important role in document image processing. Two of the authors of this paper
showed that the analysis of paper texture allows one to determine the age of documents for
forensic purposes [15], avoiding document forgeries. This paper shows that by extracting
a sample of the paper (background) texture of a scanned document, one can have a good
indication of one of the 315 binarization schemes tested [12] that provides a suitable quality
monochromatic image, with a reasonable processing time to be integrated into a document
processing pipeline.

2. Materials and Methods

This work made use of the International Association for Pattern Recognition (IAPR)
document image binarization (DIB) platform (https://dib.cin.ufpe.br, last accessed on 24
August 2022), which focuses on document binarization. It encompasses several datasets
of document images of historical, bureaucratic, and ordinary documents, which were
handwritten, machine-typed, offset, laser- and ink-jet printed, and both scanned and
photographed; several documents had corresponding ground-truth images. In additon
to being a document repository, the DIB platform encompasses a synthetic document
image generator, which allows the user to create over 5.5 million documents with different
features. As already mentioned, Ref. [12] shows that binarization algorithms, in general,
yield different quality images whenever fed with the color, gray-scale-converted, and R, G,
and B channels. Here, 63 classical and recently published binarization algorithms are fed
with the five versions of the input image, totaling 315 different binarization schemes. The
full list of the algorithms used is presented in Tables 1 and 2, along with a short description
and the approach followed in each of them.

Table 1. Tested binarization algorithms—Part 1.

Method Category Description

Akbari_1 [16] Deep Learning Segnet network architecture fed by multichannel images (wavelet sub bands)
Akbari_2 [16] Deep Learning Variation of Akibari_1 with multiple networks
Akbari_3 [16] Deep Learning Variation of Akibari_1 where fewer channels are used
Bataineh [17] Local threshold based on local and global statistics

https://dib.cin.ufpe.br
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Table 1. Cont.

Method Category Description

Bernsen [18] Local threshold Uses local image contrast to choose threshold
Bradley [19] Local threshold Adaptive thresholding using the integral image of the input

Calvo-Zaragoza [20] Deep learning Fully convolutional Encoder–decoder FCN with residual blocks
CLD [21] Local threshold Contrast enhancement followed by adaptive thresholding and artifact removal
CNW [22] Local threshold Combination of Niblack and Wolf’s algorithm
dSLR [23] Global threshold Uses Shannon entropy to find a global threshold

DeepOtsu (SL) [24] Deep Learning Neural networks learn degradations and global Otsu generates
binarization map

DE-GAN [25] Deep Learning Uses a conditional generative adversarial network
DiegoPavan (DP) [4] Deep Learning Downscale image to feed a DE-GAN network

DilatedUNet [5] Deep Learning Downsample to smooth image and use a dilated convolutional layer to correct
the feature map spatial resolution

DocDLinkNet [26] Deep Learning D-LinkNet architecture with document image patches

DocUNet (WX) [3] Deep Learning A hybrid pyramid U-Net convolutional network is fed with morphological
bottom-hat transform enhanced document images

ElisaTV [27] Local threshold Background estimation and subtraction
Ergina-Global [28] Global threshold Average color value and histogram equalization
Ergina-Local [29] Local threshold Detects where to apply local thresholding after a applying a global one

Gattal [30] Clustering Automatic Parameter Tuning of K-Means Algorithm

Gosh [31] Clustering Clustering applied to a superset of foreground estimated by Niblack’s
algorithm

Howe [32] CRF Laplacian unary term and pairwise Canny-based term
Huang [33] Global threshold Minimizes the measures of fuzzines

HuangBCD (AH1) [4] Deep Learning BCD-Unet based model binarize and combine image patches
HuangUNet (AH2) [4] Deep Learning Unet based model binarize and combine image patches

iNICK [34] Local threshold Adaptively sets k in NICK based on global std. dev.
Intermodes [35] Global threshold Smooth histogram until only two local maxima

ISauvola [36] Local threshold Uses image contrast in combination with Sauvola’s binarization
IsoData [37] Global threshold IsoData clulstering algorithm applied to image histogram
Jia-Shi [38] Edge based Detecting symmetry of stroke edges

Johannsen-Bille [39] Global threshold Minimizes formula based on the image entropy
Kapur-SW [40] Global threshold Maximizes formula based on the image entropy

Li-Tam [41] Global threshold Minimum cross entropy
Lu-Su [42] Edge based Local thresholding near edges after background removal
Mean [43] Global threshold Mean of the grayscale levels

Mello-Lins [44] Global threshold Uses Shannon Entropy to determine the global threshold. Possibly the first to
properly handle back-to-front interference

Table 2. Tested binarization algorithms—Part 2.

Method Category Description

Michalak [45] Image Processing Downsample image to remove low-frequency information and apply Otsu
MO1 [45] Image Processing Downsample image to remove low-frequency information and apply Otsu

MO2 [46] Image Processing Equalize illumination and contrast, apply morphological dilatation and
Bradley’s method

MO3 [47] Local threshold Average brightness corrected by two parameters to apply local threshold
MinError [48] Global threshold Minimum error threshold
Minimum [35] Global threshold Variation of Intermodes algorithm
Moments [49] Global threshold Aims to preserve the moment of the input picture
Niblack [50] Local threshold Based on window mean and std. dev.

Nick [51] Local threshold Adapts Niblack based on global mean
Otsu [8] Global threshold Maximize between-cluster variance of pixel intensity

Percentile [52] Global threshold Based on partial sums of the histogram levels
Pun [53] Global threshold Defines an anisotropy coefficient related to the asymmetry of the histogram

RenyEntropy [54] Global threshold Uses Renyi’s entropy similarly as Kapur’s method
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Table 2. Cont.

Method Category Description

Sauvola [9] Local threshold Improvement on Niblack
Shanbhag [55] Global threshold Improves Kapur’s method; view the two pixel classes as fuzzy sets

Singh [56] Global threshold Uses integral sum image prior to local mean calculation
Su-Lu [57] Edge based Canny edges using local contrast

Triangle [58] Global threshold Based on most and least frequent gray level
Vahid (RNB) [4] Deep Learning A pixel-wise segmentation model based on Resnet50-Unet

WAN [59] Global threshold Improves Sauvola’s method by shifting up the threshold
Wolf [60] Local threshold Improvement on Sauvola with global normalization

Wu-Lu [61] Global threshold Minimizes the difference between the entropy of the object and the background
Yen [62] Global threshold Multilevel threshold based on maximum correlation criterion

YinYang [5] Image Processing Detect background with median of small overllaping windows, extract it and
apply Otsu

YinYang21 (JB) [5] Image Processing A faster and more effective version of YinYang algorithm

Yuleny [3] Shallow ML A XGBoost classifier is trained with features generated from Otsu, Niblack,
Sauvola, Su and Howe algorithms

Ref. [63] presents a machine learning approach for choosing among five binarization
algorithms to binarize parts of a document image. Another interesting approach to enhance
document image binarization is proposed in [64] and consists of analyzing the features of
the original document to compose the result of the binarization of several algorithms to
generate a better monochromatic image. Such a scheme was tested with 25 binarization
algorithms, and it performed more than 3% better than the first rank in the H-DIBCO 2012
contest in terms of F-measure. The time-processing cost of such a scheme is prohibitive if
one considers processing document batches, however.

One of the aims raised by the researchers in the DIB platform team is to develop
an “image matcher” in such a way that given a real-world document, it looks for the
synthetic document that better matches its features, as sketched in Figure 1. For each of
the 5.5 million synthetic documents in the DIB platform, one would have the algorithms
that would yield the best quality-time performance for document readability or OCR
transcription. Thus, the match of the “real-world” document and the synthetic one would
point out which binarization algorithm would yield the “best” quality-time performance
for the real-world document. It is fundamental that the Image Matcher is a very lightweight
process not to overload the binarization processing time. If one or a small set of document
features provide enough information to make such a good choice, it is more likely that
it will be for the image-matcher to be fast enough to be part of a document processing
pipeline.

Figure 1. DIB image matcher.

In this paper, the image texture is taken as a key for selecting the real-world image that
more closely resembles another real-world document for which one has a ground-truth
monochromatic image of reference. Such images were carefully chosen from the set of
historical documents in the DIB platform such as to match a large number of historical
documents of interest from the late 19th century to today. To extract a sample of the texture,
one manually selects a window of 120 × 60 pixels from the document to be binarized, as
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shown in Figure 2. Only one window from each image was cropped in such a way that
there was no presence of text from the front or any back-to-front interference. A vector of
features is built, taking into account each RGB channel of the sample, the image average
filtered (R + G + B)/3, and its gray-scale equivalent. Seven statistical measures are taken
and placed in a vector: mean, standard deviation, mode, minimum value, maximum value,
median, and kurtosis. This results in a vector containing 28 features, which describes the
overall color and texture characteristics.

Figure 2. DIB—Choosing a texture pattern.

In this study, 40 real-world images are used, and the Euclidean distance between the
texture vectors is used to find the 20 pairs of most similar documents. The texture with
the smallest distance is chosen, and its source document image is used to determine the
best binarization algorithm. Figure 3 illustrates how such a process is applied to a sample
image and the chosen texture.

Figure 3. Example of matching real-world images by texture.

3. Binarization Algorithm Selection Based on the Paper Texture

In a real-world document, one expects to find three overlapping color distributions.
This includes one that corresponds to the plain paper background, which becomes the
paper texture, which should yield white pixels in the monochromatic image. The second
distribution tends to be a much narrower Gaussian that corresponds to the printing or
writing, which is mapped onto black pixels in the binary image. The third distribution,
the back-to-front interference [11,65] overlaps the other two distributions, bringing one of
the most important causes of binarization errors. Figure 4 presents a saple image with the
corresponding color distributions.
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Figure 4. Pixel color distributions in a document image with strong back-to-front interference.

Deciding which binarization algorithm to use in a document tends to be a “wild guess”,
a user-experience-based guess, or an a posteriori decision, which means one uses several
binarization algorithms and chooses the image that “looks best” as a result. Binarization
time is seldom considered. One must agree that the larger the number of binarization
algorithms one has, the harder it is to guess the ones that will perform well for a given
document. Ideally, the Image Matcher under development in the DIB-platform would
estimate all the image parameters (texture type, kind of writing or printing, the color of ink,
intensity of the back-to-front interference, etc.) to pinpoint which of the over 5.5 million
synthetic images best matches the features of the “real world” document to be binarized.
If that synthetic image is known, one would know which of the 315 binarization schemes
assessed here would offer the best quality-time balance for that synthetic image.

This paper assumes that by comparing the paper texture between two real-world
documents, one of which knows which binarization algorithm presents the best quality-
time trade-off, one can use that algorithm on the other document, yielding acceptable
quality results. Cohen’s Kappa [66,67] (denoted by k) is used here as a quality measure:

k =
PO − PC
1− PC

, (1)

which compares the observed accuracy with an expected accuracy, assessing the classifier
performance. PO is the number of correctly mapped pixels (accuracy) and PC is

PC =
nb f × ng f + nbb × ngb

N2 , (2)

where nb f and nbb are the number of pixels mapped as foreground and background on the
binary image, respectively, and ng f and ngb are the number of foreground and background
pixels on the GT image, and N is the total number of pixels. The ranking for the pixels is
defined by sorting the measured kappa in ascending order.

The peak signal-noise ratio (PSNR), distance reciprocal distortion (DRD) and F-Measure
(FM) have been used for a long time to assess binarization results [68,69], becoming the chosen
measures for nearly all studies in this area. Thus, they are also provided, even though the
ranking process only takes Cohen’s Kappa into account. The PSNR for a M× N image is
defined as the peak signal power to average noise power, which, for 8-bit images, is

PSNR = 10 log10
2552 ·MN

∑
i

∑
j
(x(i, j)− y(i, j))2 . (3)

The DRD [70] correlates the human visual perception with the quality of the generated
binary image. It is computed by
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DRD =
1

NUBN(GT)

S

∑
k=1

DRDij|B(i, j)− GT(i, j)| (4)

DRDij =
2

∑
x=−2

2

∑
y=−2

Wxy|B(i + x, j + y)− G(i + x, j + y)|, (5)

where NUBN(GT) is the number of non-uniform 8× 8 binary blocks in the ground-truth
(GT) image, S is the flipped pixels and DRDij is the distortion of the pixel at position (i, j)
in relation to the binary image (B), which is calculated by using a 5 × 5 normalized weight
matrix Wxy as defined in [70]. DRDij equals to the weighted sum of the pixels in the 5 × 5
block of the GT that differ from the centered kth flipped pixel at (x, y) in the binarization
result image B. The smaller the DRD, the better.

The F-Measure is computed as

FM =
2× Recall × Precision

Recall + Precision
, (6)

where Recall = TP
TP+FN , Precision = TP

TP+FP and TP, FP, FN denote the true positive, false
positive and false negative values, respectively.

Once the matching image (the most similar) is found, the best quality-time algorithm
is used to binarize the original image. Algorithms with the same kappa are in the same
ranking position. Several algorithms have a similar processing time. Among the top-10
in terms of quality, the fastest is chosen as the best quality-time binarization algorithm.
This paper conjectures that considering two documents that were similarly printed (hand-
written, offset printed, etc.) and have similar textures, if the best quality-time algorithm is
known for one image, that same algorithm could be applied to the other image, yielding
high-quality results. No doubt that if a larger number of document features besides the
document texture, such as the strength of the back-to-front interference, the ink color and
kind of pen, the printing method, etc. were used, the chances of selecting the best quality
binarization scheme would be larger, but could imply in a prohibitive time overhead. It is
also important to stress that the number of documents with back-to-front interference is
small in most document files, and the ones with strong interference is even smaller. In the
case of the bequest [71] of Joaquim Nabuco (1849/1910, Brazilian statesman and writer
and the first Brazilian ambassador to the U.S.A.), for instance, the number of letters is
approximately 6500, totaling about 22,000 pages. Only 180 documents were written on
both sides in translucent paper, of which less than 10% of them exhibit strong back-to-front
interference. Even in those documents, the paper texture plays an important role in the
parameters of the binarization algorithms. Thus, in this paper, one assumes that the paper
texture is the key information for choosing a suitable binarization scheme that has a large
probability of being part of an automatic document processing pipeline. Evidence that such
a hypothesis is valid is shown in the next section.

4. Results

In order to evaluate the automatic algorithm selection based on the texture, 26 hand-
written and 14 typewritten documents were carefully selected from the DIB platform such
that they are representative of a large number of real-world historical documents. Such
documents belong to the Nabuco bequest [71] and were scanned in 200 dpi. Table 3 presents
the full size of each document used in this study. All of them have a ground-truth binary
image. The Euclidean distance between the feature vector of their paper textures was used
to find the pairs of most similar documents. Five versions of the original and matched
image were used in the final ranking.
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Table 3. Size of the test images in pixels.

Image Size Image Size Image Size Image Size

HW01 888 × 1361 HW11 907 × 1383 HW21 1077 × 1345 TW05 1602 × 2035
HW02 915 × 1358 HW12 937 × 1372 HW22 894 × 1387 TW06 1551 × 1947
HW03 920 × 1374 HW13 924 × 1381 HW23 925 × 1376 TW07 1212 × 1692
HW04 911 × 1426 HW14 895 × 1373 HW24 992 × 1552 TW07 1212 × 1692
HW05 1021 × 1586 HW15 999 × 1557 HW25 912 × 1375 TW09 1619 × 1961
HW06 1024 × 1550 HW16 890 × 1380 HW26 891 × 1381 TW10 1599 × 2067
HW07 898 × 1389 HW17 954 × 1401 TW01 1645 × 2140 TW11 1701 × 1957
HW08 1016 × 1570 HW18 1049 × 1670 TW02 1660 × 2186 TW12 1677 × 2179
HW09 866 × 1354 HW19 917 × 1372 TW03 1581 × 2119 TW13 1692 × 2193
HW10 1021 × 1579 HW20 1050 × 1326 TW04 1575 × 1989 TW14 1671 × 2165

The results and the images are described in Tables 4–12. The letter that follows the
algorithm name indicates the version of the input document image used, that as shown
in [12] yields monochromatic images of different quality with different processing times:

• C: all RGB channels (color)
• R: the red channel
• G: the green channel
• B: the blue channel
• L: luminance image, calculated as 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B

The other parts stand for:

1. Original Image: the image one wants to binarize.
2. Matched Image: the image which one already has the algorithm that yields the best

quality-time trade-off amongst all the 315 binarization schemes.
3. Textures samples: sample of the paper background of the original image (left) used to

select the texture matched image (right), whose sample is presented below each document
4. Results Table: the best 10 algorithms for the original image
5. Direct Binarization: the best quality-time algorithm and corresponding binary image

according to the ranking of all 315 binarization schemes. The choice is made by
directly looking at the results of all algorithms.

6. Texture-based Binarization: the best quality-time algorithm of the matched image
and the corresponding monochromatic version of the original image binarized with
the chosen algorithm.

The algorithm choice was appropriate for all the presented images, as can be noted by
visually inspecting the binary images, their quality ranking, and the kappa, PSNR, DRD,
and F-Measure values. For Tables 4, 6, 7, and 9, the selected algorithm was at rank 5 or
more and did not yield a significantly worse image in those cases. The difference in kappa
was smaller than 10%, except in the case of the image shown in Table 8, in which the kappa
reached 12%. It is interesting to observe that for the image shown in Table 8, an image
with strong back-to-front interference, although the value of kappa has the highest percent
difference of all the tested images, the monochromatic image produced by using the texture
binarization scheme proposed here is visually more pleasant and readable for humans than
the scheme that yields the best kappa, as may be observed in the zoomed image shown
in Figure 5. One may see that the texture-based choice of the binarization scheme leaves
some noise in areas that correspond to the back-to-front interference, most of which could
be removed with a salt-and-pepper filter. As previously remarked here, images with strong
back-to-front interference tend to be rare in any historical document file.
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Table 4. Results for image matching with image HW 01.

Binarization Results Original Image Matched Image
for the Original Image HW 01 HW 12

# Algorithm Kappa PSNR DRD FM Time
1 IsoData-C 0.92 20.07 1.50 92.11 0.01
1 IsoData-L 0.92 20.06 1.50 92.06 0.01
1 Otsu-C 0.92 20.10 1.48 92.15 0.00
1 Otsu-L 0.92 20.06 1.50 92.06 0.00
1 Gattal-C 0.92 20.12 1.46 92.13 45.59
1 Gattal-L 0.92 20.06 1.50 92.06 45.87
2 dSLR-C 0.91 19.67 1.69 91.54 0.02
2 dSLR-G 0.91 19.82 1.62 91.69 0.02

. . . . . . . . . . . . . . . . . . . . .
2 MO1-R 0.91 19.81 1.55 91.58 0.14

Original Texture Matched Texture Direct Binarization Texture-based

Otsu-C MO1-R
Direct Binarization

Texture-based binarization

Table 5. Results for image matching with image HW 02.

Binarization Results Original Image Matched Image
for the Original Image HW 02 HW 16

# Algorithm Kappa PSNR DRD FM Time
1 Li-Tam-C 1.00 34.52 0.11 99.73 0.01
2 dSLR-G 0.99 28.01 0.31 98.80 0.01
2 dSLR-L 0.99 28.39 0.29 98.90 0.01
2 Intermodes-G 0.99 29.07 0.27 99.07 0.01
2 Intermodes-L 0.99 27.78 0.34 98.76 0.01
2 Li-Tam-G 0.99 29.07 0.27 99.07 0.01
2 Li-Tam-L 0.99 29.77 0.24 99.21 0.01
3 dSLR-R 0.98 26.90 0.38 98.45 0.01

. . . . . . . . . . . . . . . . . . . . .
8 dSLR-C 0.93 20.56 1.73 93.77 0.01

Original Texture Matched Texture Direct Binarization Texture-based

Li-Tam-C dSLR-C
Direct Binarization

Texture-based binarization
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Table 6. Results for image matching with image HW 03.

Binarization Results Original Image Matched Image
for the Original Image HW 03 HW 12

# Algorithm Kappa PSNR DRD FM Time
1 ElisaTV-G 0.96 22.52 0.91 95.83 1.60
1 ElisaTV-L 0.96 22.52 0.91 95.85 1.59
1 MO1-C 0.96 23.24 0.82 96.51 0.01
1 MO1-G 0.96 22.91 0.92 96.24 0.01
1 MO1-L 0.96 23.15 0.85 96.43 0.01
1 MO1-R 0.96 22.87 0.86 96.19 0.01
2 dSLR-G 0.95 22.00 1.07 95.21 0.01
2 dSLR-L 0.95 22.10 1.03 95.31 0.01
2 dSLR-R 0.95 22.00 1.02 95.30 0.01
2 Huang-R 0.95 21.96 1.03 95.29 0.01

Original Texture Matched Texture Direct Binarization Texture-based

MO1-C MO1-R
Direct Binarization

Texture-based binarization

Table 7. Results for image matching with image HW 04.

Binarization Results Original Image Matched Image
for the Original Image HW 04 HW 09

# Algorithm Kappa PSNR DRD FM Time
1 dSLR-C 0.96 22.26 4.15 96.70 0.01
1 Intermodes-C 0.96 22.08 4.28 96.53 0.01
1 Intermodes-G 0.96 22.01 4.36 96.48 0.01
1 Intermodes-L 0.96 22.15 4.22 96.60 0.01
1 Intermodes-R 0.96 21.62 4.68 96.17 0.01
1 Li-Tam-L 0.96 21.68 4.64 96.17 0.01
1 Sauvola-C 0.96 21.69 4.68 96.13 0.03
1 Sauvola-G 0.96 21.87 4.52 96.30 0.03

. . . . . . . . . . . . . . . . . . . . .
8 Howe-C 0.89 17.33 13.41 90.49 6.83

Original Texture Matched Texture Direct Binarization Texture-based

dSLR-C Howe-C
Direct Binarization

Texture-based binarization
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Table 8. Results for image matching with image HW 05.

Binarization Results Original Image Matched Image
for the Original Image HW 05 HW 06

# Algorithm Kappa PSNR DRD FM Time
1 Jia-Shi-L 0.92 18.73 25.58 93.23 4.61
1 Jia-Shi-R 0.92 18.57 25.51 92.91 4.61
2 DocDLink-C 0.91 18.03 27.56 91.85 4.08
3 Jia-Shi-B 0.90 17.53 32.94 91.23 4.50
4 DocDLink-L 0.89 17.18 35.56 90.31 4.01
5 DocDLink-B 0.88 16.58 41.27 88.96 3.98
6 Lu-Su-B 0.86 15.85 48.36 87.59 14.78
6 Lu-Su-C 0.86 15.71 51.69 87.25 14.14

. . . . . . . . . . . . . . . . . . . . .
11 Wolf-B 0.81 14.83 62.79 83.15 0.05

Original Texture Matched Texture Direct Binarization Texture-based

Jia-Shi-L Wolf-B
Direct Binarization

Texture-based binarization

Table 9. Results for image matching with image HW 06.

Binarization Results Original Image Matched Image
for the Original Image HW 06 HW 05

# Algorithm Kappa PSNR DRD FM Time
1 Wolf-B 0.93 20.74 8.98 93.32 0.05
2 dSLR-B 0.92 20.24 10.66 92.72 0.01
2 dSLR-G 0.92 20.01 11.42 92.44 0.01
2 dSLR-L 0.92 19.92 11.15 92.10 0.01
2 Intermodes-B 0.92 20.10 11.55 92.68 0.01
2 Intermodes-C 0.92 19.78 12.28 92.09 0.01
2 Intermodes-L 0.92 19.79 12.30 92.13 0.01
2 Li-Tam-B 0.92 20.24 10.66 92.72 0.01

. . . . . . . . . . . . . . . . . . . . .
4 Jia-Shi-L 0.90 18.73 15.06 90.60 4.43

Original Texture Matched Texture Direct Binarization Texture-based

Wolf-B Jia-Shi-L
Direct Binarization

Texture-based binarization
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Table 10. Results for image matching with image TW 01.

Binarization Results Original Image Matched Image
for the Original Image TW 01 TW 07

# Algorithm Kappa PSNR DRD FM Time
1 Li-Tam-C 0.94 23.84 4.20 94.18 0.02
1 Li-Tam-G 0.94 23.94 4.16 94.30 0.02
1 Li-Tam-L 0.94 23.53 4.56 93.81 0.01
1 MO1-C 0.94 24.00 4.11 94.40 0.02
1 MO1-G 0.94 24.09 4.09 94.50 0.02
1 MO1-L 0.94 23.98 4.15 94.38 0.02
2 Intermodes-B 0.93 23.29 5.30 93.35 0.02
2 IsoData-B 0.93 23.29 5.30 93.35 0.02

. . . . . . . . . . . . . . . . . . . . .
6 Su-Lu-L 0.89 21.69 6.83 89.26 0.59

Original Texture Matched Texture Direct Binarization Texture-based

Li-Tam-L Su-Lu-L
Direct Binarization

Texture-based binarization

Table 11. Results for image matching with image TW 02.

Binarization Results Original Image Matched Image
for the Original Image TW 02 TW 11

# Algorithm Kappa PSNR DRD FM Time
1 dSLR-C 0.96 23.20 3.95 96.28 0.02
1 dSLR-G 0.96 23.07 4.06 96.09 0.02
1 dSLR-L 0.96 23.18 3.89 96.19 0.02
1 Intermodes-C 0.96 22.78 4.39 95.95 0.02
1 Intermodes-G 0.96 22.77 4.46 95.93 0.02
1 Intermodes-L 0.96 22.72 4.47 95.90 0.02
1 Li-Tam-G 0.96 22.77 4.46 95.93 0.02
1 Li-Tam-L 0.96 22.72 4.47 95.90 0.02

. . . . . . . . . . . . . . . . . . . . .
5 Otsu-G 0.92 19.78 9.04 92.31 0.01

Original Texture Matched Texture Direct Binarization Texture-based

dSLR-C Otsu-G
Direct Binarization

Texture-based binarization
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Table 12. Results for image matching with image TW 03.

Binarization Results Original Image Matched Image
for the Original Image TW 03 TW 10

# Algorithm Kappa PSNR DRD FM Time
1 Minimum-C 0.97 24.80 4.82 96.99 0.02
1 Nick-C 0.97 25.07 5.01 97.14 0.08
1 Nick-G 0.97 24.62 5.53 96.81 0.07
1 Nick-L 0.97 25.03 5.07 97.11 0.07
1 Singh-C 0.97 25.33 4.87 97.33 0.12
1 Singh-G 0.97 24.58 5.65 96.81 0.11
1 Singh-L 0.97 25.06 5.13 97.16 0.12
2 MinError-C 0.96 24.45 4.90 96.67 0.02
2 MinError-L 0.96 24.19 5.14 96.43 0.02
2 Nick-R 0.96 23.44 6.77 95.86 0.08

Original Texture Matched Texture Direct Binarization Texture-based

Minimum-C Minimum-C
Direct Binarization

Texture-based binarization

Direct Binarization

Texture-based Binarization

Figure 5. Zoom in a part of a document image HW 05 with strong back-to-front interference binarized
using the direct (Jia-Shi [38]) and texture-based (Wolf [72]) methods.

In the case of the document image HW 04, presented in Table 7, although the difference
in kappa is 7.3% , visually inspecting the resulting binary image, it is really close in quality
to the actual best in terms of quality, which implies the choice based on texture does indicate
a good option of binarization algorithm even with a relatively lower rank, although the
Howe algorithm [32] used to binarize the matched image HW 09, has a much higher
processing time than the da Silva–Lins–Rocha algorithm [2] (dSLR-C), the top quality
algorithm using direct binarization.

It is also relevant to say that there is a small degree of subjectivity in the whole process
as the ground-truth images of historic documents are hand-processed. If one looks at
Table 10, one may also find some differences in the produced images that illustrate such
subjectivity. The result of the direct binarization using Li–Tam algorithm [41] yields an
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image with a high kappa of 0.94 with much thicker strokes than the one chosen by the
texture-based method, the Su–Lu algorithm [57], both of which were fed with the gray-scale
image obtained by using the conventional luminance equation. Although the kappa of
the Su–Lu binarized image is 0.89, the resulting image is as readable as the Li–Tam one, a
phenomenon which is somehow similar to the one presented in Figure 5. The main idea of
the proposed methodology is not to find exactly the same best quality-time algorithm as
directly binarizing, but one algorithm that yields satisfactory results.

5. Conclusions

Document binarization is a key step in many document processing pipelines; thus it
is important to be performed quickly and with high quality. Depending on the intrinsic
features of the scanned document image, the quality-time performance of the binarization
algorithms known today varies widely. The search for a document feature that is possible
to be extracted automatically with a low time complexity that may provide an indication of
which binarization algorithm provides the best quality-time trade-off is thus of strategic
importance. This paper takes the document texture as such a feature.

The results presented have shown that the document texture information may be
satisfactorily used as a way to choose which binarization algorithm to apply to scanned
historical documents, and how the input image should be if the original color image, its
gray-scale conversion or one of its RGB channels is to be successfully scanned. The choice
of the algorithms is based on the use of real images that “resemble” the paper background
of the document to be binarized. A sample of the texture of the document is collected and
compared with the remaining 39 different paper textures used for handwritten or machine
typed documents, each of which points to an algorithm that provides the best quality-time
trade-off for the synthetic document. The use of that algorithm in the real-world document
to be binarized was assessed here and yielded results that may be considered of good
quality and quickly produced, both for image readability by humans or automatic OCR
transcription.

This paper presents evidences that by matching the textures of scanned documents,
one can find suitable binarization algorithms for a given new image. The methodology
presented may be enhanced further by including new textures and binarization schemes.
The inclusion of new textures may narrow the euclidean distance between the image to be
binarized document and the existing textures in the dataset. The choice of the most suitable
binarization scheme for the document with the new texture may be done by the visual
inspection of the result of the top-ranked binarization algorithms of the document image
with the closest Euclidean distance of the images already in the reference dataset.

A number of issues remain open for further work, however. The first one is automating
the process of texture sampling and matching in such a way as not to be a high overload
on the binarization process as a whole. This may also involve the collection of texture
samples in different parts of the document to avoid collecting parts either printed with
back-to-front interference or other physical noises, such as stains or holes. The second point
is trying to minimize the number of features in the vector-of-features to be matched with
the vector-of-features of the synthetic textures. The third point is attempting to find a better
matching strategy than simply calculating the Euclidean distance between the vectors, as
done here, perhaps by using some kind of clustering.
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