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Abstract: In recent years, the study of soft biometrics has gained increasing interest in the security and
business sectors. These characteristics provide limited biometric information about the individual;
hence, it is possible to increase performance by combining numerous data sources to overcome the
accuracy limitations of a single trait. In this research, we provide a study on the fusion of periocular
features taken from pupils, fixations, and blinks to achieve a demographic classification, i.e., by age
and gender. A data fusion approach is implemented for this purpose. To build a trust evaluation of
the selected biometric traits, we first employ a concatenation scheme for fusion at the feature level
and, at the score level, transformation and classifier-based score fusion approaches (e.g., weighted
sum, weighted product, Bayesian rule, etc.). Data fusion enables improved performance and the
synthesis of acquired information, as well as its secure storage and protection of the multi-biometric
system’s original biometric models. The combination of these soft biometrics characteristics combines
flawlessly the need to protect individual privacy and to have a strong discriminatory element. The
results are quite encouraging, with an age classification accuracy of 84.45% and a gender classification
accuracy of 84.62%, respectively. The results obtained encourage the studies on periocular area to
detect soft biometrics to be applied when the lower part of the face is not visible.

Keywords: periocular features; multimodal fusion; machine learning; fusion strategies; privacy

1. Introduction

Soft biometrics is an area of research which has gained much attention in the recent
years. It allows the estimation of age, gender, race, etc., based on human face, hand veins,
eyes, keystroke analysis, or any other physical and behavioral personal trait. A unimodal
biometric system, that is based on a single biometric characteristic, has several problems
and limitations due to the lack of data, a poor quality of the information collected or,
as in the case of soft biometrics, a low discriminatory power. To overcome these issues,
a multi-biometric system, i.e., a system that merges different biometric features, can help to
improve performance and consolidate the information obtained. The fusion can take place
considering different sources and at different levels. One of the questions that arises most is
what to merge [1]. The system can be described as follows, depending on what it combines:

• Multi-sensor: these systems leverage multiple sensors to obtain information on a
single biometric trait [2]. This strategy is particularly suitable when the sensors to
grab the desired characteristic are all available and properly running.

• Multi-algorithm: the basic idea is being able to extract different characteristics from the
same sample by applying different algorithms [3]. If the characteristics extracted from
two different algorithms are complementary, the performance of the entire system
can improve.

• Multi-instance: the advantages of this approach are lower sensitivity to noise due to
the higher number of sample acquisition, greater similarities within a certain class and
greater variability between them [4]. For example, in the case of iris recognition, both
the left and right iris are used [5].

• Multi-sample: these systems use multiple samples of the same biometric trait, often
they are captured with some variations. For example, if you want to create a facial
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recognition system, you can extract information from the same video, combining the
data acquired from a single sensor on multiple video frames [6].

• Multi-modal: in this approach, multiple biometric traits are analyzed. It is possible
to create a system that combines physical and/or behavioral characteristics. Such a
choice may be more appropriate when security is crucial to protect sensitive data [7].

Once the data has been acquired, depending on the type of information available, it is
possible to define different levels of fusion. These strategies can be divided into two macro-
areas: pre-classification with a fusion before the matching (sensor level, feature level) and
post-classification, with a fusion after the matching (score level, rank level, decision level).
Feature level fusion is achieved by combining the different feature vectors that are extracted
separately from each biometric trait. Concatenation or summation [8] are examples of this
class of approaches. Sensor-level fusion is usually associated with a strategy of multi-sensor
or multi-algorithm, where raw information is combined immediately after its acquisition.
A rank-level fusion is applied when a ranked list of matching identities can be obtained
from each algorithm [9]. The decision level fusion combines the answers of the different
algorithms to obtain the final decision. The main advantage is that it is particularly suitable
when only the final decision is available [10]. Score level fusion is a post-classification
process in which the scores produced by different algorithms are combined [11]. In this
work, using only the information provided by the periocular area, we investigated how
effectively fusion approaches that combine pupils, fixations, and blinks, can estimate the
gender and age group of users. The estimate of belonging to one of the two classes can be
particularly useful as information to be integrated or as the only confidence estimator. In the
first case, for example, it can be integrated to improve the performance of iris recognition
techniques, while, in the second case, it can be a good estimator in the presence of partial
occlusions in challenging contexts (such as, for example, during a pandemic epidemic when
it is mandatory to wear a mask when carrying out common daily activities). To do this,
a data fusion strategy is implemented (Figure 1). First, we adopted a concatenation scheme
for fusion at the feature level while, at the score level, we applied and then evaluated
the performance of transformation and classifier-based score fusion methods. The main
contributions of the work can be summarised as follows:

• According to our knowledge, this is the first paper to combine numerical data derived
from the periocular area for the purposes of demographic recognition.

• Extensive testing of the optimal setup of classifiers for usage in a fusion scenario.
• An ad hoc experiment designed to evaluate the combination of the two investigated

fusion techniques: feature-based and score-based fusion.

Figure 1. The workflow of the proposed fusion strategy.

The rest of the paper is organized as follows: Section 2 provides a brief overview
about the works in literature on periocular features. We discuss the theoretical aspect of
transformation and classifier-based score fusion methods in Section 3. The experimental
protocol, as well as the description of the dataset, is reported in Section 4. Section 5 presents
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a discussion and evaluation of the results obtained. Finally, the paper is concluded in
Section 6.

2. Related Work
2.1. Periocular Features

The activity of classification by age and gender has acquired great importance in
recent years due to the interest in profiling people on social media [12]; with the goal of
advertising fields to customize the choice of customers [13], etc. The information for these
two activities can be extracted from different physical and/or behavioral traits such as
the face, 2D estimated skeletal points [14], gait [15], socio-linguistics features for a posted
content on social media, and many others. Among the various biometric traits available,
in this work, we focus on three features extracted from the periocular area: pupil size,
duration, and number of blinks and fixations.

2.1.1. Pupil

The literature presents several work aiming at discussing how to relate the variation
in diameter of the pupil to specific causes. The reasons can be varied as physical factors,
such as light; chemical factors, such as drug use; or cognitive and/or emotional factors.
Pupil dilation has been used successfully to predict differences in stress levels. In [16],
the authors studied the impact of acute stress on different emotion regulation strategies
in men and women. The subjects participating in the experiment were asked to regulate
their emotions in response to negative images using various techniques that had been
previously explained to them, such as reappraisal or distraction. The effects of stress in
relation to personal affective assessments and pupil expansion highlight interesting links
between stress levels, sex, and emotion regulation, providing important information on
gender differences. Stressed men exhibited notable pupil diameter measures during the
reappraisal. Guillon et al. [17] highlighted age as one of the most significant factors that
influences pupil size. In fact, also in this work, it was shown that smaller diameters are
recorded in older groups and larger pupils in young people. The pupil size decreases
significantly with increasing age. The pupil, therefore, lends itself to being both a physical
and a behavioral biometric trait. The pupil, therefore, lends itself to being a biometric trait,
both physical and behavioral, also useful for demographic classification, i.e., respect to
age and gender [18]. Through an extensive study, Cascone et al. [19] analyze the size and
dilation of the pupil over time with the aim of obtaining a classification of people by age
and gender. The work suggests that promising results can be obtained in age classification,
in contrast to gender recognition which is a more complex problem due to the influence of
several different factors.

2.1.2. Blink

Blinking is a self-regulating, natural, and instinctive response, that allows keeping your
eyes healthy and clean. The various parameters associated with blinks, such as duration,
frequency, speed, and latency, can be used to extract information on the response of subjects
to different stimuli. From the existing works in the literature, it seems evident that the
existence of a continuum between a very low blink rate, relative to those performances
that require high visual attention, and the increase in blink frequency just before sleepiness
and during boring tasks. Sakai et al. [20] exhibited that the blink rate decreases when
visual attention is required, while increases when the state of visual attention switched
from attentive to inattentive. This biometric trait is mainly used to investigate between
moments of visual attention and fatigue, but little explored for demographic classification
tasks. However, the few articles presented in this sense seem to give some interesting ideas.
In [21], for example, the authors showed that women blink numerically more often than
men (15.2 times vs. 13.3 times per minute).
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2.1.3. Fixation

The saccade is a rapid eye movement performed to shift a peripheral region to the
center of the visual field. The time between two saccades is generally called fixation. This
characteristic indicates how people acquire information. It happens in a range varing from
a few milliseconds to several seconds. A high number of fixations can suggest difficulties
in interpreting information while their longer duration can have different interpretations:
more demanding cognitive processes, greater interest, etc. In [22], the authors investigate
the use of different fixation measures as memory indicators during facial recognition lies.
They recorded fewer fixations when subjects voluntarily denied recognition of familiar
faces than when they correctly pointed to faces that were not actually known to them.
Moss et al. [23] extracted different eye features when participants were shown natural
images. They observed how women, on average, tended to be more exploratory, making
more fixations for those images where there were no faces. Furthermore, for heterosexual
couples, it was observed that all participants preferentially stared at female figures, with a
higher percentage recorded in women (61% for female figures; 39% for male figures) than
men (53% for figures female; 47% for male figures). The fixations of men tended to focus
only on the face, unlike the female ones which were more varied. The fixations in relation
to the age have been little explored.

2.2. Data Fusion

Multi-biometric systems merge information from multiple biometric sources. Typically,
including more characteristics compensates for the inherent limitations of a single trait.
The outcomes demonstrate superior performance, reliability, and robustness in comparison
to uni-biometric systems. For these reasons, multi-biometrics is progressively becoming
common in real-world applications [11]. Scoring-based techniques are undoubtedly among
the most popular. There have been numerous score fusion techniques proposed in the
literature. There are three basic categories of score combining rules: transformation, classi-
fication, and density fusion strategies. Combining the benefits of each group can result in
a robust fusion process. The first two appear to be among the most prevalent in literary
works. In [11], the authors propose a hierarchical combine network to integrate different
fusion approaches from transformation- and classification-based categories into a single
framework for classification. The involved modalities are periocular and iris. It is evident
from the work that by implementing this approach it is possible to achieve a higher level of
verification precision than with a single component-based approach. The same conclusions
also true for the work [24]. In addition to utilizing a fusion technique at the score level,
the authors test one at the level of features in this study. Two fusion strategies are therefore
examined: feature level combining using the sum and concatenation methods, and score
level merging using the max approach to blend selected deep features. The best result
is achieved with a feature level fusion with sum. Rather than analyzing them separately,
in [25] the authors deal with the problem of fusion by combining both levels of fusion
(feature level and score level). In particular, the proposed fusion scheme is one in which
three traits (fingerprint, palmprint, and earprint) are combined at two levels, feature level
and score level. The performance of the individual matchers is analyzed to choose two of
the three modalities that should then be used for feature level fusion. The idea behind the
choice of these two traits is that they must be improved to the maximum in order to improve
the recognition capacity through their fusion at the feature level. They combine the codes
rather than the raw characteristics of these two modalities. The rationale behind using
coded characteristic values is to reduce processing time and extract useful information
from each of the two selected biometrics. Next, they apply a score level strategy.

3. Methodology
3.1. Transformation-Based Score Fusion

Transformation-based score fusion is the most intuitive and used score level fusion
technique, as it is simple to make. For a given sample, it allows to combine the scores
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obtained from the different algorithms (s1, s2, . . . , sn) and generate a new unique score (S),
using a function ( f ), to which these previously generated normalized or standardized
scores are given as input. So, it consists of simple algebraic manipulation of the scores
through a specific function showed in Equation (1).

S = f (s1, . . . , sn) (1)

The transformation-based fusion techniques used in this work are weighted sum,
weighted product, and the Bayesian rule.

3.1.1. Weighted Sum

The weighted sum is a variant of the arithmetic sum. Unlike the arithmetic sum, here
the score vectors are first multiplied by a weight wi and then added together. Let (s1, . . . , sn)
be the score vectors obtained by the n algorithms. The formula for obtaining the weighted
sum is presented in Equation (2).

S =
n

∑
i=1

wisi (2)

with 0 ≤ wi ≤ 1. The weight is directly proportional to the importance of the associ-
ated score.

3.1.2. Weighted Product

The weighted product is obtained from a variant of the classic arithmetic product.
Let (s1, . . . , sn) score vectors obtained from n algorithms, its formula is presented in
Equation (3).

S =
n

∏
i=1

swi
i (3)

where wi is the weight of the algorithm i. It can be observed how, in this case, the scores
influence each other more than the weighted sum. For example, if one of the scores is close
to 0, the score obtained from the fusion will also be close to 0.

3.1.3. Bayes Fusion Rule

Bayes’ rule is one of the fundamental pillars in probabilistic theory. The definition of
this rule for the event x and y is defined in Equation (4).

p(x|y) = p(y|x)p(x)
p(y)

(4)

If we have a score matrix M and different classes i = {1, 2, . . . } to which our observa-
tions can belong, the Bayes’ rule can be rewritten as in [26] resulting in Equation (5).

p(i|M) =
p(M|i)p(i)

p(M)
(5)

where p(i) is marginal probability of i, p(M|i) is the conditional probability, p(M) =

∑n
i=1 p(M|i)p(i) is the evidence and n is the number of classes. Assuming that the scores

are conditionally independent given the classes, p(M|i) can be rewritten as in Equation (6).

p(M|i) =
n

∏
j=1

pj(sj|i) (6)

where pj(sj|i) is the score of j-th algorithm related to the i-th class. So, let ta and tb the
scores obtained by two algorithms for a binary classification problem, their fusion through
the Bayes function is given by [27,28] as in Equation (7).
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S =
ta × tb

(1− ta)(1− tb) + (ta × tb)
(7)

Additionally, in this case, to give greater importance to one biometric over another, we
have assigned a weight (wi), to be multiplied to the vector of the score which must have
a lower value for the final decision.This weight tends to reflect the accuracy achieved by
the algorithms involved. If one algorithm tends to have a better performance than another,
the prediction of the first should have a greater weight when making a choice.

3.2. Classifier-Based Score Fusion

In classifier-based score fusion, score vectors obtained by biometric algorithms are
considered as feature vectors that are, in turn, discriminated as genuine or impostor scores.
Therefore, the classifiers, learn the relationship between the various score vectors, treated
as the new characteristics, which are used to solve the classification task. On the basis
of this new dataset, the selected algorithm learns a decision boundary between the two
classes. In this work, different classifiers were used to consolidate and improve the scores
obtained to arrive at a final decision. The classifiers are first trained with the labeled
score data and then tested with unlabeled ones. In this work, we mainly focused on
four groups of ML algorithms: Decision Tree, ensemble, optimization, and instance-based
algorithms. Decision tree (DT) methods are based on a tree structure where the inner
nodes represent the features, the leaves represent the outcomes, and the branches represent
the decision rules [29]. The goal of the ensemble methods is, instead, to combine the
responses of several learning estimators in order to improve the predictive performance
and robustness of a single algorithm. These kind of methods can be divided in two
families: averaging and boosting methods. The former are Random Forests (RF) [30] and
Bagging (BG) classifiers [31]. The basic idea is to independently calculate the average of the
predictions of different estimators. This ensures that the variance of a single base estimator
is reduced, The second group of methods includes AdaBoost (AD) [18] and Gradient
Boosting (GB) classifiers [32]. The driving principle is to have a strong classifier from the
combination of weak ones. The base estimators are used sequentially to correct the errors
from the previous model. Instance-based learning strategy is a decision-making problem
based on instances seen in the training phase that are deemed important or representative
of the problem. These algorithms, called winner-takes-all methods, generate a database of
sample data stored in memory and compare the new data for which you want to obtain a
prediction through a similarity measure in order to find the best match. Among the most
famous and used methods belonging to this class appear K-Nearest Neighbor (KNN) [33]
and Support Vector Machines (SVM) [34]. Stochastic Gradient Descent Classifier (SGD) [35]
is an optimization algorithm that implements a simple learning routine of the descent of
the stochastic gradient.

4. Experimental Protocol
4.1. Dataset

The experimental analysis was conducted on the GANT dataset [36]. A total of
112 volunteer participants (73 males and 39 females) took part in the experiment, divided
as follows by age groups: 17–18 (11 subjects), 21–30 (58 subjects), 31–40 (9 subjects), 41–50
(16 subjects), 51–60 (8 subjects), 61–70 (9 subjects), and 71–80 (1 subject). All subjects had
normal vision. Acquisitions were made using a Tobii 1750 remote eye tracker (1280 × 1024
screen resolution, 50 Hz sampling frequency). A total of 18 black-and-white pictures were
randomly shown, 16 depicting human faces and 2 landscapes (examples in the Figure 2).
The images of the faces are divided as follows: 8 of men, 8 of women, and for each division
4 are of famous people (such as actors) and the other 4 are of people unknown to the
participants. All images have the same gray level distribution.
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Figure 2. Some examples of images shown to participants during the data acquisition process in the
GANT [36]. The first column shows images of two landscapes. The last two columns, on the other
hand, show images of women and men: in the first row there are images of unknown people while in
the second row there are images of two famous actors.

4.2. Data Pre-Processing

The eye tracker associates the validity codes (0–4) to each acquisition related to both
eyes which gives a measure of how certain the instrument is to have found a specific eye.
When the associated code is a low value it means that the instrument gives a high reliability
value to the acquisition obtained. The first filtering operation consisted in the elimination of
those acquisitions with respect to which one eye had been associated with a code other than
0. The other codes (1, 2, 3) can in fact refer to corrupt, incorrect acquisitions or in relation
to which a single eye has been acquired by making assumptions whether it is the right
or left one or without being sure which of the two is. Therefore, only those acquisitions
were saved for which the instrument has associated code 0 or 4 for both eyes. In fact,
a pair of gaze data with validity code 4 on both eyes, followed by a number of gaze data
with validity code 0 on both eyes, is usually a sure sign of a blink. For each participant,
data samples related to viewing each of the 18 images presented as stimuli were analyzed,
synthesized, and organized through different statistical indicators including indices of
dispersion and position. For each image, the characteristics extracted from the pupil were
studied in terms of their diameter measurement while those relating to fixations and blinks
in terms of duration and number. Specifically, for blinks, a counter of “fast” blinks is also
increased, i.e., those for which it is not possible to actually calculate the duration. A total of
3665 values are obtained. Since the samples obtained were gender-unbalanced, a randomly
selected subset was analyzed.

More details on the number of samples analyzed per classification task are given in the
Figure 3. Based on the number of participants per age group (as discussed in the Section 4.1)
it was decided to divide the subjects into two groups, those under the age of 30 and those
over (Figure 3).

Figure 3. Distribution of data samples with respect to the two classification tasks.
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4.3. Fusion Strategies Implementation

Feature vectors obtained as explained in Section 4.2 are combined through the feature
level fusion by a concatenation strategy. This strategy was preferred to a summation
one that can reduce dimensionality because in this case, compared to the three biometric
modalities (pupil, fixation, blink) we have no redundant information. In fact, applying
the Spearman non-parametric test between the characteristics of the three modalities pairs
(blink–pupil, fixation–pupil, blink–fixation), we observed that there is poor correlation
between them. For example, studied the pupil–blink pair, we applied this test to all possible
pairs of characteristics that could be obtained by comparing these two biometric traits. We
report in Table 1 the average of these values for each pair analyzed.

Table 1. Spearman’s correlation coefficients with respect to the pairs of the three modalities.

Spearman’s Correlation Coefficients

Blink-pupil 0.1439
Blink-fixation −0.0992
Fixation-pupil 0.0644

So, it is evident how the association between these modalities is very poor. Then, the
feature vectors were transformed by scaling each feature over a given interval. The rationale
behind this choice is that this scaling includes robustness to very small standard deviations
of features and the retention of zero entries in the sparse data. After these considerations
and operations, the experimentation was conducted by partitioning the available data into
a random train and test subsets with a ratio of 80:20, respectively. By dividing the entire
dataset into these pairs of sets, we drastically reduce the number of samples that can be
used for the learning of our choice models (see Section 3.2), and also we strongly tie the
results obtained to the random selection of these subsets. Another problem is related to the
chosen estimators, setting fixed parameters has an impact on the final performance of the
system. To overcome these problems we used an exhaustive search on different parameter
values specified for each estimator with a k-fold cross-validation procedure with a variable
“k” between 2 and 10. The basic idea behind this procedure is to divide the training dataset
into k parts and train the model on a subset consisting only of k − 1. The resulting part is
used to validate the model with a performance measure such as accuracy. The measure of
the performance obtained is the average of the k − 1 values derived individually. For each
model trained, a confidence score associated with each element of the test set was generated
with respect to each label (male/female or under30/over30), i.e., the probability that that
particular subject in the test belongs to a category rather than to another. After obtaining
these scores from the estimators, we used several strategies to combine them. We focused
on two approaches: transformation-based score fusion and classifier-based score fusion.
For the first strategy, only the scores of those classifiers were selected that reported an
accuracy greater than a threshold (over the red line in Figure 4).

The techniques described in Sections 3.1.1 and 3.1.2 were applied to the scores of the
selected classifiers by matching them in all possible combinations. The best weights were
calculated with brute force combinations of weights of the type w/10 with w ranging from
1 to 10.

Tables 2 and 3 report the combinations of classifiers that have reported the highest
score with respect to the number of models that are combined, therefore from 2 to 6 by age
classification (Figure 5) and from 2 to 5 by gender one (Figure 6).
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Figure 4. The results of the age and gender classification using different classifier. The accuracies
over the red line are taken in considerations.

Figure 5. The results of combining 2, 3, 4, 5, and 6 classifiers in age recognition using sum, product
and Bayes rule as fusion strategies.

Figure 6. The results of combining 2, 3, 4, and 5 classifiers in gender recognition using sum, product
and Bayes rule as fusion strategies.
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Table 2. The results of the combination of the classifiers in gender recognition using different fusion
strategies. n is the number of classifiers involved in the fusion process. The numbers in bold are the
best results.

Transformation-Based Score Fusion for Gender

n Combination of Classifiers Acc.

Sum

2 GB&SVM
SVM&KNN 0.8439

3 GB&SVM&RF
GB&SVM&BG 0.8462

4 GB&SVM&RF&BG 0.8462

5 GB&SVM&RF&BG&KNN 0.8439

Prod

2 GB&SVM 0.8462

3 GB&SVM&BG 0.8462

4 GB&SVM&BG&RF 0.8462

5 GB&SVM&RF&BG&KNN 0.8439

Bayes
Rule 2 GB&SVM

SVM&KNN 0.8439

Table 3. The results of the combination of the classifiers in age recognition using different fusion
strategies. n is the number of classifiers involved in the fusion process. The numbers in bold are the
best results.

Transformation-Based Score Fusion for Age

n Combination of Classifiers Acc.

Sum

2 RF&SVM
GB&SVM 0.8349

3 GB&SVM&DT 0.8445

4 SVM&KNN&DT&RF 0.8445

5 GB&SVM&DT&KNN&RF
GB&SVM&DT&KNN&BG 0.8445

6 GB&KNN&DT&BG&SVM&RF 0.8445

Prod

2 - -

3
RF&SVM&DT
GB&SVM&DT
SVM&DT&BG

0.8417

4
GB&SVM&KNN&DT
SVM&KNN&DT&RF

SVM&BG&DT&RF
0.8431

5 SVM&BG&DT&RF&KNN 0.8445

6 GB&SVM&BG&DT&RF&KNN 0.8417

Bayes
Rule 2 RF&SVM 0.8349

The highest accuracy for the combination was reported only when it actually ex-
ceeded the maximum accuracy reported in Figure 4 for each classification task. Another
strategy, based on Bayesian rules, as explained in Section 3.1.3, was also applied for the
transformation-based score fusion, combining the selected classifiers two by two. The best
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results are reported in Tables 2 and 3. The second score level fusion technique implemented
is the classifier based score fusion approach. The models chosen are the same ones used
to obtain the scores. These classifiers were trained on a new train dataset obtained by
concatenating the scores relating to the two classifiers that reported the highest accuracy in
Figure 4. So, for age classification, we concatenated the scores of SVM and Random Forest,
while for gender classification Gradient Boosting and SVM ones. The rate train:test chosen
was 70:30. Additionally, in this case, an exhaustive research of the best parameters was
applied and different k-fold strategies for the models were tested in order to obtain the best
results reported in Figure 7.

Figure 7. The results of the classifiers are obtained using the combination of the best two scores of
SVM and Random Forest for age classification, and of Gradient Boosting and SVM for gender one.
In red are reported the best accuracies for age and gender, respectively.

5. Discussion

In this work, we applied different fusion strategies to periocular data samples
(Figure 1) with the aim of obtaining a gender and age classification. After the extraction of
the characteristics (as explained in Section 4.2) relating to each biometric trait considered,
at first, we proceeded with a fusion at feature level, opting for a concatenation strategy. As
reported in Table 1, it was observed that the characteristics under analysis for each biometric
trait were highly independent to each other. To support the need for this choice to obtain
more competitive performances, we have replicated the experiment without this prior step.
The same exhaustive research was applied to the classifiers described in Section 3.2.

Figure 8 reports the accuracy achieved in the best configuration per biometric trait
analyzed individually.

Figure 8. The results of the best classifiers on single biometric traits. k is the value of the implemented
k-fold cross-validation strategy relating to the best accuracy achieved. Exploiting only the blink for
gender classification there are two classifiers that report the same higher accuracy.
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From this table, it is clear that of the three traits analyzed the pupil size is the most
discriminating for both classification tasks. The blink and the fixations seem to perform
poorer for the age classification showing comparable level of accuracy. For the gender
classification, relating to blink, there are two classifiers (DT and BG) with which the same
result is obtained. For this reason, the successive experiments were replicated using the
scores of one and then those of the other. The combination of the scores of the classifiers
through both the transformation and classification techniques are shown in the Tables 4–7.
By comparing the results of these tables with the final summary one (Table 8), it is possible
to observe how, with the contribution of the concatenation, there is an increase in accuracy
of almost 4% for the age classification and slightly higher for the gender. This is due to the
initial accuracy which is significantly more unbalanced between the three biometric traits
for the task of age classification. In any case, for gender it is necessary to take into account
that in the score fusion the results shown in Figure 7 are related to the merger of the scores
of the first two classifiers that gave the best results. In this case, in contrast, the best result
(Table 5) is obtained by concatenating the scores of the three classifiers associated with
the pupil, blinks, and fixations, respectively. Therefore, with the same accuracy reached,
84.21%, in the treatment without concatenation it is necessary to consider a greater number
of classifiers to still have the same performance. Table 8 is a summary table of the results
achieved. The best performances for both classification tasks are obtained in correspondence
with the fusion strategy based on the transformation of the scores with respect to both
the weighted sum and product, however, varying the number of algorithms involved.
For the gender classification, to obtain the best performance, it is sufficient to consider only
2 classifiers and rely on the weighted product. Comparing the performances achieved with
those in a previous work [19] it is evident that, only considering the pupil size higher
performances are obtained by analyzing a smaller number of classifiers and no neural
network models, e.g., multi-layer perceptron (useful pointing out that other statistical
indices in addition to the average have bee used.) Through the proposed fusion strategy,
feature level concatenation followed by transformation-based score fusion, the state of the
art for gender classification using periocular features is exceeded by more than 25%. For the
age classification, on the other hand, there is a slight increase. Although the maximum
accuracy is reached with a neural network, if we refer to Table 5 of the paper [8] it is
very evident that higher performances are obtained considering only the average and
using the same classifier. Further studies may investigate which statistical indices are
most appropriate and discriminatory for each task. However, a weighted sum of just three
classifiers results in higher accuracy.

Table 4. The results of the age classification are obtained from combination of the best scores of the
three biometric traits. k is the value of the implemented k-fold cross-validation strategy relating to
the best accuracy achieved. The numbers in bold are the best results. X indicates the features selected
for experimentation.

Age Classification without Concatenation

Fixation Pupil Blink Classifiers k Acc.

X X X KNN 2 0.8

X X KNN 5 0.8091

X X AD 3 0.6182

X X

DT 2

0.7818BG 10

SVM 3
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Table 5. The results of the gender classification are obtained from combination of the best scores of
the three biometric traits. For blinks, as maximum accuracy is achieved with two different classifiers,
both scores are taken into account. For “Blink_1” we refer to the scores related to the DT classifier,
while for “Blink_2” to those related to the BG classifier. k is the value of the implemented k-fold
cross-validation strategy relating to the best accuracy achieved. The numbers in bold are the best
results. X indicates the features selected for experimentation.

Gender Classification without Concatenation

Fixation Pupil Blink_1 Blink_2 Classifiers k Acc.

X X X SGD 4 0.8346

X X X SVM 3 0.8421

X X KNN 6 0.7894

X X KNN 9 0.7669

X X SVM 3 0.7970

X X

SVM 2

0.8045KNN 3

AD 2

X X KNN 3 0.7970

Table 6. The results of the combination of the classifiers in gender recognition using different
transformation-based score techniques without a a preliminary feature level fusion. The numbers in
bold are the best results.

Transformation-Based Score Fusion for Gender without Concatenation

Combination of Classifiers Acc.

Fixation Pupil Blink

Sum
RF SVM BG 0.8054

RF SVM DT 0.8167

Prod
RF SVM BG 0.7443

RF SVM DT 0.7511

Bayes
Rule

RF SVM 0.7579

RF BG 0.6923

RF DT 0.7059

SVM BG 0.7624

SVM DT 0.7851
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Table 7. The results of the combination of the classifiers in age recognition using different
transformation-based score techniques without a a preliminary feature level fusion. The numbers in
bold are the best results.

Transformation-Based Score Fusion for Age without Concatenation

Combination of Classifiers Acc.

Fixation Pupil Blink

Sum SVM BG KNN 0.7913

Prod SVM BG KNN 0.7763

Bayes
Rule

SVM BG 0.7804

SVM KNN 0.5921

BG KNN 0.7844

Table 8. For both classification tasks, the results of the single biometric traits (blink, fixation, and
pupil) obtained with the same protocol are reported in the first three lines. The next line shows the
best results obtained with our fusion strategy. In the last line there is a comparison with a paper that
uses the same dataset with the same purpose. The numbers in bold are the best results.

Summary Table: Best Results

Strategy Features Classifiers k Acc.

A
ge

C
la

ss
ifi

ca
ti

on

First
classification

Blink KNN 10 0.5921

Fixation SVM 3 0.5853

Pupil BG 4 0.7872

All RF 6 0.8336

Fusion

Sum

with
conc. All

GB&SVM&DT
SVM&KNN&DT&RF

GB&SVM&DT&KNN&BG
GB&SVM&DT&KNN&RF

- 0.8445

without
conc.

Fixation
Pupil
Blink

SVM&BG&KNN - 0.7913

Prod.

with
conc. All SVM&DT&KNN&BG&RF - 0.8445

without
conc.

Fixation
Pupil
Blink

SVM&BG&KNN 0.7763

Bayes

with
conc. All RF&SVM - 0.8349

without
conc.

Pupil
Blink BG&KNN - 0.7844

Classifiers

with
conc. All BG 7 0.8409

without
conc.

Pupil
Blink KNN 5 0.8091

[8] Pupil Multilayer perceptron - 0.8369
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Table 8. Cont.

Summary Table: Best Results

Strategy Features Classifiers k Acc.

G
en

de
r

C
la

ss
ifi

ca
ti

on
First

classification

Blink BG
DT

8
6 0.6357

Fixation RF 6 0.6244

Pupil SVM 2 0.7579

All GB 2 0.8326

Fusion

Sum

with
conc. All

GB&SVM&BG
GB&SVM&RF

GB&SVM&RF&BG
- 0.8462

without
conc.

Fixation
Pupil
Blink

RF&SVM&DT - 0.81674

Prod.

with
conc. All

GB&SVM
GB&SVM&BG

GB&SVM&RF&BG
- 0.8462

without
conc.

Fixation
Pupil
Blink

RF&SVM&DT - 0.7511

Bayes

with
conc. All GB&SVM

SVM&KNN - 0.8439

without
conc.

Pupil
Blink SVM&DT - 0.7851

Classifiers

with
conc. All KNN 4 0.8421

without
conc.

Fixation
Pupil
Blink

SVM 3 0.8421

[8] Pupil SGD - 0.5848

6. Conclusions and Future Developments

Data fusion is a useful solution to improve the performances and the synthesis of
collected information, to be stored efficiently for frameworks operating in several different
contexts. In biometric researches, the choice of working with soft biometrics is motivated by
their high acceptability by acquired subjects. Combining the biometric traits the benefit is
twofold: evaluate and store relevant soft features and preserve the privacy of sensitive data.
The periocular area allows the extraction and analysis of numerous biometric characteristics.
In various situations, such as the current COVID-19 pandemic, the restrictions that imposes
the use of facial masks led various widely used biometric traits becoming ineffective due
to possible occlusions (the facial masks for face recognition) or the need to have contact
with the recognition system (practice currently not recommended to avoid further spread
of the virus). For all these reasons biometric traits that do not need physical contact can be
regarded an optimal choice for the recognition systems. In this work we use the information
extracted from the variation of the pupil diameter, the duration and the number of blinks
and fixations to focus on the demographic classification, i.e., consisting in age and gender
recognition. These characteristics have been fused through different strategies. The results
of our experiments show how effectively implementing a fusion strategy increases the
performance of the entire system. A transformation-based score fusion appears to be
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preferred over a classification-based one. Furthermore, it is evident that the fusion of these
characteristics has led to a significant improvement in terms of classification compared to
the values obtained from the individual analysis. For gender and age, the best accuracy
(84.62% and 84.45%, respectively) has been obtained both through a sum or a weighted
product. It can be observed from the collected results that concatenation contributes to
an increase in classification accuracy of approximately 4% for age and somewhat more
for gender. The fusion technique based on the transformation of scores with respect to
both weighted sum and product achieves the greatest performance for both classification
tasks while adjusting the number of algorithms involved. To acquire the best performance
in gender classification, it is sufficient to examine only two classifiers and rely on the
weighted product. For gender classification, the proposed fusion technique of feature-level
concatenation followed by score-based fusion yields performance that exceeds the state
of the art by more than 25%. In terms of age classification, there is a slight increase. We
can conclude that, although the periocular area has so far been little studied to derive a
demographic classification, it could instead be an interesting biometric trait. In future
investigations, we will further explore the potential of other biometric features related
to the periocular area, such as saccades, as well as integrating information on pupillary
variation in relation to time. Furthermore, our goal is to replace the brute force strategy for
weight research with an approach based on genetic algorithms to solve the optimization
problem of maximizing the accuracy achieved. Data fusion strategies can be useful for trust
evaluation in challenging contexts such as, for example, during a pandemic outbreak when
it is mandatory to wear a mask while performing common daily activities. The classification
percentages obtained by machine learning algorithms can be used as a measure of trust of
the estimated identity.
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