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Abstract: This study is inspired by the widely used algorithm for real-time optical flow, the sparse
Lucas–Kanade, by applying a feature extractor to decrease the computational requirement of optical
flow based neural networks from real-world thermal aerial imagery. Although deep-learning-
based algorithms have achieved state-of-the-art accuracy and have outperformed most traditional
techniques, most of them cannot be implemented on a small multi-rotor UAV due to size and
weight constraints on the platform. This challenge comes from the high computational cost of these
techniques, with implementations requiring an integrated graphics processing unit with a powerful
on-board computer to run in real time, resulting in a larger payload and consequently shorter flight
time. For navigation applications that only require a 2D optical flow vector, a dense flow field
computed from a deep learning neural network contains redundant information. A feature extractor
based on the Shi–Tomasi technique was used to extract only appropriate features from thermal images
to compute optical flow. The state-of-the-art RAFT-s model was trained with a full image and with
our proposed alternative input, showing a substantial increase in speed while maintain its accuracy
in the presence of high thermal contrast where features could be detected.

Keywords: optical flow; thermal imaging; LWIR; navigation; UAVs; deep learning

1. Introduction

The ability of unmanned aerial vehicles (UAVs) to navigate autonomously in unknown
environments is vital for their further integration into human society. Currently, UAVs rely
almost entirely on global navigation satellite systems (GNSS) for navigation applications.
Nevertheless, GNSS are known to be unreliable in urban areas in urban canyons, or under
forest canopies and are not available underground. Furthermore, GNSS systems do not
provide any sensing capacity that might allow avoidance of unknown obstacles in the
environment, thus making the solution less reliable in dynamic scenes.

Unlike other sensor-based systems, vision systems can provide real-time information
about objects present in the scene. Furthermore, vision systems do not rely on signals
coming from satellites such as GNSS, thus making it more resilient to conventional
jamming [1]. Many researchers have demonstrated the potential of vision system for
UAVs with promising results [2–6]. However, there remain challenges of using vision-
based systems on UAVs due to the challenges of fusing spatial and temporal information
from the sensors into a coherent model, which can be as simple as motion blur from high
angular rates and lower rate of ground movement at higher altitude due to perspective [7]
or lack of texture in scenes resulting in no information. Furthermore, due to high degrees
of freedom of the UAVs, variations in roll, pitch and yaw of an aircraft with strap down
cameras will result in different viewing angles and rates of image motion of the same scene
captured from the same location [8].

A navigation system that can be deployed onto small UAVs must be small in size and
light in weight. Small UAVs have limited payload capacity, which makes it difficult to utilise
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more computationally demanding algorithms for better accuracy. Some researchers have
tried to solve this problem by using a cloud-based computer processing system to process
data transmitted from UAVs in real-time [9–12]. However, this type of solution has limited
range and cannot operate very far from the ground control station. Furthermore, it also
shares the same unreliability issues faced by sensor based systems where the connections
are not always available. Hence, it is necessary to explore new navigation algorithms that
are less expensive for UAVs.

Optical flow can be defined as the apparent motion of brightness patterns across two
frames [13]. Optical flow is a computer vision technique that is often associated with
insect inspired studies [2,14]. Flying insects are able to navigate in a dynamic environment
with a tiny brain [3]. Furthermore, insects have been shown to rely on optical flow for
takeoff and landing [2,15], obstacle avoidance [16], terrain following [17] and flight speed
regulation [18]. In navigation, optical flow can be used actively as frontal obstacle avoidance
and altitude control [6], or passively to collect current operating states of the aircraft such
as pitch and roll [19,20], descent angles [21] and direction of travel or lateral drift [5,22,23].

Over some decades, optical flow algorithms have been dominated by spatiotemporal
image processing techniques to compute optical flow. Some examples include the Horn and
Shunck technique [13], the Farneback algorithm [24], the gradient based such as the Lucas–
Kanade [25], correlation and block matching methods [26] and the image interpolation
technique [27] to name a few.

With ease of access to more powerful graphic processing units (GPU), scientists have
been experimenting with optical flow implementations based on deep learning concepts
with great success. FlowNet [28] was the first model in the field but its efficacy was
inferior to traditional techniques. FlowNet2 [29] was created by stacking multiple FlowNet
layers, which vastly increased the efficacy and outperformed many traditional methods, but
required much more memory, making this approach unsuited to current embedded systems
on small drones. Later work focused on light-weight models by borrowing many popular
concepts from traditional techniques. SpyNet [30] uses a coarse-to-fine approach while
LiteFlow [31] relies on a brightness map to solve occlusion problem. PWC-Net [32] utilises
stereo matching, feature extraction and cost volume resulting in high efficacy while having
substantially smaller model size compared to FlowNet2. Most recently, the Recurrent
All-Pairs Field Transform (RAFT) [33] and its lighter version, RAFT_s, was introduced that
achieved state-of-the-art efficacy while also having one of the lowest memory requirements.
The RAFT models were inspired by optimisation-based approaches from traditional optical
flow techniques.

While research activity is significant, there is a substantial gap in the literature into
night operation given that this period represents approximately half of the potential
operating time of a system. There are many reasons for this, such as the historically
high cost of thermal sensors, the difficulty to operate after dark due to regulatory restriction
and challenges to launch and retrieval of small aircraft at night.

In this paper, we explore a simple but effective technique that further enhances
the performance of the RAFT_s model in terms of how many frames can be processed
per second with thermal imagery. This technique can potentially further decrease the
computational requirement of deep learning based optical flow techniques, which makes it
suitable for aerial navigation applications where a dense flow field is often unnecessary.

2. Related Work

Thermal imaging has various advantages over visual light spectrum in some applications,
not only to aid navigation in challenging lighting scenarios but also to reveal information
that is invisible to the naked eye. The physics fundamentals of thermal sensors and their
advantages and disadvantages are well documented in [1,34,35].

Beside being studied for autonomous navigation, thermal imaging has been used to
monitor railway infrastructure [36], monitor crops [37–39], driver monitoring [40], face
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recognition [41], vital sign extraction [42] and for COVID-19 detection [43,44] just to name
a few.

In the navigation domain, earlier work has demonstrated encouraging results when
combining long-wave infrared (LWIR) with optical light wavelengths to detect hidden
features in dark scene. Maddern et al. [45] relied on LWIR thermal sensor to enhance
the tested system over long periods of time by compensating the adverse effects from
solar glare on RGB images. Brunner et al. [46] used thermal data to detect and reject
poor features such as dust and reflective surfaces that are visible in the visual spectrum.
Mouats et al. [47] proposed a multispectral stereo odometry system for unmanned systems
and later developed a purely thermal stereo odometer for UAVs [48]. In the odometer, a
pair of thermal sensors were located in front of the UAV to capture data, and were later
used for feature matching and thermal 3D reconstruction. The results demonstrated that
a thermal odometry system could produce comparable outcomes to a standard visible
spectrum system.

While these results contributed to the field, they will struggle in some scenes when
significantly hotter or cooler objects enter and leave the scene, due to lack of a high dynamic
range calibrated radiometric sensors. The automatic gain control (AGC) system is provided
with thermal sensors to compensate for drastic changes in the overall pixel intensity of
the thermal image. However, they are designed to support the display of information to
humans with limited ability to resolve intensity variations in a scene. The gain control
causes substantial changes in scene contrast to accommodate the range of temperatures of
objects in the scene.

Modern radiometric thermal sensors produce high bit depth images to represent
thermal emissivity. A radiometric sensor is calibrated against a standard black body by
the manufacturer, greatly improving the consistency and accuracy of thermal data [49].
Furthermore, these sensors are small, light and have low power consumption, which makes
them suit the weight and size constraints of UAVs.

Using these radiometric sensors, Khattak et al. [50] proposed a multi-spectral fusion
approach combining optical light and LWIR sensors to allow small UAVs to navigate in a
dark tunnel without the presence of GNSS. The drone carried a short range illumination
source for the optical sensor while the thermal sensor provided thermal data at longer
range. They later developed a thermal-inertial system [51] which was capable of results
comparable to other state-of-the-art visual methods used in mines underground.

Khattak et al. [52] also proposed a low-cost solution using thermal fiducial markers to
help UAVs navigate reliably in a laboratory environment. The team [53] later developed
a purely thermal-inertial system that utilised full 14 bit radiometric data. The study
demonstrated that by using direct pre-AGC 14 bit thermal data, they could not only
overcome the troublesome AGC process, but also increased the resilience and consistency
of signals against loss of features over time.

Most recently, they [54] proposed fusion of thermal and visual inertial with a LIDAR
(light detection and ranging) sensor to improve reliability for pose estimation. The team
in [55–57] attempted to construct a 3D map of the environment with thermal sensor. They
used a combination of range camera and thermal camera to collect real-time indoor data,
to which 3D point clouds are matched via a RANSAC-based EPnP scheme. However,
LIDAR and SLAM (simultaneous localisation and mapping) techniques are generally
computationally expensive to run, making it undesirable for small UAVs. In an attempt to
solve this issue, Lu et al. [58] presented an unsupervised deep learning network that can
construct a 3D environment from thermal images for low light conditions, as an alternative
technique to LIDAR sensor. The results showed this proposed technique is capable of
providing a good 3D map in tested sequences, but those sequences are relatively simple.

Further, also utilising direct 14 bit thermal data, Shin and Kim [59] proposed a direct
thermal-infrared SLAM algorithm to measure up to six degrees of freedom of the UAV.
The results showed that the 14 bit data increased the robustness of the system in adverse
lighting conditions.
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The rest of this paper is organised into nine sections. Section 3 outlines our previous
works and motivations for this study. Section 4 introduces the thermal sensor and revisits
our technique to solve the brightness constancy problem associated with optical flow from
thermal imaging. Section 5 outlines the difference between the spare and dense optical
flow technique for aerial applications and the feature extraction algorithm used in this
study. Section 6 presents our collected dataset and our method to generate ground truth
from real-world data. Section 7 presents the neural network that was used in this study, the
two RGB datasets, how the neural network was trained and the evaluation methodology.
Sections 8 and 9 report and analyse results from the experiment. Section 10 outlines lessons
learnt and possible future research directions.

3. Motivations and Contribution

This study continues our work [60–62] to explore aerial applications of optical flow
from low-resolution thermal images, “Thermal Flow”. Thermal Flow was implemented
as a downward-looking system, mounted beneath the UAV, that output 2D optical flow
vectors in X and Y displacement to track the movement of the platform. Thermal Flow was
designed to mimic the output of the very efficient and popular PX4Flow [20] system, which
can be integrated easily into available autopilot systems, such as the PixHawk [61].

RADAR systems such as circular scanning millimetre-wave [63–66] and LIDAR [67–70]
have been implemented on UAVs, both of which are high-performance range sensors that
emit electromagnetic energy at different frequencies. Emissions require substantial power
from the platform, and in large systems, potentially levels of energy that are dangerous to
humans and might interfere with other sensors or airspace users. Active sensors usually
include effective range as one of their primary performance metrics, limited by power
emitted and sensitivity to signal received. Passive sensing using computer vision techniques
generally need platform motion or binocular separation and require onboard processing
with sophisticated algorithms. There are advantages as well, including that range is limited
only by platform motion (or platform binocular separation) and reflectance or illumination
of the target, not by emitted radiation levels. All active sensors run the risk of having their
emissions being detected in contested environments, indicating the presence of the UAV
and potentially the nature of its activities to an adversary.

Our previous work relied on traditional optical flow techniques. On the other hand,
deep-learning-based optical flow networks outperform traditional techniques in various
synthetic datasets in several key benchmark criteria [71]. However, these techniques are
very expensive to run and require an integrated GPU system to run in real time, which is
not always suitable for aerial applications on small UAVs. Hence, in this study, we want to
explore a new technique to further reduce the computational requirements of deep learning
optical flow models.

The state-of-the-art RAFT_s model [33] was chosen due to it achieving very high
accuracy with small memory footprint and fewest parameters. Nevertheless, the model is
still computationally expensive compared to the very popular sparse Lucas–Kanade. One
of the reasons is that the network was designed to produce a dense optical field, which is
not necessary in this application of Thermal Flow, which only requires a single reliable 2D
vector. Instead, a sparse technique is preferred over the dense technique due to its much
less computational cost, so the onboard computer system can be smaller to satisfy physical
constraints of UAVs.

To achieve this, we are inspired by the use of the Shi–Tomasi [72] algorithm by
the Lucas–Kanade algorithm [25]. The features then were combined into a new image,
with smaller size, to be used as an alternative input to the network. Since the input
is smaller, this technique can potentially decrease the computational requirement for
the task while maintaining accuracy. This study aims to bring a deep-learning-based
optical flow network that outperforms traditional techniques onto UAVs by reducing the
computational requirement.
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4. Optical Flow with Thermal Imaging

This section outlines the thermal sensor used to collect the data in this study. This
section also presents the problems with optical flow estimation when re-scaling to an 8 bit
image format from 14 bit raw data, and revisits the technique to improve this process.

4.1. Thermal Sensor

All of the images used in this study were captured by the radiometric FLIR Lepton3 [73].
The Lepton3 is a long-wave infrared sensor, and was calibrated in manufacturing against a
standard black body [49]. The sensor can output 160 × 120 pixels at 8.7 Hz. The sensor has
a 56◦ field of view and has been shown to be adequate for airborne applications with small
angular movements without further need for re-calibration [60].

4.2. Automatic Gain Control

Most thermal sensors, such as the FLIR Lepton 3 that was used to collect our data,
output radiometric data in 14 bit format. On the other hand, the RAFT_s network, and
available computer vision libraries, such as OpenCV [74], are designed to process 8 bit
images. This is largely due to modern standard displays being designed to match the
intensity discrimination of human observers [1]. The 14 bit raw data from the sensor must
be converted into 8 bit to display on the screen or to work with available computer software.

Thermal sensors such as the FLIR Lepton include an automatic gain control (AGC),
which improves the contrast of the image when converting to 8 bit when there is a dramatic
change in the temperature range present in an image. Figure 1 displays one example of
a hot cup moving out of the screen, which shows a dramatic change in image contrast
between consecutive images. This contrast change is likely to cause problem for many
image matching algorithms. This change between frames violates the main assumption of
optical flow equation, which is brightness constancy [13].

(a) Frame 1. (b) Frame 2.

Figure 1. AGC changes the contrast in the images when a hot cup exits a scene: 1–2.

There were attempts to solve this problem. One approach [48] has been to greatly
reduce the AGC response time so that image contrast does not change rapidly. Nevertheless,
this technique only reduces the problem and does not solve it completely. Another
group in [75] proposed an approach to manually set the range of the AGC. However,
this approach requires prior information about the scene, which makes it less adaptable to
unknown environments.

We revisit our conversion technique in [61] to re-scale two consecutive 14 bit images to
8 bit from the maximum and minimum pixel intensities found across both images. Figure 2
shows our technique. The technique, however, introduces some negligible artefacts.

Figure 2 shows the output of the sample images from Figure 1 with our technique. The
contrast of the pair of images is maintained that can satisfy the optical flow requirement of
brightness constancy.
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(a) Frame 1. (b) Frame 2.

Figure 2. A pair from figure 1 with our technique with small artefacts circled in red.

5. Sparse and Dense Optical Flow Technique in UAV Navigation

A broad distinction can be made between dense and sparse optical flow techniques.
Dense optical flow techniques are designed to compute an optical flow vector for every
pixel within the image. On the other hand, sparse techniques only output optical flow
for selected parts of the image. As a result, sparse techniques will typically require less
computing resources than the dense techniques [76].

Thermal Flow is designed to mimic the output of the PX4Flow device, which is a
2D vector, flow_x and flow_y, which indicates the movement of the aircraft in X and Y
displacements. The Thermal Flow system is intended to be mounted underneath the aircraft
looking straight down possibly to augment navigation, which leads to a relatively simple
optical flow field, compared to looking at shallower angles that might include the horizon.
A dense optical flow field is not desirable in this application due to the high computational
cost, which limits its use for small UAVs. The sparse technique on the other hand, has
been shown to achieve sufficient accuracy for navigation applications in real life in various
studies [2,5]. Therefore, it is possible that the sparse technique can be applied to greatly
reduce the size of the data feeding into the neural network to reduce processing time while
maintaining the accuracy.

Feature Extraction

There are two primary feature extraction strategies: traditional corner-detection-
algorithm-based and deep-learning-based frameworks. Deep-learning-based techniques
include the direct visual odometry (VO) framework [77–79] and the 3D mapping mapping
model [80,81], etc. Traditional techniques are based on grayscale changes in the images
such as the Harris technique [82], and its improved version, the Shi–Tomasi algorithm [72].
In general, CNN-based algorithms can take three channel RGB images as input while the
traditional techniques require the images to be converted to grayscale single channel format.
Generally, the deep-learning-based algorithm have performed better than conventional
techniques in challenging sequences but are also much more computationally expensive
to run.

Since thermal images are in single channel grayscale format, and this study focuses on
improving speed, the Shi–Tomasi technique was selected as the feature extractor in this
study since it works well in practice and is much cheaper to run.

Consider a sub-window in the image located at position (x, y) and the pixel intensity
at this location is I(x, y). When the sub-window shifts to a new position with displacement
(u, v), the pixel intensity at this position can be expressed as I(x + u, y + v). The difference
in pixel intensities of the window shift can be expressed as:

δ = I(x + u, y + v)− I(x, y) (1)

For good features in the thermal image, the difference is normally high. Let w(x, y) be
the weights of pixels over a window; we differentiate Equation (1) with respect to X and Y
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axes. The weighted sum multiplied by the intensity difference for all pixels in a window,
E(u, v) can be defined as:

E(u, v) = ∑
x,y

∗w(x, y) ∗ δ2 (2)

Applying Taylor series expansion to the first order, to the shift intensity, we have:

I(x + u, y + v) ≈ I(x, y) +
∂I(x, y)

∂x
u +

∂I(x, y)
∂y

v (3)

Let:

Ix =
∂I(x, y)

∂x
(4)

and

Iy =
∂I(x, y)

∂y
(5)

Equation (2) becomes:

E(u, v) = ∑
x,y

∗w(x, y) ∗ (Ixu + Iyv)2 = ∑
x,y

∗w(x, y) ∗ [(Ixu)2 + (Iyv)2 + 2Ix Iyuv] (6)

Rewriting Equation (6) in Matrix notation gives us:

E(u, v) ≈ (u, v)M(
x
y
) (7)

Hence:

M = E(u, v)

(
∑x,y I2

x ∑x,y Ix Iy

∑x,y Ix Iy ∑x,y I2
y

)
(8)

The score for each window R can be found using the eigenvalues of the matrix, which
can be expressed as:

R = det(M)− K(trace(M))2 (9)

where:
det(M) = λ1λ2 (10)

and
trace(M) = λ1 + λ2 (11)

In the Shi–Tomasi technique, R then can be found by:

R = min(λ1, λ2) (12)

The R value represents a quality value of the correspondent corner, where a higher
value indicates that the corner is a good distinct feature. We relied on the implementation
of the technique in OpenCV. The parameter values are shown in Table 1.

Table 1. Parameter settings for the Shi–Tomasi corner detection algorithm.

Feature Detection Setting Maximum corners 1000
Quality level 0.02

Minimum distance 5
Block size 5

The returned R value of the corner will be ranked, and the highest R value corners
will be chosen first. After detecting good corners, a “cropping window” parameter will
be applied to crop the surrounding pixels with the chosen corner at the middle, resulting
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in several sub-images. Then, these sub-images will be stitched together as an alternative
image, as shown in Figure 3.

(a) (b)

Figure 3. The original image (a) and the alternative input (b). The original size of (b) is
40 × 160 compared to (a) 160 × 120, which is one third of the number of pixels. (a) Sample thermal
frame. (b) A new image constructed from extracted features from the original thermal frame with
40 × 40 as the cropping window and four features (shown at four times magnification).

In some cases, the total number of features that can be found is less than the parameter
value, such as only three found compared to four needed, then the algorithm will take
three instead. If there are no features to be found, the software will set the flow vector value
to zero.

6. Thermal Dataset Availability

To the best of our knowledge, there is no currently available 14 bit thermal dataset
with optical flow ground truth. All the datasets that current networks use for training
and validation are generated synthetic colour dataset with known ground truth. On the
other hand, obtaining real optical flow ground truth from real-world data is extremely
challenging [71] due to the high degrees of freedom of UAVs.

To solve this problem, we generated ground truth from real-world thermal 14 bit data
we had collected [60,62]. The 14 bit raw thermal data were downsampled to 8 bit with our
technique as shown in Figure 4. After that, the traditional dense optical flow technique,
Farneback [24], was used to generate ground truth from the images.

Figure 4. The 14 bit to 8 bit downsampling technique from [61].
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Although civilian drones are restricted to daylight hours under visual flight rules,
military missions must be possible in all weather at all times of day and beyond visual line
of sight. Night flights were conducted with approval in military airspace described in [60].

6.1. Dataset 1

Dataset 1 contained images from our work from [60], which includes 12,870 images
captured above a flat arid field in northern South Australia. The data were captured in late
summer, during clear and hot weather with the temperature at 34 ◦C [83]. Figure 5 shows a
colour image of the field.

Figure 5. View of the field of Dataset 1.

Figure 6 shows some 8 bit thermal images of Dataset 1.

(a) Frame 1: above dried creek beds. (b) Frame 2: over a runway.

(c) Frame 3: above arid plain. (d) Frame 4: over a dirt road.

Figure 6. Some thermal frames of dataset 1, over some interesting features of the field.

6.2. Dataset 2

Dataset 2 contained a total of 2800 images from our work in [62], from an empty field
on a hill in South Australia. The site provides a clear view of the sky and an empty ground
with minimal artificial objects. Figure 7 shows the flight path in this experiment. The UAV
took off at point H, flew to point (1)-(2)-(3)-(4)-(5) and then landed at (5).
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Figure 7. View of the environment of dataset 2 with its flight path in Mission Planner.

The data were captured at two different thermal contrast conditions: during a clear
sunny day in late Autumn at 1600 h with high contrast in thermal data, and during a foggy
rainy day during winter at 0900 h, which yields low thermal contrast. Hence, dataset 2
contains two smaller subsets of the same field that can be used to evaluate the performance
of thermal flow during high and low-contrast conditions. Figure 8 shows some of the
thermal images of the site under both conditions.

(a) (b)

(c) (d)

Figure 8. Some of images from dataset 2. Frame (1) and (2) shows the field during high-contrast
conditions, and frame (3) and (4) shows thermal images at approximately at the same locations but
under low-contrast conditions. (a) Frame 1: above a big tree during the high-contrast condition.
(b) Frame 2: over an empty field during the high-contrast condition. (c) Frame 3: over a big tree
during the low-contrast condition. (d) Frame 4: over an empty field during the low-contrast condition.
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6.3. Training and Validating Sets

Table 2 shows a summary of our datasets, including how each dataset will be used for
training and evaluation, number of images of each set and the conditions of the scenario.

Table 2. Characteristics of the collected dataset.

Source Training Set Evaluation
Set

Site
Condition Total Images

Dataset 1 [60] Yes: 10,894 Yes: 2000 High contrast 12,894

Dataset 2 [62] No Yes: 2800 High and low
contrast 2800

Total images 10,894 4800 15,694

In total, 10,894 images were used to train the RAFT_s network and 4800 images were
used to evaluate the data during different thermal contrast conditions.

6.4. Generated ground truth from Thermal Dataset

Figure 9 shows a pair of images from dataset 1 and the dense optical flow ground
truth generated by the Farneback technique implemented in OpenCV. To train the sparse
network, the data from the dense network, including a pair of images, will be cropped
at the location where coordinates of good corners were detected from Image1. Then, the
respective sub-images will be aligned side by side from left to right to produce the training
set for the sparse technique.

The overall process is shown in Figure 10; Figure 11 shows the result from Figure 9.

(a) Frame 1. (b) Frame 2.

(c) Generated flow output from frame 1 and frame 2.

Figure 9. A sample sequence of thermal data and its generated ground truth from dense the optical
flow Farneback algorithm in OpenCV.



J. Imaging 2022, 8, 279 12 of 22

Figure 10. Flowchart shows our proposed technique. The dense network is trained with original
images and ground truth. The big yellow block shows the process of our method to select good
features with Shi–Tomasi technique, combine with predefined parameters to crop original frames
and reconstruct new frames from those sub-images, which are the new inputs to the neural network.

(a) Frame 1. (b) Frame 2.

(c) Generated flow output from frame 1 and frame 2.

Figure 11. Sparse features used as input from images in Figure 9. The cropping window
is 40 × 40 pixels and number of features is four. All images shown here were magnified for
visual purposes.

7. The RAFT_s Model

The RAFT (recurrent all-pairs field transform) deep learning model consists of a
composition of convolutional layers and recurrent layers in three main blocks: a feature
context encoder, a convolution layer and a recurrent gated recurrent unit (GRU)-based layer.

The model extracts per pixel features and updates the flow field iteratively through a
recurrent unit from the correlation volumes. In the feature extraction layer, two frames are
taken as input where features are extracted separately similar to the FlowNetCorr model.
The convolution layer consists of six residual layers with resolution halved on every second
layer while the number of channels are increased. The model uses a single GRU with
3 × 3 filter in the GRU-based layer.

Figure 12 shows the RAFT_s model used in this study.

7.1. RGB Optical Flow Dataset

We transferred learning with pre-trained weights from the MPI-Sintel final and flying
chairs dataset. The flying chairs dataset was selected due to it containing a large number
of images that represent 2D motion, while the MPI-Sintel final introduces more complex
3D motion under more challenging lighting conditions. While the dominant motion of
the thermal dataset is 2D, there are still 3D motion effects in some scenes due to the large
number of degrees of freedom of UAVs. Hence, introducing a dataset with some 3D motion
is essential. The details of the two datasets are presented in the following sections.
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Figure 12. The model was used in this study [33].

7.1.1. MPI-Sintel

Prior to 2015, MPI-Sintel [84] was the largest dataset for optical flow and disparity
measurement. The frames within the dataset were extracted from open source 3D animated
movies, so the MPI-Sintel is entirely synthetic. With high resolution at 1024 × 436 pixels,
the frames included added effects from nature such as motion blur, fog or sun glare to
make them more realistic. The training set consists of 1064 frames, which were divided into
23 training sequences. The evaluation set consists of 564 frames with 12 testing sequences.
Dense optical flow ground truth is only available with the training set. The dataset provides
three version: Albedo, clean and final. Albedo is the simplest set without any added effects,
the clean version introduces small variation to the illumination between sequences and
the final version adds more drastic effects. Researchers have been commonly using the
clean and final versions over the Albedo. Figure 13 shows one example from the MPI-Sintel
final dataset.

Figure 13. An example of an image (up) and its dense optical flow ground truth (down) from the
MPI-Sintel final dataset.

7.1.2. Flying Chairs

The dataset were introduced along side the first deep-learning-based model,
FlowNet [28]. It was designed specifically for training the deep learning network. The
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frames were constructed by placing 3D chair models above random backgrounds from
Flickr. The dataset contains 22,872 frames with 22,232 for training and 640 for evaluation
sets. The dataset is entirely synthetic and does not contain 3D motion, so it is limited to a
single view only. Figure 14 shows one example from the dataset.

Figure 14. An example of an image (up) and its dense optical flow ground truth (down) from the
flying chairs dataset.

7.2. Train the Model

We transferred learning with pre-trained weights from the MPI-Sintel and flying chairs
dataset, and our generated ground truth thermal data from the dataset as described in
Sections 6 and 6.4. The dense technique was trained with the ground truth from the whole
image, as shown in Figure 9, and the sparse technique was trained with the cropped data,
as shown in Figure 11.

For the technique that utilises the whole image, we labelled it “dense” to differentiate
it from the model that uses the proposed technique, we call “sparse”.

The model was trained with the batch size of 10, with 160,000 steps, learning rate of
0.0001 and weight decay of 0.0001.

The network was trained on a computer with an Intel Core i7-7700 CPU, 64GB of
RAM and Nvidia GTX 1080 Ti GPU. The operating system was Ubuntu 20.04, other
programs including: pytorch version 1.6.0, torchvision 0.7.0, cudatoolkit 10.1, python 3.8
and OpenCV 4.5.5.
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7.3. Evaluation Methodology

The dense and sparse models are evaluated on two criteria: Accuracy and speed. The
speed is measured on how many frames per second (FPS) the network can process. The
speed produced by the dense network is labelled as “dense FPS”, and the speed produced
by our method is labelled as “sparse FPS”. The “difference” parameter is the percentage
difference between the “sparse FPS” and the “dense FPS”. The “dense FPS” rate was 11 FPS
from our experiment.

Accuracy is measured based on the normalised cross-correlation between the output
signals from each model of the same image sequence. The normalised cross-correlation
value is in the range [−1;1], with a value close to 1 indicating the two signals are the same,
and vice versa.

There is a relationship between speed, cropping window and the number of features.
A bigger cropping window and a larger number of features will likely return better accuracy
but with lower speed. This relationship was investigated.

We learned that the cropping window at 40 × 40 pixels and the total of four features
works reliably, and provide a balanced of speed and accuracy. Hence, these parameters are
applied to the presented signals.

8. Result

This section presents the signals of the dense and sparse technique from the evaluation
set. The parameter for the sparse technique is: “cropping window” at 40 × 40 pixels and
four features.

8.1. Signals Accuracy

In this section, the overlay of dense and sparse signals over X and Y displacements
and the normalised cross-correlation value are presented.

8.1.1. Dataset 1

Figure 15 shows the dense and sparse signals from the sequence of dataset 1. A very
high normalised cross-correlation value of 0.988 in the X and 0.968 in the Y displacements
indicating a strong relationship between the two signals, which means that the sparse
technique are capable of maintaining accuracy with significantly less input data.

The average number of features found in this case matched the set value, which is four.

8.1.2. Dataset 2 during High Thermal Contrast Conditions

Figure 16 shows the dense and sparse signals from the sequence of dataset 2. A
very high normalised cross-correlation value of 0.989 in X and 0.94 in Y displacements
indicate a strong relationship between the two signals; thus, the sparse technique performs
comparatively well in this scenario.

The average number of features found in this case also matches the set value, which
is four.

8.1.3. Dataset 2 during Cold-Soaked Low Thermal Conditions

The number of features drops significantly; Figure 17 shows the dense and sparse
signals from the sequence of dataset 2. A low normalised cross-correlation value of 0.06 in
X and 0.16 in Y displacements indicating a very weak relationship between the two signals.
Furthermore, most of the normalised correlation values in both X and Y displacements
are negative, which indicates the sparse technique may not work well in low contrast
environments. This result is consistent with our findings with other techniques in [61].
Since the Shi–Tomasi operator relies on contrasting features to detect good corners, this
technique falls short in the the low contrast thermal condition.

Furthermore, since the Shi–Tomasi operator was not very effective, the number of
features found was less than the set value of four. The average value of features found in
this case was 1.83.
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Figure 15. Dense and sparse technique signals on dataset 1.

Figure 16. Dense and sparse technique signals on dataset 2 during high thermal contrast.



J. Imaging 2022, 8, 279 17 of 22

Figure 17. Dense and sparse technique signals on dataset 2 during low thermal contrast.

8.2. Effect of Cropping Window and Number of Features on Accuracy and Processing Time

This section outlines how changing the cropping window and number of features
effects the accuracy and processing time of the model. These two separated cases are
changing the cropping window while keeping the number of features constant and vice
versa. Both cases were tested on dataset 1.

8.2.1. Case 1: Constant Cropping Window

Table 3 shows the normalised cross-correlation values in X and Y displacements,
processing time difference compared to the dense technique as a percentage. The results
show that the accuracy in both X and Y displacement increase exponentially with the
number of features in the image, until it reaches four features. After that, accuracy does
not change significantly with higher numbers of features. The speed difference decreases
steadily for each increase in number of features.

Table 3. The effect of “number of features” on accuracy and processing time of the model.

No
Features Cropping

Cross-
Correlation

X

Cross-
Correlation

Y

Sparse
FPS Dense FPS Difference

1 40 × 40 0.381 0.219 29.2 11 +165.45%

2 40 × 40 0.412 0.371 24.3 11 +120.9%

3 40 × 40 0.741 0.673 22.5 11 +104/54%

4 40 × 40 0.988 0.969 19.2 11 +74.54%

5 40 × 40 0.991 0.983 16.3 11 +48.18%

6 40 × 40 0.967 0.931 12.3 11 +11.81%

7 40 × 40 0.961 0.981 8 11 −27.27%
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8.2.2. Case 2: Constant Number of Features

Table 4 presents the results from changing the cropping window while maintaining
four features. The sparse network achieves very low accuracy when the cropping window
is less than 30 × 30. The accuracy increases significantly at 35 × 35 then peaks at 40 × 40.
After that, the accuracy does not change significantly and even decreases at 55 × 55 pixels.
The speed, meanwhile, steadily decreases with larger cropping window.

Table 4. The effect of cropping window on accuracy and processing time of the model.

No
Features Cropping

Cross-
Correlation

X

Cross-
Correlation

Y

Sparse
FPS Dense FPS Difference

4 20 × 20 0.123 0.07 34.5 11 +213.64%

4 30 × 30 0.126 0.05 26.9 11 +144.54%

4 35 × 35 0.642 0.694 21.7 11 +97.27%

4 40 × 40 0.988 0.969 19.2 11 +74.54%

4 45 × 45 0.963 0.953 17.5 11 +55.09%

4 50 × 50 0.983 0.943 14.5 11 +31.81%

4 55 × 55 0.921 0.953 10.2 11 −7.27%

9. Discussion

The results show that the our proposed technique can be applied to a dense optical flow
neural network for airborne applications with thermal imaging for faster processing time,
while maintaining its accuracy. This technique can potentially reduce the computational
demand of the network, which translates to a lighter payload and longer operating time
for small UAVs.

The proposal relied on the Shi–Tomasi feature-based technique to detect good corners
in the image, which does not work well in cold-soaked conditions. This is because these
features rely on the difference in temperature between parts of the environment. We
experimented with lower threshold values to detect low contrast features but the algorithm
also picks up image noises at random sections within the image. The dataset in question
was collected during winter, early in the morning of a rainy and foggy day. Hence, the
temperature difference was low, which leads to lower thermal contrast. This is consistent
with our findings in [61].

We learned that the sparse network can output comparable signals to the dense
network in both X and Y displacements with four selected features combined with a
cropping window at 40 × 40 pixels. The processing speed increased by 74.54% compared
to the dense network. The sparse network does not work well with smaller value of these
parameters, while larger values also do not increase the accuracy at the cost of higher
computational cost.

10. Conclusions

This study showed that only using some good regions in a thermal image is enough
to obtain a good 2D optical flow vector for certain airborne applications. Our study showed
that this technique can decrease processing time by 74.54% while maintaining accuracy of
the output.

However, due to the Shi–Tomasi technique relying on high contrast to detect good
corners in thermal images, it does not work well under low contrast conditions. This issue
potentially limits its use in some circumstances.

Future studies will look at other, versatile feature extraction techniques to solve the
problem of thermal flow during cold-soaked low contrast condition.
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