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Abstract: Lung cancer accounts for more deaths worldwide than any other cancer disease. In order to
provide patients with the most effective treatment for these aggressive tumours, multimodal learning
is emerging as a new and promising field of research that aims to extract complementary information
from the data of different modalities for prognostic and predictive purposes. This knowledge could
be used to optimise current treatments and maximise their effectiveness. To predict overall survival,
in this work, we investigate the use of multimodal learning on the CLARO dataset, which includes CT
images and clinical data collected from a cohort of non-small-cell lung cancer patients. Our method
allows the identification of the optimal set of classifiers to be included in the ensemble in a late fusion
approach. Specifically, after training unimodal models on each modality, it selects the best ensemble
by solving a multiobjective optimisation problem that maximises both the recognition performance
and the diversity of the predictions. In the ensemble, the labels of each sample are assigned using the
majority voting rule. As further validation, we show that the proposed ensemble outperforms the
models learning a single modality, obtaining state-of-the-art results on the task at hand.

Keywords: multimodal deep learning; multiexpert systems; optimisation; convolutional neural
networks; precision medicine; oncology; medical imaging; tabular data

1. Introduction

Lung cancer is the second most common type of tumour worldwide, accounting for
approximately 11.4% of all cases [1], and it is the first in terms of number of deaths. Non-
small-cell lung cancer (NSCLC) is the most frequent, with approximately 82% of all cases [2].
The most common treatment options, selected according to patients’ characteristics, include
radiotherapy, chemotherapy, surgical resection, and immunotherapy but also targeted
therapy [2,3].
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Overall survival (OS), a measure of the time elapsed from the date of diagnosis until
the patient’s death, allows the identification of subgroups of patients with a better or worse
prognosis. Nevertheless, the 5-year survival rate for NSCLC is 26%, and it drops further
to 7% when local recurrence or distant metastases occur [2]; in this respect, strategies to
improve OS are urgently needed.

Over the last few years, there has been a growing interest in the development and ap-
plication of Artificial Intelligence (AI) methods to oncology to help personalised medicine
make further progress by facilitating the identification of the correct treatment for each
patient. This has fostered the emergence of radiomics, which represents the bridge between
medical imaging and personalised medicine since it computes, in a non-invasive manner,
quantitative characteristics from medical images, such as CT, MRI, X-ray, and PET, repre-
senting tumour phenotype [4–7]. In addition to radiomics, researchers have attempted
to extract prognostic information from other modalities, e.g., genome sequencing, whole-
slide images (WSI), etc. [8–10]. For example, genomics data from a tumour allow the
identification of cancer driver genes, whilst a WSI from a biopsy provides insight into the
morphology and microenvironment of the tumour.

Several learning methods exist to perform these prognostic tasks, which can be roughly
divided into model-based and data-based approaches. The former assume a model to de-
scribe the data trend, whilst the latter, exploiting the current large availability of digital
repositories and using increasingly high-performance AI algorithms, learn directly from
the data. In lung cancer predictive applications, such learning methods usually exploit one
modality only [11–16], but the availability of multimodal data, which provide complemen-
tary information about the phenomenon under investigation, has led to the development
of multimodal learning techniques able to cope with different information and to perform
significantly better than unimodal models [17–21]. From an AI perspective, early, joint,
and late fusion are the three main fusion techniques to merge different modalities’ informa-
tion. In the first technique, the features of each modality are merged according to a rule
into a feature vector to be given to the learner; in the second, the different modalities are
merged at hidden and embedded levels, whilst in the last technique, the predictions made
using the individual modalities are aggregated according to an aggregation rule.

In NSCLC, several studies have searched for a set of quantitative biomarkers, also
referred to as a signature, to predict the overall survival. Among them, Table 1 summarises
those using multimodal approaches [22–25], which are also now shortly overviewed.

In Amini et al. [22], the authors used the NSCLC dataset available on The Cancer
Imaging Archive (TCIA) [26] to present an early fusion-like approach which fuses PET
and CT images, using a technique based on 3D discrete wavelet transform to combine
spatial and frequency features, and then it extracts radiomic features (first-order, textural,
and moment invariant features). After performing feature selection via univariate Cox
analysis, the authors applied the Kaplan–Meier method. The proposed approach obtained a
concordance index (C-index) of 0.708, measured with 1000-time bootstraps, which is higher
than the results they achieved from unimodal and traditional early fusion approaches
(concatenation and averaging of the feature vectors separately extracted for each modality).

In Wu et al. [23], the authors used another NSCLC dataset also available on TCIA [27],
and they performed an early fusion of deep features extracted from CT images and clinical
data. The former were extracted using a 3D-ResNet34, whilst the latter using a Multilayer
Perceptron (MLP). The concatenation of these features fed an MLP. In 5-fold cross-validation
with a patient-level split, the authors tested different configurations by varying the structure
of the ResNet, the depth of the final MLP, and the ratio between the number of the two types
of deep features, achieving a C-index equal to 0.658 as best result.
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Table 1. Summary of the background on the multimodal learning to predict the overall survival in
NSCLC. For the sake of completeness, the last section puts our contribution in the context of the
literature.

Author Modalities Study
Population

Number of
Patients

Data
Representation

Fusion
Modality Learning Model Performance

Amini et al.
[22] CT, PET NSCLC I-IV

stages 182

Radiomic features
extracted from an
image obtained by
merging PET and
CT scans through
a technique based

on 3D discrete
wavelet transform

Early Kaplan–Meier
method C-index: 0.708

Wu et al.
[23] CT, clinical data NSCLC I-III

stages 422

Concatenation of
deep features
extracted by a

3D-ResNet34 and
an MLP for CT

images and
clinical data,
respectively

Early MLP C-index: 0.658

He et al.
[24] CT, clinical data NSCLC I-III

stages 316 Clinical data and
radiomic features Late

Modular architecture
with SVM, DT, KNN,
RF, and XGBoost as

base classifiers

AUC: 0.81

Vale-Silva
and Rohr

[25]

clinical data, gene
expression,
microRNA

expression, DNA
methylation, gene

copy number
variation data, and

WSI

33 different
cancer types 11.081

Element-wise
maxima across the

set of
representation

vectors of
single-modality

submodels

Joint

Modular architecture,
with dedicated input

data modality
submodels, a data
fusion layer, and a

final survival
prediction MLP

submodel

Time-
dependent

C-index: best
0.822

lung squamous
cell carcinoma

0.554

Putting our
work in the
background

CT, clinical data NSCLC II-IV
stages 191 Clinical data and

CT slices

Optimisation-
driven

late

multimodal ensemble
of learners trained on
different modalities

and selected by a
multiobjective
optimisation

algorithm

ACC: 0.75

In He et al. [24], the authors developed a hierarchical multicriterion fusion strategy
to combine the predictions made by various classifiers working with different modalities.
Even this study is based on the same data available on TCIA [27] used by [23], and it only
takes into account 316 patients in whom the gross tumour volume was delineated. This per-
mitted to extract clinical features and radiomic features (textural and non-textural) for each
patient that, after a feature selection step separately performed for the two modalities
were fed into the system. The modular architecture allows each modality to be analysed
separately with a set of classifiers (Support Vector Machine, k-Nearest Neighbours, Deci-
sion Tree, Random Forest, and Extreme Gradient Boosting). By means of a sequence of
aggregation rules that weight the contribution of each classifier to the output probability of
each modality and then combine the probabilities of each modality, the system produces
the final prediction. The experiments, run in 5-fold cross-validation, return an Area Under
the ROC Curve (AUC) equal to 0.81.

In Vale-Silva and Rohr [25], the authors used the data in the National Cancer Institute’s
Genomic Data Commons database [28] to develop a multimodal deep learning method for
long-term pan-cancer survival prediction, called MultiSurv, which works with six different
modalities, namely clinical data, gene expression, microRNA expression, DNA methylation,
gene copy number variation data, and WSI. In this modular architecture, each input data
modality is handled by a dedicated submodel. For the clinical and omics submodels,
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they used an MLP, whilst for the imaging submodel a ResNeXt-50. The data fusion layer
aggregates the multimodal feature representations by taking the element-wise maxima
across the set of representation vectors, allowing any missing modalities to be handled
as well. The fusion vector is the input to an MLP, which returns as output a vector of
probabilities, one for each time interval of a set of predefined follow-up time intervals.
This system was trained in an end-to-end fashion, applying an holdout cross-validation
stratified by cancer type. The authors evaluated the model with different numbers and
combinations of the six modalities, and the best performance was obtained with bimodal
inputs combining clinical data with gene expression (time-dependent C-index: 0.822).

Although the works in the literature achieved promising results, they are few in
number, despite the importance of predicting the overall survival in NSCLC cancer that,
in turn, may open the chance to develop personalised therapeutic approaches. Further-
more, two out four of such contributions explored early fusion, one investigated late fusion,
and the other joint fusion. In particular, the one using late fusion computes handcrafted fea-
tures from CT images that feed well-established classifiers. Nevertheless, in the last decade,
deep learning has shown its potential in several fields, medical imaging included [29–31],
to automatically learn discriminative features directly from images, without being limited
to using predefined features or other descriptors whose definition come from researchers’
experience. In particular, Convolutional Neural Networks (CNNs) are a well-established
set of network architectures exploiting convolutional layers (and their variations) to learn
a compact hierarchical representation of the input that well fits the specific task to solve.
In this respect, and as an evolution of the state-of-the-art shown in Table 1, in this work, we
present a method to algorithmically optimise the way to set up a multimodal ensemble of
deep networks, which are then combined by a late fusion approach. Such an ensemble uses
image and clinical data to tackle the challenge to predict the overall survival in a cohort of
191 patients affected by NSCLC cancer. Exploiting the classifications of different unimodal
models, we propose an optimised multimodal late fusion approach, whose performance is
shown in Section 4. In particular, our method addresses a key and open question in multi-
modal deep learning [18,32], i.e., which should be the deep networks for each modality to
be combined in the ensemble among the many available.

The manuscript is organised as follows: the next section describes the materials,
and Section 3 introduces the methods. Section 4 presents and discusses the experimental
results; finally, Section 5 provides concluding remarks.

2. Materials

Our clinical decision support system uses image and clinical data available within the
CLARO dataset, which includes 191 NSCLC patients treated with concurrent chemoradia-
tion for locally advanced NSCLC (86% of cases) and systemic treatment in the metastatic
setting (14%). During treatment, all patients underwent weekly chest Computed To-
mography (CT) scans, without intravenous contrast, to assess acute toxicity and tumour
shrinkage, which were reviewed by two radiation oncologists independently. For all CTs,
each physician was able to judge whether reduction was: (a) present and clinically sig-
nificant, (b) present and clinically non-significant, or (c) absent. In the case of physician
agreement for the (a) category, a contrast-enhanced CT was performed to better visualise
node reduction, a new target volume was delineated, and a new treatment plan performed.
Patients were treated without any time break.

The population was enrolled under two different approvals (the retrospesctive and
prospective phases) of the Ethical Committee. The former was approved on 30 October 2012
and registered at ClinicalTrials.gov on 12 July 2018 with Identifier NCT03583723, whilst the
latter was approved on 16 April 2019 with Identifier 16/19 OSS, and it was closed on April
2022. The Institutional Review Board approved this review. Written informed consent was
obtained in all patients. The authors confirm that all ongoing and related trials for this
intervention are registered.
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The median OS for the entire population was 15.64 months, with a mean of 23.85± 77.22
(95% CI). The patients were then clinically followed until they were divided into two classes
based on the median OS of all the patients: 95 dead and 96 alive.

2.1. Imaging

The characteristics investigated were extracted from CT scans collected at the time
of patient diagnosis, on which expert radiation oncologists delineated the Clinical Target
Volume (CTV).

For each patient, the CT images were acquired before the treatment using a Siemens
Somatom Emotion, with 140 Kv, 80 mAs, and 3 mm for slice thickness. The scans were
preprocessed applying a lung filter (kernel B70) and a mediastinum filter (kernel B31).

2.2. Clinical Features

Clinical data contained different information, which are listed in Table 2 together
with the number of missing values and the distribution for each tabular feature among
the different discrete values. To define the stage of the tumour, two experienced radiation
oncologists (ROs) independently reviewed CT scans and assigned the staging scores of the
tumour (T, N, and tumour stage); in case of disagreement, they reviewed the CT images
together until consensus was reached. In addition to staging, age, and sex, Table 2 shows
that we also collected features describing the histology of the tumour and the initial CTV,
so that the clinical data account for seven descriptors in total.

Table 2. Patients’ characteristics. As marked by *, note that, although age and CTV are continuous
variables, for the sake of synthesis we report here their distribution considering their median values
as thresholds, whilst the model used the continuous values. The division into stages is further
defined by letters (a, b, and c), which are not reported for the sake of brevity, but the model uses the
actual stages.

Feature Missing Data Categories Distribution

Age * 26 (13.62%) <71 years 82 (42.93%)
≥71 years 83 (43.46%)

CTV * 37 (19.37%) <114.88 cm3 77 (40.31%)
≥114.88 cm3 77 (40.31%)

Sex 0 (0.00%) Male 133 (69.63%)
Female 58 (30.37%)

Histology 0 (0.00%) Adenocarcinoma 95 (49.74%)
Squamous 59 (30.89%)

Other 11 (5.76%)
Unknown 26 (13.61%)

Stage 0 (0.00%) II 4 (2.09%)
III 160 (83.77%)
IV 27 (14.14%)

T stage 36 (18.85%) T0 1 (0.52%)
T1 9 (4.71%)
T2 32 (16.75%)
T3 65 (34.03%)
T4 48 (25.13%)

N stage 26 (13.61%) N0 15 (7.85%)
N1 33 (17.28%)
N2 93 (48.69%)

recurrence N2 6 (3.14%)
N3 18 (9.42%)

In the imputation of missing values, the median value and the mode of the training
set data were assigned for the numerical and categorical features, respectively. Further-
more, it should be noted that not all patients underwent a histopathological examination.
Nevertheless, since on the one side it was not possible to impute the histology of the
tumour and, on the other side, this feature could be informative, we add a virtual category
named unknown.
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3. Methods

To predict the prognosis in terms of binary classification task over the OS, we exploited
both the images and clinical data described before, which were processed by a multimodal
DL pipeline that, in the training phase, finds the optimal combination of models of different
modalities via multiobjective optimisation. The idea stems from observing that today many
deep neural networks are available, both in terms of architectures as well as of pretrained
weights. This allows researchers to train or fine-tune them to search for the most suitable for
the task at hand. Furthermore, it is well-known that, in many cases, ensembles of classifiers
combined in late fusion provide better performance than unimodal models [33], but, at the
same time, the learners in the ensemble have to complement each other, i.e., they have to
make wrong decisions on different samples. Therefore, the abundance of available models
asks for methods to support researchers in determining which is the best multimodal
ensemble, a challenge that we address using an algorithmic and multimodal approach,
schematically represented in Figure 1. It works with m different modalities and M different
models, so that Mm is the number of models available for the mth modality. Furthermore,
we denote with E an ensemble built using one or more models per modality, whose outputs
are combined by majority voting. Figure 1 shows that our method essentially consists of
three main steps:

• Training all the available models for every single modality using the training sets
defined by the bootstrap validation approach;

• Finding the multimodal set of unimodal models solving a multiobjective optimisation
problem working with evaluation and diversity scores, which are computed on the
validation sets defined by the same bootstrap approach;

• Computing the performance on the test sets defined by bootstrap, which are then
averaged out (block “Average performance evaluation”).

These steps are now detailed in the next subsections.

Figure 1. Schematic view of the pipeline. Symbols: Tr: training set, Vl: validation set, Te: test set,
m: model, M: number of models (·Cl : for clinical data and ·Im: for data from images), ·b: a generic
bootstrap fold, E: (models’) ensemble, ·i: a generic ensemble, C: number of ensembles, R: function of
recall, K: function of diversity.

3.1. Training

To obtain the optimal ensemble E∗ of models, the first step is to independently train
and evaluate the different M unimodal models on the respective m modalities. In our
scenario, we had M = MCl + MIm, where MCl and MIm denote the number of models for
the clinical data and the imaging modality, respectively.
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With respect to the clinical data, we worked with MCl = 7 different ML and DL models,
which are acknowledged in the literature as those that best work with this modality [34].
In alphabetical order they are:

• AdaBoost as a cascade of classifiers;
• Decision Tree (DT) as tree model;
• Multilayer perceptron (MLP) as neural architecture with one hidden layer with 13 neu-

rons and 1 neuron in the output layer, which use the ReLU and Sigmoid activation
functions, respectively;

• Random forest (RF) as an ensemble of trees;
• Support Vector Machine (SVM) as a kernel machine;
• TABNET [35] as a neural architecture;
• XGBoost a variation of the AdaBoost that uses a gradient descent procedure to min-

imise the loss when adding weak learners.

Let us now turn the attention to see image modality. We worked with MIm = 30 dif-
ferent CNNs from 8 architecture families, which have proved to have promising results in
many biomedical applications [36]. They are:

• AlexNet [37];
• VGG [38]: VGG11, VGG11-BN, VGG13, VGG13-BN, VGG16, VGG16-BN, VGG19,

VGG19-BN, where the suffix BN means that batch normalization is used;
• ResNet [39]: ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, ResNeXt50,

ResNeXt101, Wide-ResNet50-2, Wide-ResNet101-2;
• DenseNet [40]: DenseNet121, DenseNet169, DenseNet161, DenseNet201;
• GoogLeNet [41];
• ShuffleNet [42]: ShuffleNet-v2-x0-5, ShuffleNet-v2-x1-0, ShuffleNet-v2-x1-5, ShuffleNet-v2-x2-0;
• MobileNetV2 [43];
• MNasNet [44]: MNasNet0-5, MNasNet1-0.

All the CNNs were pretrained on the ImageNet dataset [45]. The architectures, layer
organisation, and complexity of such models gave us the opportunity to investigate how
different models perform on the task at hand.

3.2. Optimisation

To answer the question of which architectures should be used to construct the best
multimodal ensemble, we solved a multiobjective optimisation problem that works with
two scores capturing different views of the ensemble performance. Indeed, given an
ensemble E, on one side we measured its recall (R) using, straightforwardly, the labels
computed by applying the aforementioned majority voting scheme. R is defined as

R =
TP
P

(1)

where TP is the number of true positive classifications and P is the number of positive
instances, and it measures the sensitivity of the model, a desirable property in our ap-
plication ensuring that no positive patients get excluded before treatment. On the other
side, the optimisation algorithm also works with the kappa diversity (K), a pairwise score
measuring to what extent two models provide the same errors. It is defined as

K = 1− 2(N11N00 − N01N10)

(N11 + N10)(N01 + N00) + (N11 + N01)(N10 + N00)
(2)

where N11 and N00 are the number of instances classified correctly and incorrectly by each
of the two models under consideration, respectively, and N10 and N01 are the number of
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instances classified correctly by the first model and incorrectly by the second and vice versa,
respectively. The overall ensemble diversity is given by

2
|E|(|E| − 1)

|E|−1

∑
i=1

|E|

∑
j=i+1

k (3)

where |E| is the number of models in E. Given these premises, let us notice that both R
and K range in [0, 1], and the higher the values, the more accurate and diverse the models.
Hence, our algorithm solves the following multiobjective problem to determine the best
ensemble E∗:

E∗ = arg min
E

[(1− R(E))2 + (1− K(E))2] (4)

s.t. 
|E∗| > 1
|E∗|mod2 = 1
|E∗|Cl ≥ 1
|E∗|Im ≥ 1

(5)

where R(E), K(E) represent the average values of R and K, respectively, of an ensemble
E computed across all the validation sets given by bootstrap, a choice that avoids any
bias. Looking at the constraints, |E∗| denotes the number of models in E∗, whilst |E∗|Cl
and |E∗|Im stand for the number of models in E∗ working with clinical and imaging data,
respectively; finally, mod is the modulo operation. The first two conditions imply that
the number of models in E∗ is odd to prevent ties in the majority voting, whilst the third
and fourth conditions ensure that at least one model for each modality is present in E∗.
Note also that finding E∗ is equivalent to finding the Pareto optimum of this optimisation
problem, as we showed in [46–48]; nevertheless, here, we are extending our previous
unimodal approach [46] to multimodal learning, as guaranteed by the last two conditions
in Equation (5).

Hence, this optimisation algorithm performs an exhaustive search for the ensemble E∗

that, among the C = 2M−2MCl−2MIm
2 combinations of learners, returns the best classification

performance and reduces the incidence and effect of coincident errors among its members,
thus considering possible relationships between models and modalities. Furthermore,
the simple minimisation of only one of the objective functions (R or K) is not the best
approach, since some models may degrade the performance of the ensemble, and they may
have redundant classifications between each other, not exploiting the trade-off between
performance and diversity [49].

Finally, in the test phase, each input instance is given to all the learners in E∗, whose
outputs are combined by majority voting to obtain the final prediction.

3.3. Preprocessing

Before feeding the data to the models, a preprocessing phase was executed for
both modalities.

With reference to the clinical data, we applied one hot encoding to categorical features,
so that the original 7 features were mapped to 27 descriptors, which in practice were used
as input to all the classifiers mentioned before for the clinical data. Furthermore, numerical
features were normalised in [0, 1]. No data augmentation was applied to the clinical data.
For all clinical models listed in Section 3.1, the default parameters of the libraries were used.

With reference to the imaging modality, we used a U-Net to automatically align the
images by detecting the region of interest of the scans by including the bounding cuboid
segmenting the lungs. The U-Net architecture has proved to obtain good performance in
many biomedical applications [50]. We trained this network on the TCIA publicly available
dataset [27], which comprises 422 patients, and on a subset of our dataset, 125 patients
whose lungs had already been delineated, with the goal of segmenting the lung pixels of
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each 2D slice. From this segmentation, we extracted the minimum bounding cuboid of
the segmented volume, preventing any deformation once re-scaled . As input, the U-Net
received 224 × 224 images, and it was trained with an Adam optimiser and with a Dice
loss function. The batch size was set to 32, and the number of epochs was equal to 50,
but an early stop criterion was triggered at 13th epoch. We assessed the performance of
this network in holdout cross-validation, obtaining a Dice score and an intersection over
union equal to 98.5 and 97.0, respectively, which we considered satisfactory for our task.

Let us now focus on the image classification stage. All the CNNs work with 2D
images, i.e., at CT slice level, and they need an input of size 224x224. To this end, each
slice of the segmented lungs was resized to 224x224 and normalised with a min–max scaler,
bringing the pixel values between 0 and 1. Random data augmentation was applied to
prevent overfitting of the CNNs: horizontal or vertical shift (−22 ≤ pixels ≤ 22), random
zoom (0.9 ≤ factor ≤ 1.1), vertical flip, random rotation (−15◦ ≤ angle ≤ 15◦), and elastic
transform (20 ≤ α ≤ 40, σ = 7). The cross-entropy loss was used and was regulated by
an Adam optimiser with an initial learning rate of 0.001, which is scheduled to reduce
by an order of magnitude every time the minimum validation loss does not change for
10 consecutive epochs. For all the nets, a maximum of 300 epochs was fixed, with an early
stopping of 25 epochs following the validation loss.

Given the fact that the CNNs work at slice level and the clinical data at patient level,
to uniform the classifications, we aggregated the predictions of the slices of each patient via
a majority-voting rule, thus obtaining a final outcome for each modality at patient level.

All the training processes were executed using an NVIDIA TESLA V100 GPU with
16 GB of memory, using PyTorch and Scikit-learn as the main coding library.

4. Results and Discussion

All the experiments were performed in bootstrap, performing five random extrac-
tions of the samples, where in each fold the proportions between the training, validation,
and testing sets are 80%-10%-10%, respectively. Straightforwardly, in the imaging modality,
all the slices coming from the same patient were always in the same set.

Table 3 shows the results: each row corresponds to a classifier in the case of unimodal
learners reported in the uppermost section; it corresponds to a multimodal ensemble in the
middle section, and it corresponds to a competitor in the bottom most section. The columns
report the performance measured in terms of accuracy, F-score, and recall to have a complete
view of how the different models perform on the test sets. With reference to the unimodal
learners, the values in Table 3 show that the best classifier working with clinical data is the
AdaBoost, whilst in the case of image data, the best CNN is the VGG11-BN. Both achieve
the largest accuracy and F-score among the pool of unimodal models, whilst the latter is
also the best in terms of recall.

The ensemble returned by our algorithm, denoted by E∗ in the table, achieves larger
performance in terms of accuracy, F-score, and recall with respect to the unimodal classifiers.
Whilst this could be expected in the case of the recall, as it is built maximising a function
including this metric, it is interesting to note that this happens also in the case of the
accuracy and F-score.

It is worth noting that the Pareto optimum E∗ is composed of three models (two
from the imaging modality and one from the clinical modality): ResNet34, VGG11-BN,
and TABNET, which belong to different families, suggesting that each model interprets its
modality in a different way to address the classification task. We notice that E∗ has better
performance (for all metrics) than the two best unimodal models. This finding implies that
it is useful to fuse different modalities, each carrying useful and distinct information for
the prognosis task whilst, at the same time, it is important to consider the diversity also,
since it offers complementary points of view to the ensemble.
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Table 3. Performance of all the tested models with the best for each modality reported in bold. Each
column shows the mean value of a performance metric followed by the standard deviation. E∗ is our
optimum ensemble; ER and EK are the ensembles which maximise R and K, respectively; E is the
average performance for all the possible ensembles; E3

post is the ensemble consisting of the unimodal

models with the largest recall, E2+∗
post is the ensemble with the two unimodal classifiers with the largest

recall per modality whilst varying the remaining experts included in the ensemble; E�c is the ensemble
obtained relaxing the multimodality constraints.

Classifier Modality Accuracy F-Score Recall

AdaBoost Clinical 65.00± 5.00 67.35 ± 6.53 74.00 ± 16.73
DT Clinical 60.00 ± 3.54 59.42 ± 9.15 62.00 ± 20.49

MLP Clinical 61.00 ± 5.48 54.37 ± 23.57 60.00 ± 38.08
RF Clinical 60.00 ± 6.12 60.72 ± 9.74 64.00 ± 16.73

SVM Clinical 59.00 ± 2.24 55.46 ± 10.29 54.00 ± 18.17
TABNET Clinical 63.00 ± 10.37 64.68 ± 11.69 70.00 ± 22.36
XGBoost Clinical 54.00 ± 8.22 49.67 ± 16.74 50.00 ± 24.49
AlexNet Imaging 50.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

DenseNet121 Imaging 62.00 ± 19.24 59.97 ± 27.79 66.00 ± 35.07
DenseNet161 Imaging 69.00 ± 6.52 68.28 ± 8.88 70.00 ± 20.00
DenseNet169 Imaging 71.00 ± 17.82 72.28 ± 17.44 76.00 ± 20.74
DenseNet201 Imaging 63.00 ± 16.05 65.95 ± 16.37 74.00 ± 23.02
GoogLeNet Imaging 60.00 ± 6.12 50.04 ± 19.69 48.00 ± 31.14

MNasNet0-5 Imaging 51.00 ± 13.42 45.65 ± 19.37 44.00 ± 23.02
MNasNet1-0 Imaging 62.00 ± 7.58 65.11 ± 9.94 74.00 ± 20.74
MobileNetV2 Imaging 67.00 ± 17.18 68.61 ± 17.17 74.00 ± 23.02

ResNet101 Imaging 51.00 ± 5.48 49.97 ± 20.44 60.00 ± 38.08
ResNet152 Imaging 71.00 ± 7.42 63.65 ± 19.16 60.00 ± 30.82
ResNet18 Imaging 64.00 ± 18.84 58.74 ± 29.30 60.00 ± 33.91
ResNet34 Imaging 70.00 ± 11.73 71.71 ± 10.51 78.00 ± 22.80
ResNet50 Imaging 69.00 ± 11.40 69.45 ± 17.58 78.00 ± 27.75

ResNeXt101 Imaging 69.00 ± 7.42 68.95 ± 8.46 70.00 ± 15.81
ResNeXt50 Imaging 63.00 ± 10.37 64.35 ± 19.82 78.00 ± 33.47

ShuffleNet-v2-x0-5 Imaging 74.00 ± 10.25 74.66 ± 11.07 78.00 ± 16.43
ShuffleNet-v2-x1-0 Imaging 67.00 ± 17.18 67.14 ± 20.74 72.00 ± 26.83
ShuffleNet-v2-x1-5 Imaging 74.00 ± 13.87 72.3 ± 19.53 74.00 ± 27.02
ShuffleNet-v2-x2-0 Imaging 73.00 ± 9.08 71.23 ± 11.99 70.00 ± 20.00

VGG11 Imaging 50.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
VGG11-BN Imaging 74.00 ± 16.36 75.03 ± 16.37 78.00 ± 19.24

VGG13 Imaging 50.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
VGG13-BN Imaging 64.00 ± 8.22 61.58 ± 25.24 72.00 ± 35.64

VGG16 Imaging 50.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
VGG16-BN Imaging 71.00 ± 13.42 72.19 ± 10.95 74.00 ± 13.42

VGG19 Imaging 50.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
VGG19-BN Imaging 59.00 ± 15.17 51.68 ± 32.01 58.00 ± 38.99

Wide-ResNet101-2 Imaging 68.00 ± 10.95 69.84 ± 9.55 76.00 ± 20.74
Wide-ResNet50-2 Imaging 64.00 ± 13.87 66.02 ± 12.41 70.00 ± 18.71

E∗ Multimodal 75.00 ± 16.20 77.70 ± 13.83 84.00 ± 15.17
ER Multimodal 60.00 ± 6.12 58.15 ± 9.40 58.00 ± 17.89
EK Multimodal 61.00 ± 5.48 62.02 ± 9.58 66.00 ± 16.73
E Multimodal 66.58 ± 11.30 61.44 ± 15.13 62.35 ± 22.00

E3
post Multimodal 72.00 ± 12.04 75.41 ± 10.68 83.00 ± 15.17

E2+∗
post Multimodal 70.94 ± 10.90 71.79 ± 10.21 74.91 ± 13.86

E�c Multimodal 61.00 ± 2.24 61.09 ± 8.11 64.00 ± 18.17

DeepMMSA [23] Multimodal 59.00 ± 6.52 58.07 ± 12.32 52.00 ± 32.71
MCF [24] Multimodal 62.00 ± 2.74 61.04 ± 10.53 64.00 ± 23.02

To assess the optimisation function, we also investigated which are the performances of
the ensembles maximising only R or K, denoted as ER and EK, respectively (middle section
of Table 3). The former consists of DT, RF, and AlexNet, whereas the latter comprises DT,
RF, and DenseNet161. Moreover, in this case, the class predictions on the test set revealed
that the outputs provided by E∗ are better than those returned by ER and EK. This finding
supports the importance of satisfying the proposed multiobjective optimisation condition.
This agrees with the literature that in other fields, and in the case of the majority voting
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rule, reports that a necessary and sufficient condition for an ensemble to be more accurate
than any of its models is if the models are accurate and diverse [51].

To further prove the efficacy of the proposed approach, the middle section of Table 3
presents the performance of the following other experiments:

• E: it denotes the average performance for all the possible ensembles;
• E3

post: it denotes the performance of the ensemble consisting of the unimodal models
with the largest recall, i.e., AdaBoost, ResNet34, and VGG11-BN. In this case, we adopt
the subscript post to specify that such three models were a posteriori selected, i.e., they
provide the largest performance on the test set, and not on the validation set;

• E2+∗
post : it denotes the average performance attained by all the possible ensembles,

including the two unimodal classifiers with the largest a posteriori recall, i.e., Adaboost
and VGG11-BN, whilst varying the remaining experts included in the ensemble;

• E�c: it denotes the performance of the ensemble obtained relaxing the multimodality
constraints, and it is composed of AdaBoost, DT and RF.

It is worth noting that the performances returned by such four experiments are always
lower than the performance of E∗ and even lower than several unimodal learners. This
confirms, again, that maximising recall and diversity together is a useful driver to guide the
ensemble set-up, i.e., to select which are the unimodal learners to be included. Furthermore,
the fact that such ensembles in some cases provide lower performance than some unimodal
learners confirms that handcrafted ensemble definitions can lead to sub-optimal results.

The last section of Table 3 presents a direct comparison of our approach with two
state-of-the-art studies [23,24], which are denoted as DeepMMSA and MCF. As described in
Section 1, they work with clinical and imaging modalities so that we can apply them to our
data, computing the same scores we used for the other architectures under consideration.
Note also that we do not experimentally evaluate [22,25] because, on the one side, ref. [22]
works with CT and PET images and it is not designed to handle clinical data, whereas on the
other side, ref. [25] does not work with CT images. The results show that such competitors
perform worse than our method; we deem that this happens because such papers manually
define the composition of the multimodal architectures, whilst our solution relies on an
optimisation process.

As a further issue in our discussion, let us recall that three types of fusion exist in
multimodal learning: early, joint, and late fusion. The latter is the one we used in this work,
whilst the other two are other possible ways to proceed, which we considered as possible
competitors for our method. To this end, we set up an early fusion learner using the best
model per modality, i.e., AdaBoost and VGG11-BN, as already mentioned. Furthermore, we
used the VGG11-BN as a feature extractor from the CT images, which we then concatenated
with the clinical features and feed to the AdaBoost. We tested both slice-level and patient-
level early fusion. The former consists of repeating the clinical features for each individual
patient slice, whilst in the latter we averaged the CNN output of each slice to obtain a single
feature vector per patient. These approaches got an accuracy equal to 62.92 ± 8.31% and
70.00 ± 9.35%, and an F-score equal to 62.69 ± 6.41% and 69.83 ± 12.25%, respectively, for
the slice- and patient-level fusion, which are lower than the proposed approach. We did not
perform any joint fusion since the best unimodal model (AdaBoost) has larger performance
than a fully connected network (MLP). This, in turn, makes it not possible to apply joint
fusion between the adaptive boosted ensembles and the VGG11-BN, although this is an
issue worthy of investigation in a future work.

5. Conclusions

In this manuscript, we proposed a multimodal method for survival analysis of NSCLC.
NSCLC has been already studied in a few other works employing multimodal learning but,
differently from the literature, we propose an algorithm able to identify the optimal set of
classifiers to be added to the multimodal ensemble in a late fusion approach. Our study is
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based on two modalities, clinical and CT imaging data, of a cohort of 191 patients suffering
from locally advanced non-small-cell lung cancer.

From a clinical point of view, the possibility of having prognosis prediction tools in
addition to clinical data, and especially before starting treatment, represents an unmet need
of particular interest. If this data are available at the start of therapy, the treatment itself
could be modified, adapting it to the expected response, thus intensifying or descaling
therapy in patients with poor or good prognosis, respectively.

Indeed, we presented an optimised late fusion ensemble search method that finds the
optimal combination of multimodal models considering both a metric of performance and
a diversity score. Experimental results show that our method outperforms conventional
unimodal models, bringing significant increase in performance in the multimodal ensemble.
Among the different combinations of classification algorithms, the proposed approach
achieves an accuracy of 75.00%, an F-score of 77.70%, and a recall of 84.00%, achieved using
a ResNet34 and a VGG11-BN for the imaging modality and a TABNET for the clinical
modality. A limitation of our approach is the need to train all models before the optimal set
can be selected, which certainly represents a high computational cost.

The results described so far suggest four future directions worthy of investigation:

• Retrieving data at 1-, 2-, and 3-year time points as well as the progression free survival,
which would add useful information;

• Provide more complementary information by adding other modalities to improve
performance, such as WSI, genome sequencing, etc.;

• Perform different multimodality fusion approaches, such as joint fusion to obtain a
end-to-end trainable system able to exploit the inherent correlations between multi-
ple modalities;

• Search for an approach that a priori selects the models to be included in the ensemble,
without the need to train them all individually;

• Switch from a classification to a regression task, which will allow predicting the actual
survival time, also integrating the “Input doubling method” [52] as a preprocessing
tool to augment the training set size.
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