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Abstract: Clipping, as a fundamental process in computer graphics, displays only the part of a scene
which is needed to be displayed and rejects all others. In two dimensions, the clipping process can be
applied to a variety of geometric primitives such as points, lines, polygons or curves. A line-clipping
algorithm processes each line in a scene through a series of tests and intersection calculations to
determine whether the entire line or any part of it is to be saved. It also calculates the intersection
position of a line with the window edges so its major goal is to minimize these calculations. This
article surveys important techniques and algorithms for line-clipping in 2D but it also includes some
of the latest research made by the authors. The survey criteria include evaluation of all line-clipping
algorithms against a rectangular window, line clipping versus polygon clipping, and our line clipping
against a convex polygon, as well as all line-clipping algorithms against a convex polygon algorithm.
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1. Introduction

In computer graphics, any procedure that eliminates those portions of a picture that
are either inside or outside a specified region of space is referred to as a clipping algorithm
or simply clipping. The region against which an object is to be clipped is called a clipping
object. In two-dimensional clipping, if the clipping object is an axis-aligned rectangular
parallelogram, it is often called the clipping window or clip window. Sometimes the clipping
window is alluded to as the world window or the viewing window [1]. Usually, a clipping
window is a rectangle in standard position, although we could use any shape for a clipping
application, e.g., a convex polygon or a concave polygonal boundary [2]. For a three-
dimensional scene, the clipping area is called clipping volume. The process of removing lines
or portions of lines outside an area of interest is called line clipping. Usually, any line or part
of it outside the viewing area is unnecessary and is removed; see Figure 1.

Figure 1. Clipping window before (left) and after (right) line clipping.

The line-clipping process uses mathematical equations or formulas for removing the
unnecessary parts of the line. The programmer draws only the part of the line which
is visible and inside the desired region by using, for example, the slope-intercept form
y = ax + b, where a is the slope or gradient of the line, b is the y-intercept of the line and x
is the independent variable of the function y = f (x) or just the vector equation. Most of
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the time, clipping is applied to extract a part of a scene or a world, for creating new object
boundaries, for managing multiple areas of objects inside a window, and so on.

There are four fundamental algorithms for line clipping: Cohen–Sutherland, Cyrus–
Beck [3], Liang–Barsky [4] and Nicholl–Lee–Nicholl [5]. Over the years, other algorithms
for line clipping emerged, such as Midpoint Subdivision, Fast Clipping [6], Skala ’93 [7],
Skala ’94 [8], Skala 2005 [9], S-Clip E2 [10], Ray [11], Andreev and Sofianska [12], Day [13],
Rappoport [14], Dimri [15], but many of them are variations of the first ones. In general,
the existing line-clipping algorithms can be classified into three types: the encoding ap-
proach (with the Cohen–Sutherland algorithm as a representative), the parametric approach
(with the Cyrus–Beck and Liang–Barsky algorithms as representatives) and the Midpoint
Subdivision algorithms.

A different algorithm for clipping line segments by a rectangular window on a rect-
angular coordinate system is presented in [16,17]. For the line segments that cannot be
identified as completely inside or outside the window by simple tests, this algorithm
applies affine transformations (the shearing transformations) to the line segments and
the window and changes the slopes of the line segments and the shape of the window.
A mathematical model for evaluating intersection points, and thereby clipping lines that
decently rely on integral calculations, has been proposed in [18]. A fairly full picture of the
relevant literature is presented in [19–21] until the day of their publication.

The present article aims to present an overview of the most common, as well as of
the lesser-known, algorithms and techniques for clipping a line against a rectangular area
or a convex polygon in a two-dimensional space. Moreover, two new algorithms were
presented; one for clipping a line against a rectangular clipping window as well as a convex
clipping region. These new algorithms overcome many disadvantages of the common ones.

2. Fundamental Line-Clipping Algorithms
2.1. Cohen–Sutherland

Intersection algorithms with a rectangular area (window), well known as line clipping
or as line segment clipping algorithms, were developed and used for a flight simulator
project led by Cohen [22] in 1969. Efficient coding of a line segment position coding leading
to significant computational reduction was introduced in [23] and patented in [24]. It is
considered to be one of the first line-clipping algorithms in computer graphics history
and variations of this method are widely used. Processing time is reduced by performing
more tests before proceeding to the intersection calculations. The two-dimensional space in
which the line resides is divided into nine regions, eight “outside” regions and one “inside”
region, and to each line endpoint is assigned a four-digit binary value called the region code
(Figure 2). Each bit of the region code is used to indicate whether the point is inside or
outside a region out of the nine ones [25].

Figure 2. The codes for the nine regions of the Cohen-Sutherland algorithm in the two-dimensional
space.
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The region code for each line endpoint is applied using the following method: The
window edges are referenced in any order with the bit positions numbered one through
four from the Least Significant Bit (LSB) to the Most Significant Bit (MSB) (see Figure 3). A
value of one in any of these bits indicates that the endpoint is outside the clipping window.
Likewise, a value of zero to all of these bits indicates that the endpoint is inside or on the
clipping window. The region code is also known as outcode.

Figure 3. Cohen–Sutherland endpoint region code.

At first, the algorithm assigns an outcode to each line endpoint. Next, it determines
if the line is inside the clipping window. A line that is inside the clipping window has
both endpoint outcodes equal to 0000. Next, the algorithm checks if there are two bits
with the value one in the same bit position for each endpoint. If this is true then the line is
being rejected as it is completely outside the clipping window. To check this, a logical AND
is performed and if the result is not 0000 then the line is neither inside nor crossing into
the clipping window, so it can be eliminated. If the result is 0000 then the line may cross
into the clipping window or it could intersect one or more boundaries without entering
the clipping window. It is considered for clipping and the intersection points with the
clipping-window edges have to be found. Each edge is being checked against the line and
those portions of the line that are outside each boundary are being clipped.

Since the algorithm checks each line endpoint that is outside the clipping window
against each boundary in order to find the corresponding coordinates of the intersection, the
line endpoint coordinates may be successively replaced by the corresponding intersection
coordinates until meeting the correct ones.

2.2. Cyrus–Beck

The Cyrus–Beck (CB) algorithm was published in 1978 and is based on a parametric
representation of the line segments [3]:

P(t) = P0 + t · (P1 − P0). 0 ≤ t ≤ 1

The algorithm can be applied to a typical rectangular clipping window (Figure 4) or any
other convex polygon, unlike the Cohen–Sutherland which uses only rectangular clipping
windows. The number of sides is not important, although it does affect performance.

Figure 4. Typical clipping boundaries.
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For any convex clipping window, the inward normals have to be calculated. These
inward normals are vectors perpendicular to each window edge. For a typical rectangular
clipping window, only four unique inward normals exist and all other normals are mathe-
matically equivalent to these four (Figure 5). The inward normals can be used for finding
the intersection points between the line segment and the edges.

Figure 5. Inward normals of a rectangular clipping window.

The number of intersections of a straight line with the boundaries of the convex
clipping window is equal to the number of the edges of the clipping window. The algorithm
calculates all the intersections and classifies them either as Potentially Entering (PE) or
Potentially Leaving (PL) relative to the clipping window. A PE intersection means that as
we are moving on the line, the clipping window is “in the front” and we are going to
“enter into” it. Likewise, a PL intersection means that as we are moving on the line, the
clipping window is “in the back” and we are going to “leave out” of it. In practice, the
algorithm checks each intersection if it is a PE or a PL point and calculates its tE or tL value,
respectively, and forms two t groups; one group with all tE values and one group with
all tL values (see Figure 6). The t values that are either less than zero or greater than one
are rejected.

Figure 6. Classifying intersection points either as Potentially Entering (PE) or Potentially Leaving (PL)
and calculating their t parameter, respectively.

Since the line segment intersects the boundaries of the clipping window in, at most,
two places, the algorithm selects only one tE value out of all the tE values which is the
maximum one (closer to the clipping window). Similarly, it selects only one tL value out of
all the tL values which is the minimum one.

The classification of the intersection points as PE or PL is performed by comparing the
angle between each inward normal and the vector

−−→
P0P1. If the angle is less than 90° then

the intersection point is a PE. If the angle is greater than 90° then the intersection point is a
PL (see Figure 7).
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Figure 7. Comparing each inward normal with vector
−−→
P0P1.

Cyrus–Beck is a generalized line clipping algorithm that was designed to be more
efficient than other clipping algorithms, such as the Cohen–Sutherland. It uses repetitive
clipping, is very stable and its performance is nearly independent of factors such as
the geometrical distribution of clipped primitives [9]. Since the algorithm computes the
intersection for each edge, its complexity is O(N), where N is the number of edges. In
most cases, it clips only once or twice unlike Cohen–Sutherland where the lines are clipped
about four times. The algorithm can be easily modified to also clip three-dimensional lines.

2.3. Liang–Barsky

You-Dong Liang and Brian Barsky were based on Cyrus–Beck and developed an even
faster algorithm for line clipping. Their algorithm uses the parametric line equations and
does more line testing before proceeding to the intersection calculations. By using the
parametric equation of the line, it solves four inequalities to find the range of the parameter
for which the line is in the viewport [4].

For a line segment with endpoints P(x0, y0) and Q(x1, y1), we can describe the line
with the parametric form

x = x0 + t∆x

y = y0 + t∆y 0 ≤ t ≤ 1

where ∆x = x1 − x0 and ∆y = y1 − y0 (see Figure 8).

Figure 8. Defining the line for clipping with the Liang–Barsky algorithm.
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Since the clipped line segment lies in the clipping window, the above parametric line
equations can be combined with the following conditions

xmin ≤ x0 + t∆x ≤ xmax

ymin ≤ y0 + t∆y ≤ ymax.

These conditions can also be written as

−t∆x ≤ x0 − xmin

t∆x ≤ xmax − x0

−t∆y ≤ y0 − ymin

t∆y ≤ ymax − y0

or, simply, as
t · pk ≤ qk k = 1, 2, 3, 4

where k = 1, 2, 3, and 4 correspond to the left, right, bottom, and top boundaries, respec-
tively, and parameters p and q are defined as

p1 = −∆x, q1 = x0 − xmin

p2 = ∆x, q2 = xmax − x0

p3 = −∆y, q3 = y0 − ymin

p4 = ∆y, q4 = ymax − y0.

From the aboves we can draw the following conclusions:

− If the line has pk = 0 then it is parallel to the corresponding clipping-window edge.
− If the line has pk = 0 and qk < 0 then it is completely outside and is being rejected.
− If pk > 0, the line proceeds from the inside to the outside.
− If pk < 0, the line proceeds from the outside to the inside.

For a nonzero value of pk, rk = qk
pk

gives value t for the intersection point of the line
and the window edge. There are two (out of four) actual intersections with values t1 and
t2 value, respectively. For t1, the algorithm calculates all t values for which pk < 0 (line
proceeds from the outside to the inside) and assigns to it the maximum one. For t2, the
algorithm calculates all t values for which pk > 0 (line proceeds from the inside to the
outside) and assigns to it the minimum one. If t1 > t2, the line is completely outside the
clipping window and it can be rejected. Otherwise, the endpoints of the clipped line are
calculated from the two values of parameter t.

In general, the Liang–Barsky algorithm is more efficient than the Cohen–Sutherland
line-clipping algorithm as well as the Cyrus–Beck. It uses floating-point arithmetic for
finding the appropriate endpoints with, at most, four computations [21]. In contrast, the
Cohen and Sutherland algorithm can calculate intersections repeatedly even if the line is
completely outside the clipping window. Moreover, the Cohen–Sutherland intersection
calculation requires both a division and a multiplication. The algorithm can be easily
modified to clip lines in a three-dimensional space.

2.4. Nicholl–Lee–Nicholl

The Nicholl–Lee–Nicholl (NLN) is an algorithm that was created in 1987 by Tina M.
Nicholl, D.T. Lee and Robin A. Nicholl. Its main characteristic is that it avoids a lot of
computations of the intersection points. The creators claim that its performance is better
than other algorithms, e.g., the Cohen–Sutherland and Liang–Barsky, since it carries out
more region testing and it performs fewer comparisons and divisions. Unfortunately, while
Cohen–Sutherland and Liang–Barsky can easily extend to three dimensions, NLN clipping
is limited only to two dimensions.
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As already mentioned, Cohen–Sutherland divides the screen space into nine regions.
For avoiding unnecessary checks and calculations, NLN adopts a similar scheme (Figure 9)
but it uses only three out of the nine ones; the top left corner region, the left edge region
and the window region (Figure 10).

Figure 9. NLN divides screen space into nine regions, like CS.

Figure 10. NLN uses only three out of nine regions namely window, edge and corner.

The first endpoint of the line has to be in one of these three regions. If it lies on any
of the other six, then it can be moved to one of these three regions using geometrical
transformations. The second endpoint of the line is taken into account later. For example, if
a line with endpoints P0 and P1 has the first endpoint directly above the clipping window
then it can be translated into the left edge region using a 270 degrees clockwise rotation
(see Figure 11).

Figure 11. Applying 270 degrees clockwise rotation for moving the first line endpoint into the edge region.

All the available geometrical transformations are:

• 90° clockwise rotation about the origin.
• 180° clockwise rotation about the origin.
• 270° clockwise rotation about the origin.
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• Reflection about the line x = −y.
• Reflection about the x−axis.

Obviously, these geometrical transformations should also be applied to the boundaries
of the clipping window as well as the line endpoints.

Assuming that P0 and P1 are not simultaneously inside the clipping window, the
algorithm divides again the screen space into regions. The new regions are based on the
position of the first line endpoint (P0). The boundaries of the new regions are semi-infinite
line segments that start at the position of P0 and pass through each clipping window corner.
Since the algorithm uses three regions, there are three main cases:

1. P0 is inside the clipping window and P1 outside.
The algorithm sets up four regions (L, T, R, B) as in Figure 12. Then, depending on
which one of the four regions contains P1, it computes the line-intersection position
with the corresponding window boundary.

2. P0 is on the edge region and P1 is outside the clipping window.
The algorithm sets up four regions labeled L, LT, LR, and LB as in Figure 13. These
four regions again determine a unique clipping-window edge for the line segment,
relative to the position of P1. For instance, if P1 is in any one of the three regions
labeled L, the algorithm clips the line at the left window border and draws the line
segment from this intersection point to P1. If P1 is in region LT, it draws the line
segment from the left window boundary to the top boundary. Likewise, the same
logic applies to regions LR and LB. However, if P1 is not in any of these four regions,
the line is clipped entirely.

3. P0 is on the corner region and P1 is outside the clipping window.
When P0 is to the corner region, the algorithm uses one of the two sets as shown in
Figure 14. The selection of (a) or (b) depends on the position of P0 within the corner
region. When P0 is closer to the left clipping boundary of the window, the algorithm
uses the regions in (a) of this figure but when P0 is closer to the top clipping boundary
of the window, it uses the regions in (b). If P1 is in one of the regions T, L, TR, TB,
LR, or LB, this determines a unique clipping-window border for the intersection
calculations, otherwise, the entire line is rejected.

To determine the region in which P1 is located, NLN compares the slope of the line
segment against the slopes of the new boundaries. For example, if P0 is inside the clipping
window and P1 is outside, m is the slope of the line segment P0P1 and m1, m2, m3, m4 are
the slopes of the boundaries L, T, R, B, respectively (see Figure 15a), then according to the
following conditions, P1 is:

• m1 < m < m2 → P1 is above the clipping window.
• m2 < m < m3 → P1 is on the right of the clipping window.
• m3 < m < m4 → P1 is below the clipping window.
• m4 < m < m1 → P1 is on the left of the clipping window.

Figure 12. The four regions when P0 is inside the clipping window and P1 is outside.
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Figure 13. The four clipping regions when P0 is on the edge region.

Figure 14. The two possible sets of clipping regions used in the NLN algorithm when P0 is (a) above
and (b) to left of the clipping window.

Figure 15. (a) m1, m2, m3, m4 are the slopes of the line segments formed between P0 and L, T, R, B,
boundaries respectively. (b) m is the slope of the line segment P0P1.

Suppose that P1 is on the left region (see Figure 15b). From the parametric equations

x = x0 + (x1 − x0)u

y = y0 + (y1 − y0)u
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an x-intersection position on the left window boundary is calculated as x = xL, with
u = (xL − x0)/(x1 − x0), so that the y-intersection position is

y = y0 +
y1 − y0

x1 − x0
(xL − x0)

3. Common Line-Clipping Algorithms
3.1. Midpoint Subdivision

Midpoint Subdivision (MS) is an extension of the Cohen–Sutherland algorithm and
follows the divide and conquer strategy. It is mainly used to compute the visible areas of
lines that are present in the clipping window. It follows the principle of bisecting the line
into equal halves numerous times. The algorithm is not efficient unless it is implemented in
hardware. Moreover, the Cohen–Sutherland line clipping algorithm requires the calculation
of the intersection of the line with the window edge. These calculations can be avoided by
repetitively subdividing the line at its midpoint.

At first, the algorithm categorizes the endpoints of the line segment and assigns a
four-bit region code to each one like Cohen–Sutherland does. The code, also known as
outcode, is determined according to which of the following nine regions of the plane the
endpoint lies in (see Figure 16).

Figure 16. Outcodes for the Midpoint Subdivision algorithm.

Starting from the Least Significant Bit (LSB), each bit represents one region; left, right,
bottom, top (see Figure 17). If a line endpoint is inside that region then the corresponding
bit is set to true (1) or otherwise false (0).

Figure 17. Outcode bits for the Midpoint Subdivision algorithm.

There are three possible cases for any given line.

1. Totally visible: If the outcode of both line segment endpoints is 0000 then the line
segment is inside the clipping window and it is completely visible.

2. Totally invisible: Bitwise AND between the two outcodes of the line segment end-
points. If the result is not 0000 then the line endpoints share the same region and the
line segment does not cross the clipping window so it is rejected.

3. Clipping candidate: If the line is in neither Category 1 nor Category 2 then it is
partially visible and has to be subdivided into two equal parts. The visibility tests



J. Imaging 2022, 8, 286 11 of 32

are then applied to each half. This subdivision process is repeated until we obtain
completely visible and completely invisible line segments.

3.2. Skala 2005

The Skala 2005 (SKA05) performs line clipping against an ordinary rectangle clipping
window as well as against any convex polygon. It does not require a division operation
and uses homogeneous coordinates for input and output point representation. Accord-
ing to professor Vaclav Skala, its creator, it takes advantage of operations supported by
vector–vector hardware [9].

The algorithm assumes a convex polygon P and a line p given as F(x) = ax + by + c = 0.
As the line p subdivides the space into two half-spaces, the function F(x) is being evaluated
for each vertex of the convex polygon (see Figure 18).

Figure 18. Classification of each vertex.

For the Ci vertex, the classification is performed like this; the digit 1 means that the
vertex is left to the line and the digit 0 means that it is right to the line. A sequence of 0 and
1 is formed and by the alternations from digit 0 to digit 1 and vice versa we can understand
which edges of the polygon are being intersected by the line. These edges are marked as
TAB1 and TAB2. For every possible combination of the TAB1 and TAB2, there is a binary
value known as the MASK which is used in the next steps of the algorithm to determine
which endpoints of the line are inside or outside the clipping area. No matter how many
vertices, the TAB1 and TAB2 values are two, so the following table is used as an index to
the TAB1-TAB2-MASK values; see Table 1).

Table 1. Original values of the TAB-MASK table.

c c3 c2 c1 c0 TAB1 TAB2 MASK

0 0 0 0 0 None None None
1 0 0 0 1 0 3 0100
2 0 0 1 0 0 1 0100
3 0 0 1 1 1 3 0010
4 0 1 0 0 1 2 0010
5 0 1 0 1 N/A N/A N/A
6 0 1 1 0 0 2 0100
7 0 1 1 1 2 3 1000
8 1 0 0 0 2 3 1000
9 1 0 0 1 0 2 0100

10 1 0 1 0 N/A N/A N/A
11 1 0 1 1 1 2 0010
12 1 1 0 0 1 3 0010
13 1 1 0 1 0 1 0100
14 1 1 1 0 0 3 0100
15 1 1 1 1 None None None
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Having found the intersections between the line and the edges that the TAB1 and
TAB2 values indicate, the algorithm classifies the endpoints of the line segment in a similar
way to how Cohen–Sutherland does. It divides the screen into nine regions with each
region having a unique binary number with four digits, known as the outcode. The four
digits of each outcode represent the regions LEFT-RIGHT-TOP-BOTTOM, respectively,
which means that the MSB (Most Significant Bit) represents the LEFT region, the next bit
represents the RIGHT region, the next bit represents the TOP region, and finally, the LSB
(Least Significant Bit) represents the BOTTOM region (see Figure 19).

Figure 19. Screen is divided into 9 regions.

The outcode is calculated for each endpoint using the function “CODE” of Algorithm 1.

Algorithm 1: Function to determine the outcode of the endpoints.
function CODE(x);
begin

c := [0000];
if x < xmin then c := [1000]

else if x > xmax then c := [0100];
if y < ymin then c := c lor [1001]

else if y > ymax then c := c lor [0010];
CODE := c

end [CODE];

The outcodes show which endpoints are inside or outside the clipping area. In some
cases, the MASK is additionally used in order to decide which of the two intersection points
has to be used in the clipping process. Finally, the clipped line is drawn.

The speed of the algorithm varies. For a standard rectangle clipping window, the
algorithm may use a predefined TAB-MASK table in order to quickly calculate the TAB1
and TAB2 values so its speed is high. However, when the clipping area is a convex polygon
the speed decreases for two reasons. The first one is related to the calculations of the
alternations of the 0 and 1 digits; they have to be performed “on-the-fly”, so this procedure
slows down the algorithm. The second has to do with the way the algorithm works. No
matter how many the vertices of the polygon, it always classifies them as “left” or “right”
to the line and then it calculates the two intersections. After that and by using these two
intersections, it forms a rectangle clipping area and re-classifies as “left” or “right” the
vertices of the rectangle. Then, it follows the procedure that was mentioned before, which is
to calculate the outcodes of the endpoints of the line and then perform clipping. However,
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this “double classification” of the vertices makes the algorithm slower, something that is
more obvious as the number of edges increases.

3.3. S-Clip E2

S-clip E2 (SCE2), is another clipping algorithm also made by professor Vaclav Skala in
the year 2012. Technically, it is an improved Skala 2005 algorithm that is based on the princi-
ple “test first and then compute”. Unlike other algorithms, e.g., Cohen–Sutherland, it eval-
uates the position of the given line with respect to the corners of the clipping window [10].
The main difference between the S-clip E2 and the Skala 2005 is that there is no need to
repeat the classification process for the intersection points. Suppose that the line that has to
be clipped is defined by two points, A and B. Since the intersection points belong on this
line, the algorithm calculates the parameter “t” of the parametric form of the line segment
AB (x = a + bt, y = c + dt) for each one. Two “t” values derive (scalars), i.e., tmin and tmax
and the resulting segment is determined as < tmin, tmax > ∩ < 0, 1 > which is a trivial
operation. If the orientation of the clipping window is known, no ordering of “t” values
is needed.

4. Uncommon Line-Clipping Algorithms
4.1. Kodituwakku–Wijeweere–Chamikara

In 2013, another fast line clipping algorithm with a similar approach to the Cohen–
Sutherland was introduced by Kodituwakku–Wijeweere–Chamikara [26]. The rectangular
clipping window is defined by two points: (minx, miny) and (maxx, maxy) and the line is
defined by two points A(x0, y0) and B(x1, y1); see Figure 20.

Figure 20. The rectangular clipping window of the KWC algorithm.

The coordinates of each line endpoint are checked against the boundaries of the
rectangular clipping window. In case a coordinate exceeds the boundary of the clipping
window then the coordinate of this boundary is used and the other coordinate is calculated
by using the equation of the line in the two-dimensional space: y = m · x + c, where m is
the slope of the line given by the formula: m = y1−y0

x1−x0
; see Figure 21.
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Figure 21. Line is intersecting the boundaries; The new line endpoints A′′ and B′′ have been calculated.

4.2. Matthes–Drakopoulos Line Clipping against a Rectangular Window

Each of the fundamental algorithms mentioned before has advantages and disadvan-
tages. In 2019, Matthes and Drakopoulos introduced an efficient line-clipping algorithm [27]
or [28] which aims at simplicity and speed and does only the necessary calculations in
order to clip a line inside the clipping window.

Assume that we want to clip a line segment that crosses a rectangle clipping window
that is defined by the points (xmin, ymax) and (xmax, ymin). This clipping window is depicted
in Figure 22.

Figure 22. Line clipping region.

Given two points (x1, y1) and (x2, y2) on the line that we want to clip, the slope m is
constant and is defined by the fraction

m =
y2 − y1

x2 − x1
(1)
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For an arbitrary point (x, y) on the line, the previous ratio can be written as

m =
y− y1

x− x1
.

Solving for y
y− y1 = m · (x− x1)⇔ y = y1 + m · (x− x1).

By replacing m in this equation with Equation (1)

y = y1 +
y2 − y1

x2 − x1
· (x− x1). (2)

Solving for x, the equation becomes

x = x1 +
x2 − x1

y2 − y1
· (y− y1). (3)

Equations (2) and (3) are two mathematical representations of the line equation y = m · x+ b
and will be used later by the algorithm in order to determine the part of the line that is
inside the clipping window.

Suppose that the line segment which has to be clipped is defined by the points (x1, y1)
and (x2, y2).

Step 1

The first step of the algorithm checks if both points are outside the line clipping
window and at the same time in the same region (top, bottom, right, left). If one of the
following occurs then the entire line is rejected and the algorithm draws nothing (see
Figure 23):

x1 < xmin AND x2 < xmin (line is left to the clipping window)
x1 > xmax AND x2 > xmax (line is right to the clipping window)
y1 < ymin AND y2 < ymin (line is under the clipping window)
y1 > ymax AND y2 > ymax (line is over the clipping window)

Figure 23. Lines A, B, C and D are rejected according to the first step of the algorithm.

Step 2

In the second step, the algorithm compares the coordinates of the two points along
with the boundaries of the clipping window. It compares each of the x1 and x2 coordinates
with the xmin and xmax boundaries, respectively, as well as each one of the y1 and y2
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coordinates with the ymin and ymax boundaries, respectively. If any of these coordinates
are out of bounds, then the specific coordinate of the boundary is used in the equation that
determines the line for performing clipping (see Figure 24).

Figure 24. Selecting the points of the line that are inside the clipping area.

For each of the coordinates of the two points and according to Equations (2) and (3),
the comparisons and changes made are:

• If xi < xmin then
xi = xmin

yi = y1 +
(y2 − y1)

(x2 − x1)
· (xmin − x1)

• If xi > xmax then
xi = xmax

yi = y1 +
(y2 − y1)

(x2 − x1)
· (xmax − x1)

• If yi < ymin then
yi = ymin

xi = x1 +
(x2 − x1)

(y2 − y1)
· (ymin − x1)

• If yi > ymax then
yi = ymax

xi = x1 +
(x2 − x1)

(y2 − y1)
· (ymax − x1)

where i: from 1 to 2.
Note that in the above equations and when xi < xmin or xi > xmax, division with zero

will never occur because x1 6= x2 from Step 1. Likewise, when yi < ymin or yi > ymax,
division with zero will never occur because y1 6= y2 for the same reason.

Step 3

The third and final step checks if the new points, after the calculations, are inside the
clipping window and if so, a line is being drawn between them.

The representation of the algorithm in pseudo-code follows:
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// INPUT DATA: x1, y1, x2, y2, xmin, ymax, xmax, ymin //

if(!(x1 < xmin && x2 < xmin) && !(x1 > xmax && x2 > xmax))
if(!(y1 < ymin && y2 < ymin) && !(y1 > ymax && y2 > ymax))
{

x[0] = x1;
y[0] = y1;
x[1] = x2;
y[1] = y2;
i = 1;
do
{

if(x[i] < xmin)
{

x[i] = xmin;
y[i] = ((y2 - y1)/(x2 - x1)) * (xmin - x1) + y1;

}
else if(x[i] > xmax)
{

x[i] = xmax;
y[i] = ((y2 - y1)/(x2 - x1)) * (xmax - x1) + y1;

}
if(y[i] < ymin)
{

y[i] = ymin;
x[i] = ((x2 - x1)/(y2 - y1))*(ymin - y1) + x1;

}
else if(y[i] > ymax)
{

y[i] = ymax;
x[i] = ((x2 - x1)/(y2 - y1)) * (ymax - y1) + x1;

}
i++;

}
while(i <= 1);
if(!(x[0] < xmin && x[1] < xmin) && !(x[0] > xmax && x[1] > xmax))

draw_line(x[0], y[0], x[1], y[1]);
}

5. Evaluation of All Line-Clipping Algorithms against a Rectangular Window

For the evaluation of the line clipping algorithms, C++ programming language with
OpenGL was used. The procedure of the evaluation was the following: Each algorithm
created a large number of arbitrary lines in a two-dimensional space. This space was
determined by the points (−960, 720) and (960, −720). The clipping window was at the
center of the screen and its size was defined by the points (−100, 75) and (100, −75); that is
200 pixels width and 150 pixels height. The lines were randomly generated anywhere in
the two-dimensional space and each algorithm drew only the visible part of the lines inside
the clipping window (see Figure 25).

The time that each algorithm needed to clip and draw the clipped line segments was
recorded in every execution. The whole process was repeated 10 times and the average
time was calculated at the end. The hardware as well as the software specifications of
the evaluation process were: (a) Intel Core i7-9750H @ 2.60 GHz CPU, (b) RAM 16 GB,
(c) NVIDIA GeForce RTX 2070/8 GB GPU, (d) Windows 10 Pro 64 bit operating system,
(e) C++ with OpenGL/Freeglut running under the Code::Blocks environment.
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Figure 25. Defining the clipping window as well as the two-dimensional space for generating
arbitrary lines.

Each algorithm created and clipped 10,000,000 lines in every execution. The results
are shown in Table 2 and in Figure 26.

Table 2. Execution times of each algorithm when clipping 10,000,000 lines.

Exec. CS CB LB MS NLN SKA05 SCE2 KWC MD
(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

1 1.883 2.096 1.840 2.176 1.853 1.985 2.100 1.868 1.758
2 1.905 2.075 1.870 2.206 1.989 1.959 2.173 1.774 1.733
3 1.914 2.069 1.871 2.177 1.873 1.986 2.160 1.870 1.765
4 1.934 2.114 1.903 2.144 1.847 1.984 2.162 1.803 1.764
5 1.857 2.136 1.851 2.145 1.892 1.965 2.100 1.859 1.776
6 1.817 2.085 1.869 2.174 1.838 1.994 2.132 1.825 1.814
7 1.918 2.082 1.847 2.190 1.869 1.987 2.170 1.768 1.787
8 1.836 2.093 1.832 2.211 1.814 2.005 2.149 1.810 1.769
9 1.820 2.136 1.921 2.175 1.805 1.971 2.144 1.828 1.757

10 1.944 2.082 1.859 2.210 1.816 1.941 2.167 1.743 1.806

Avg: 1.883 2.097 1.866 2.181 1.860 1.978 2.146 1.815 1.773

Figure 26. Average time of each algorithm for clipping 10 million lines (lower value –> better).

By studying the graph with the average times, we conclude that the MD algorithm is
the fastest of all. Using the formula:

MD− other
MD

· 100
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we can see how much faster in percent the MD algorithm is compared to the others. The
next table shows these comparisons (see Table 3).

Table 3. Percent that the MD algorithm is faster than the other algorithms.

The MD Algorithm Is % Faster Compared to

CS CB LB MS NLN SKA05 SCE2 KWC

6.20% 18.27% 5.27% 23.01% 4.89% 11.55% 21.03% 2.36%

As already mentioned, each algorithm has advantages and disadvantages. The MD
algorithm when compared with all other algorithms is not only the fastest but also the
simplest. The CS algorithm has a decent performance although the oldest of all. The CB
algorithm has one of the worst performances and uses advanced mathematical concepts but
it can be applied to any convex polygon clipping area. Moreover, it can be easily extended
to three-dimensional clipping. LB looks like CB and also uses advanced mathematical
concepts but performs better. It can also be applied to three-dimensional clipping but not
against a convex polygon. MS has the worst performance among all clipping algorithms
due to continuous divisions. It is not easily applicable but its performance may increase if
it is used with hardware clipping. The NLN algorithm has a good performance but its code
is very long since it uses a large number of sub-cases and subroutines for the geometric
transformations and clipping. SKA05 is a little bit complex and relatively slow due to the
double classification of each vertex. SCE2 has a bad performance but it is designed to
be better for clipping lines against convex polygons with more than four edges. Finally,
the KWC algorithm uses a similar approach to the CS and is very fast but it uses many
conditions when handling horizontal and vertical lines which makes the algorithm more
complicated and slower than the MD.

6. Line Clipping vs. Polygon Clipping

The term “line clipping against a polygon” is often confused with the term “polygon
clipping”. Although clipping is the main concept in both cases, these two terms describe
a different behavior for each clipping procedure. Line clipping against a polygon means
that one or more lines are going to be clipped one by one and the result will be just clipped
lines [29]. For example, if we want to clip three consecutive lines that form a triangle against
a convex polygon, the result would be only the clipped lines (see Figure 27).

Figure 27. Clipping three consecutive lines that form a triangle against a convex polygon. The result
is clipped lines.

On the other hand, polygon clipping behaves slightly differently. Clipping is applied
between polygons and the result is a new polygon. So, if we want to clip a triangle against
a convex polygon, the result would be a new convex polygon (see Figure 28).
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Figure 28. Clipping a polygon (triangle) against a polygon. The result is a new polygon.

There are many polygon clipping algorithms such as Weiler–Atherton [30], Sutherland–
Hodgman [31], Greiner–Hormann [32], Vatti [33]. Unfortunately, these algorithms cannot
work as a “line clipping against a polygon” algorithm unless they are heavily modified.

From the algorithms described before, Cyrus–Beck, Skala 2005 and S-Clip E2 can
be easily modified to clip lines against a convex polygon clipping area instead of a
rectangle window.

7. Matthes–Drakopoulos Line Clipping against a Convex Polygon

A new computation method for two-dimensional line clipping against a convex poly-
gon clipping area is introduced. All calculations are based on a virtual cross product of
vectors in the two-dimensional space. The algorithm, if necessary, computes only the
intersection points between the line and the edges of the clipping convex polygon. The
evaluation of the algorithm shows that its performance is by far better than the other
relative algorithms. There is no limit to the number of vertices of the convex polygon area.

7.1. Mathematical Background: The Cross Product

We know that a vector can be defined by two points and has magnitude (or length)
and direction; see Figure 29.

Figure 29. Magnitude and direction of a vector.

Two vectors a and b in the three-dimensional space can be multiplied using the cross
product. The cross product of the two vectors, which is symbolized as a× b, is another
vector that is at right angles to both of them (Figure 30).
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Figure 30. The cross product of 2 vectors is a third vector in the 3D space.

The magnitude (length) of the cross product equals the area of a parallelogram with
vectors a and b used as sides of the parallelogram; see Figure 31.

Figure 31. The cross product equals the area of a parallelogram with vectors a and b used as sides of
the parallelogram.

The cross product has the following characteristics:

• Has zero length, when the vectors a and b are in the same or the opposite direction.
• It reaches the maximum length when the vectors a and b are at right angles.
• The direction changes depending on the angle of vectors a and b; see Figure 32.

Figure 32. The direction changes depending on the angle of vectors a and b.

The cross product does not really exist in the two-dimensional space as the operation
is not defined there. However, it is handy to assume that the cross product of two vectors
in the two-dimensional space exists by assuming that these vectors are three-dimensional
with their Z-coordinate set to zero. The result is a scalar (vector with only a Z-component)
and it can be considered as a point perpendicular to the X-Y plane. The sign of this value
represents the direction of the cross product vector in the three-dimensional space and, as
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a result, we can determine the orientation between the two two-dimensional vectors (see
Figure 33). From now on, this virtual cross product of two-dimensional vectors will be
simply referred to as “2D cross product”.

Figure 33. From the sign of the 2D cross product we can determine, if vector b is to the left, to the
right or on vector a.

Having said that, we can easily understand if a point P(xp, yp) is to the left, to the
right right or on the line segment E defined by the points A(xa, ya) and B(xb, yb) (see
Figures 34 and 35).

Figure 34. Checking if point P is left, right or on the line segment E.

The trick is to see all these points as two vectors (vector AP and vector AB) with a
common origin and then check the sign of their 2D cross product. A positive or negative
value means that point P would be right or left to the line segment E, respectively, and a
zero value means that the point P would be on it.

Figure 35. Using the 2D cross product to determine the position of the point P comparing to the line
segment E.

Let us analyze it a little bit further. Based on Figure 35, the cross product of vector
−→
AB

with vector
−→
AP is:

−→
AB×−→AP =

∣∣∣∣(xb − xa) (yb − ya)
(xp − xa) (yp − ya)

∣∣∣∣⇒
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−→
AB×−→AP = (xb − xa) · (yp − ya)− (yb − ya) · (xp − xa) (4)

By using the right-hand rule, if the value of the cross product is positive then the point P is
to the left of the vector

−→
AB and left to the line segment E (direction matters). Likewise, if

the value is negative then point P is to the right. Of course, zero means that it is on the line.
Having this in mind, we can create a function in pseudo-code (C++ based) that accepts

three points, one arbitrary and two of the line, that returns the 2D cross product.

// INPUT: arbitary point P, line points A & B
// OUTPUT: cross product (clockwise order)
// > 0 : left side
// < 0 : right side
// = 0 : on the line

float cross_product(point P, point A, point B)
{

return (B.x - A.x) * (P.y - A.y) - (B.y - A.y) * (P.x - A.x);
}

7.2. Further Analysis of the Cross Product

The cross product may also be used for determining the intersection of two line
segments. Let us assume that two points A(xa, ya) and B(xb, yb) define the line segment AB
and two points C(xc, yc) and D(xd, yd) define the line segment CD on the two-dimensional
space (see Figure 36).

Figure 36. Two lines on a two-dimensional space.

The intersection of these two lines is a point I(x, y) with the following characteristics:

• The 2D cross product of point I with the line segment AB is zero.
• The 2D cross product of point I with the line segment CD is zero.

This is depicted better on Figure 37.
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Figure 37. Cross product between the vectors AI and AB as well as between CI and CD is zero.

For the vectors AI and AB of Figure 37, the cross product is zero:

−→
AI ×−→AB = 0⇒∣∣∣∣ (x− xa) (y− ya)

(xb − xa) (yb − ya)

∣∣∣∣ = 0⇒

(x− xa) · (yb − ya)− (xb − xa) · (y− ya) = 0⇒

x · (yb − ya)− xa · (yb − ya)− y · (xb − xa) + ya · (xb − xa) = 0⇒

(yb − ya) · x− (xb − xa) · y = xa · (yb − ya)− ya · (xb − xa) (5)

For simplicity purposes, let us symbolize the next differences as

dx1 = (xb − xa) and dy1 = (yb − ya). (6)

Combining (5) and (6) we obtain:

dy1 · x− dx1 · y = xa · dy1 − ya · dx1. (7)

For the vectors
−→
CI and

−→
CD of Figure 37, the equation of the zero cross product would give:

x · (yd − yc)− y · (xd − xc) = xc · (yd − yc)− yc · (xd − xc). (8)

For reasons of simplicity, if we symbolize the next differences as

dx2 = (xd − xc) and dy2 = (yd − yc) (9)

we obtain
dy2 · x− dx2 · y = xc · dy2 − yc · dx2 (10)

Equations (7) and (10) have two unknowns, so we can use their determinants for solving
the system:

D =

∣∣∣∣dy1 −dx1
dy2 −dx2

∣∣∣∣ = dy2 · dx1 − dy1 · dx2

DX =

∣∣∣∣(xa · dy1 − ya · dx1) −dx1
(xc · dy2 − yc · dx2) −dx2

∣∣∣∣
= (xc · dy2 − yc · dx2) · dx1 − (xa · dy1 − ya · dx1) · dx2

DY =

∣∣∣∣dy1 (xa · dy1 − ya · dx1)
dy2 (xc · dy2 − yc · dx2)

∣∣∣∣
= (xc · dy2 − yc · dx2) · dy1 − (xa · dy1 − ya · dx1) · dy2
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Solving for x and y:

x =
DX
D

=
(xc · dy2 − yc · dx2) · dx1 − (xa · dy1 − ya · dx1) · dx2

dy2 · dx1 − dy1 · dx2
(11)

y =
DY
D

=
(xc · dy2 − yc · dx2) · dy1 − (xa · dy1 − ya · dx1) · dy2

dy2 · dx1 − dy1 · dx2
. (12)

We can create a function in pseudo-code (C++ based) that accepts two pairs of points, where
each pair represents a line segment, and returns the intersection point of these line segments.
Of course, we also take advantage of the similarities between the Equations (11) and (12).

point intersection(point A, point B, point C, point D)
{

// calculate the intersection point between lines AB and CD
point d1 = {B.x - A.x, B.y - A.y};
point d2 = {D.x - C.x, D.y - C.y};
float n1 = C.x * d2.y - C.y * d2.x;
float n2 = A.x * d1.y - A.y * d1.x;
float n3 = 1/(d2.y * d1.x - d1.y * d2.x);
float x = (n1 * d1.x - n2 * d2.x) * n3;
float y = (n1 * d1.y - n2 * d2.y) * n3;
return {x, y};

}

7.3. Description of the Algorithm

The clipping polygon has N vertices which are given in clockwise order. The first point
of the polygon is P1(x1, y1) and the last point is PN(xN , yN). There are also N edges with
names from E1 to EN . The line segment is defined by the points A(xa, ya) and B(xb, yb).
Clockwise order means that as we go through the edges from E1 to EN , if a point is left of
an edge then the 2D cross product is greater than zero, if a point is right of an edge then the
2D cross product is less than zero and if a point is on the edge then the 2D cross product is
just zero (see Figures 38 and 39).

Figure 38. A convex polygon with N points and N edges and a line in the 2D space.
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Figure 39. Checking if points A and B are left, right or on the edge E1 of the polygon.

7.4. Analysis

In order to clip the line, we have to go through each edge of the polygon in clockwise
order and find where the points A and B reside compared to each edge. By residing, we
mean that we have to determine, if the points A and B are to the left, to the right or on the
edge (see Figure 39).

If both points A and B are to the left side of an edge then we reject the line as it
is completely outside of the polygon, we draw nothing and the algorithm stops (see
Figure 40).

Figure 40. If points A and B are on the left side of an edge then the line is completely outside.

If point A is left of the edge and point B is right of the edge or on the edge, we calculate
the intersection point between the edge and the line segment AB. Then, we replace point A
with the intersection point (see Figure 41).
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Figure 41. The intersection point replaces the point that it is outside the polygon.

Similarly, if point B is left of the edge and point A is right of the edge or on the edge,
we calculate the intersection point between the edge and the line segment AB and we
replace point B with the intersection point.

If points A and B are:

• Simultaneously right to the edge.
• One of them is on the edge and the other is right of the edge.

Then, we proceed to the next edge and repeat the same process or we stop if all of the N
edges have been checked.

At the end, we draw a line segment from clipped point A to clipped point B (see
Figure 42).

Figure 42. At the end, we draw a line segment from clipped point A to clipped point B.

7.5. The Steps of the Algorithm

1. Check against an edge of the polygon which is defined by the vertices Pi(xi, yi) and
Pi+1(xi+1, yi+1) where the points A(xa, ya) and B(xb, yb) of the line reside. Each point
may reside to the left of the edge, to the right of the edge or on the edge.



J. Imaging 2022, 8, 286 28 of 32

2. If both of the points are to the left of the edge then stop the algorithm and draw
nothing. The line is completely outside the convex polygon.

3. If only point A is to the left of the edge then calculate the intersection point between
the edge and the line. Replace the coordinates of point A with those coordinates of
the intersection point and repeat from Step 1 with the next edge.

4. If only point B is to the left of the edge then calculate the intersection point between
the edge and the line. Replace the coordinates of point B with those coordinates of the
intersection point and repeat from Step 1 with the next edge.

5. If both points A and B are to the right of the edge or one of them is on the edge and
the other is right of the edge then repeat from Step 1 with the next edge or stop if you
have checked all N edges.

6. Draw the clipped line from point A to point B.

7.6. Pseudo-Code (C++ Based)

// INPUT : point A, point B, N, point polygon[N + 1] (last vertex is equal to first)
// OUTPUT : clipped line segment from point A to point B

float sideA, sideB;
bool draw = true;

for(int i = 0; i < N; i++)
{

// sideX > 0 --> LEFT
// sideX < 0 --> RIGHT
// sideX = 0 --> ON THE EDGE
sideA = cross_product(A, polygon[i], polygon[i + 1]);
sideB = cross_product(B, polygon[i], polygon[i + 1]);

if(sideA > 0 && sideB > 0)
{

// line is completely outside
draw = false;
break;

}

if(sideA > 0 && sideB <= 0)
// point A is outside, point B is inside polygon or on the edge
A = intersection(A, B, polygon[i], polygon[i + 1]);
else if(sideB > 0 && sideA <= 0)
// point B is outside, point A is inside polygon or on the edge
B = intersection(A, B, polygon[i], polygon[i + 1]);

}

if(draw)
draw_line(A, B);

8. Evaluation of All Line-Clipping against a Convex Polygon Algorithms

In order to determine the efficiency of all line clipping against convex polygon algo-
rithms, we benchmarked them in the following way: Each one was creating 10,000,000 arbi-
trary lines in a two-dimensional space. The limits of this space were the points (−960, 720)
and (960,−720). The convex polygon (clipping area) was drawn somewhere inside our
screen which had a resolution of 480 pixels width and 360 pixels height and with the center
of the screen being the start of the axes X and Y (see Figure 43). The lines were randomly
generated anywhere in the two-dimensional space and each algorithm had to clip and
draw only the visible part of the lines inside the convex polygon. The total time that each
algorithm needed to clip and draw these lines was recorded in every execution. The whole
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process was repeated 10 times and at the end, the average time was calculated; see Table 4,
Figures 44 and 45.

Figure 43. The two-dimensional space for generating arbitrary lines.

This process was repeated with many convex polygons with different vertices/edges.
The hardware, as well as the software specifications for the evaluation, was: (a) Intel
Core i7-9750H @2.60 Gz CPU, (b) RAM 16 GB, (c) NVIDIA GeForce RTX 2070/8 GB GPU,
(d) Windows 10 Pro 64-bit operating system, (e) C++ with OpenGL/Freeglut under the
Code::Blocks environment.

Table 4. Average execution time of each algorithm when clipping 10 million lines against convex
polygons with different numbers of edges.

Number of
Edges

Cyrus–Beck
(sec) Skala 2005 (sec) S-Clip E2 (sec)

Matthes–
Drakopoulos

(sec)

5 2.443 2.443 2.425 2.358
6 2.657 2.655 2.564 2.501
7 2.743 2.682 2.648 2.590
8 2.860 2.859 2.686 2.632
9 2.938 2.826 2.820 2.774
10 3.139 3.104 2.949 2.884

Figure 44. Average time of each algorithm when clipping 10 million lines against convex polygons
with different number of edges (lower is better).
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Figure 45. Speed graph of each algorithm when clipping 10 million lines against convex polygons
with different number of edges (lower is better).

By using the formula
MD− other

MD
· 100

we can evaluate the speed of the MD algorithm in percent compared to the others. The next
table shows this evaluation of speed; see Table 5.

Table 5. Percent that the MD algorithm is faster than the other algorithms.

Edges MD Algorithm Is Faster Compared to
Cyrus-Beck Skala 2005 S-Clip E2

5 3.58% 3.61% 2.85%
6 6.21% 6.16% 2.50%
7 5.92% 3.54% 2.25%
8 8.65% 8.62% 2.07%
9 5.90% 1.87% 1.65%
10 8.84% 7.65% 2.26%

So, comparing all the algorithms together we can conclude that the slowest of all is
Cyrus–Beck. Skala 2005 is faster than Cyrus–Beck but not faster than the other two: S-clip
E2 and MD. S-clip E2 performs very well but the performance of MD is high and steady in
all cases.

9. Summary

The primary use of clipping in computer graphics is to remove objects, lines, or line
segments that are outside the viewing pane and it is crucial. All objects that are not inside
the field of view of the viewer have to be removed before generating the scene. For this
reason, clipping is considered an important process. Clipping can be applied to objects
like points, lines, polygons, curves, etc. Clipping a single point is rather easy, the clipping
algorithm just accepts or rejects the point if its location is inside or outside the clipping
window. However, when clipping a line or other objects, things are more complicated and
more calculations have to be performed.

Many line-clipping algorithms in two dimensions have been developed over recent
years. Each one has advantages and disadvantages. The computer programmer has to
choose the suitable one according to his needs among a number of characteristics such
as efficiency in calculations, the type of clipping area (rectangular, polygon or other), the
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type of mathematical approach (equations or vectors), whether the algorithm can be easily
extended to other dimensions such as three dimensions and so on. This contribution briefly
summarized common and uncommon line-clipping methods in 2D whereas it includes
some of the latest research made by the authors.
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