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Abstract: Periodic, wave-like modifications of 2D shape contours are often applied to convey quantita-
tive data via images. However, to the best of our knowledge, there has been no in-depth investigation
of the perceptual uniformity and legibility of these kind of approaches. In this paper, we design
and perform a user study to evaluate the perception of periodic contour modifications related to
their geometry and colour. Based on the study results, we statistically derive a perceptual model,
which demonstrates a mainly linear stimulus-to-perception relationship for geometric and colour
amplitude and a close-to-quadratic relationship for the respective frequencies, with a rather negligible
dependency on the waveform. Furthermore, analyzing the distribution of perceived magnitudes
and the overlapping of the respective 50% confidence intervals, we extract distinguishable, visually
equidistant quantization levels for each contour-related visual variable. Moreover, we give first
insights into the perceptual dependency between amplitude and frequency, and propose a scheme
for transferring our model to glyphs with different size, which preserves the distinguishability and
the visual equidistance. This work is seen as a first step towards a comprehensive understanding of
the perception of periodic contour modifications in image-based visualizations.

Keywords: glyphs; image-based visualization; contour modification; quantization model; percep-
tion model

1. Introduction

In visualization, the visual augmentation of contours is often used to extend the
amount of available visual channels to represent further attributes of multidimensional
data in parallel. This can be implemented, for instance, by variation of a contour’s colour,
width and/or fuzziness, i.e., degree of blurring, or by means of a periodic, wave-like contour
modification, which results in additional visual variables such as frequency, amplitude, and
waveform (see Figure 1).

In Scientific Visualization, this kind of contour augmentation is applied, for example,
to enhance the encoding capacity of isolines [1,2]. In Information Visualization, there are a
number of approaches, which create glyphs or their parts from circular shapes, modulating
their contours by a (mostly sinusoidal) wave. Such applications include the visualization
of uncertainty (encoded by frequency [3,4] or amplitude [4]) and sport event data (encoded
by frequency [5]) as well as the generation of more complex glyphs such as RoseShapes [6].
Besides circles, the contour waves have been also applied to iconic shapes such as leaf icons,
to represent environmental data by means of frequency and amplitude [7].

Even if such contour waves prove to be a promising design solution, the perceptual
aspects of the respective visual variables, however, have not been thoroughly investigated.
While there are several studies that address the problem of perception and discrimination
of more “classical” visual variables, e.g., colour [8,9], size [10], or the interdependencies of
both [11], the work related to periodical contour modifications, to the best of our knowledge,
is limited to the demonstration of the shapes’ orderability by frequency [3,12], based on
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user experiments, and to a rather abstract discussion about dependencies between wave
amplitude and frequency without user studies [4].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Examples of periodic contour modifications. (a–c): visual encoding by varying wave
amplitude; (d–f): visual encoding by varying wave frequency; (g–i): visual encoding by varying
waveform.

Motivated by this fact, in this paper, we propose a perception and quantization model for
periodic contour modifications, which provides a basis of glyph design for visualization of
multivariate quantitative data. The proposed model addresses the essential properties of a
quantitative visualization such as perceptual uniformity [13] and accurate legibility [14], per-
forming a purposefully created user study and evaluating its results. Perceptual uniformity
signifies that the representation of equally sampled data values have to be perceived in
visual space as equidistant. However, mapping data to equally distributed discrete stim-
ulus levels does not guarantee perceptual uniformity, since the relation between stimuli
and sensation is generally not linear [15]. Therefore, our model comprises an estimation
of an appropriate transformation function between stimulus magnitudes and perceived
magnitudes. Accurate legibility corresponds to the distinguishability of the levels of a visual
variable that encode quantitative data [14], which, in turn, implies a quantization, where
the distances between single levels are equal or greater than the just noticeable difference
(JND). To satisfy this requirement, we derived a quantization scheme, which aims to an
optimal balance between the legibility and the visual capacity of the respective visual
variable, i.e., the number of values it can encode [5].

Since our goal is a generic approach that covers a large number of real world ap-
plications, we consider different waveforms and iconic shapes instead of a single, fixed
geometric primitive such as a circle. Moreover, we take into account that the visual effect of
contours modulated by a geometric wave can also be achieved by periodic modifications
of the contours’ colour components, similarly to the “null-case glyph” in [3]. In particular,
in this work, we focus on the colour modifications, created by alternation of the contours’
segments with different intensity levels (see Figure 2). Considering both, geometric modifi-
cations and colour modifications by varying intensity, we obtain a more generic model of
periodic contour modifications that is evaluated in our user study.
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(a) Colour amplitude estimation. (b) Colour frequency estimation.

Figure 2. Design of different colour experiment types. (a,b) show examples for direct estimation of
colour amplitude magnitude (with fixed colour frequency) and colour frequency magnitude (with
fixed colour amplitude), respectively; the participants need to assess the corresponding magnitude in
the “Test sample” (right) on the basis of the reference shapes (left and middle).

To sum it up, our paper comprises the following contributions:

• An online user study about perception of periodic geometric and colour contour
modifications.

• Modelling of a stimulus-to-perception transformation function for sinusoidal and
colour contour modifications.

• Analysis of perceptual dependencies between amplitude and frequency for geometry
and colour, respectively.

• Evaluation of the waveform influence on the amplitude and frequency perception,
including a calibration model for sinusoidal, rectangular, and sawtooth waves.

• Definition of distinguishable quantization levels for geometric and colour contour
modifications.

• A method for transferring the quantization model to shapes with different sizes.

2. Related Work
2.1. Periodical Contour Modifications in Visualization

There are several recent glyph visualization approaches that use periodical contour
modifications, with application in different fields. For instance, Holliman et al. [3] used
modified contours of a circular glyph, with wave frequency serving as a measure of
visual entropy to encode uncertainty, while the inner colour of the circle visualizes the
respective mean value. Similarly, Görtler et al. [4] proposed a contour-based design space
for hierarchical uncertainty visualization by means of Bubble Treemaps, which includes,
among possible alternative visual variables, sine wave frequency and amplitude as well
as dashed frequency, whereby the latter can be considered as a kind of discontinuous
rectangular wave. Here, mean values are encoded by circle size. Chung et al. [5] used
contour wave frequency and radius of a circular silhouette as visual variables in a composite
glyph for visualization of sport event analysis data.

Cai et al. in [6] followed a different approach, in which frequency, amplitude, and
form of contour modifications do not serve as separable visual variables but as control
parameters for construction of unique shapes, so-called RoseShapes, resulting from periodic
functions plotted in polar coordinates.

On the contrary, in the glyph design for visualization of environmental data, developed
by Fuchs et al. [7], the original leaf shapes maintain their recognizability and meaning after
contour modifications, while frequency and amplitude of the resulting serrated boundaries
can be used as additional visual channels.

2.2. Studies of Perception of the Contour Modifications

Since the visualization based on periodic contour modifications is a relatively new
approach, its perception and discriminative capacity have not yet been investigated in detail
and existing research is limited to contours of circular shapes. Besides psychophysical work
that demonstrates the ability of the human visual system to discriminate shapes on the
basis of radial frequencies (e.g., [16]), there are two recent visualization studies dedicated
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to the orderabilty issue. In particular, Chung et al. [12] investigated the suitability of
specific visual channels to represent an ordinal scale. The results of their user study show
that star shapes, which can be considered as circles modulated by a triangle wave with
different frequencies, have an ordering. Furthermore, Holliman et al. [3] performed a user
experiment to evaluate their uncertainty visualization approach and could demonstrate
the orderability of circular glyphs with sinusoidal contours. Both studies used predefined
frequency levels.

3. Materials and Methods
3.1. Components of the Perceptually Uniform Quantization Model

To develop a perceptually uniform quantization model of wave-like contour modifica-
tions, we evaluate the following aspects:

Stimulus-to-perception transformation function, i.e., transformation between stimulus
magnitudes and perceived magnitudes. We assume that this function follows
Stevens’s power law [15] and statistically estimates the corresponding parameters.

Perceptual dependencies between amplitude and frequency. Considering a pair of arbi-
trary geometric or colour amplitude and frequency values, the goal is to investigate
how changes in one parameter influence the perception of the other.

Perceptual influence of waveform for geometric amplitude and frequency. It is assumed
that the waveform of a geometric contour modification influences the perception of
the respective amplitude and frequency. Thus, taken the sinusoidal shape as reference,
the stimulus magnitudes for other shapes that produce the same sensation need to be
acquired.

Quantization of visual variables, i.e., definition of clearly distinguishable and perceptually
equidistant magnitude levels. We aim to achieve a balance between the number of
available levels and their distinguishability.

Size-dependent adaptation. We propose rules for transferring the corresponding quanti-
zation to shapes with different sizes.

The expected model’s outcome are perceptually equidistant levels of each visual
variable for data encoding, and their transformations to stimuli magnitudes and, where
appropriate, to other geometric waveforms for glyph generation. The model is mainly
derived from the results of an online user survey. However, it must be mentioned that not
all aspects could be addressed equally in a single user study. First, the number of possible
dependencies is in exponential relationship to the number of visual variables, and thus
testing all of them in one study leads to an excessive experiment complexity and time
exposure. Second, various advanced experiments imply a previous academic validation of
primary test results, which are provided in this work.

Therefore, several investigation that are undoubtedly of high scientific interest could
not be addressed in-depth in this first study. This mainly applies to the following: (1) The
interferences between amplitude and frequency in geometry as well as in colour for which
we, however, provide initial insight in Section 4.5. (2) The experimental validation of our
rules to transfer our model to shapes of different sizes (Section 5). (3) The dependencies
resulting from a combination of geometric and colour modifications. All these aspects have
to be addressed in future work.

3.2. Design of the Experiment

The test samples used in the survey are created from four monochrome base shapes
with white background and black foreground (see Figure 3). The geometric modifications
are produced by modulation of the shape contours according to the given geometric fre-
quency, amplitude, and waveform, namely sinusoidal, rectangular, and sawtooth-like (see
Figures 1 and 4). We accordingly narrow the amplitude and frequency range used in our
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experiments, as strong perceptual interferences are to be expected for extremely low and
extremely high magnitudes (see [4]).

Figure 3. The four base shapes used for generation of modified contours in the experiments.

The intensity modifications result from alternating intervals of given length (i.e.,
inverse colour frequency) along the contour (see Figure 2). The intensity inside each next
interval changes between the current modified value (i.e., colour amplitude) and the original
black foreground (i.e., colour amplitude = 0). Since all images used in the experiments
have white background, the maximal colour amplitude is limited to a value resulting in a
light grey colour, in order to maintain contrast.

J. Imaging 2022, 1, 0 5 of 14

Figure 3. The four base shapes used for generation of modified contours in the experiments.

The intensity modifications result from alternating intervals of given length (i.e.,
inverse colour frequency) along the contour (see Figure 2). The intensity inside each next
interval changes between the current modified value (i.e., colour amplitude) and the original
black foreground (i.e., colour amplitude = 0). Since all images used in the experiments
have white background, the maximal colour amplitude is limited to a value resulting in a
light grey colour, in order to maintain contrast.

(A) Amplitude estimation.

(B) Frequency estimation. (C) Amplitude estimation across waveforms.

Figure 4. Screenshots of different geometric experiment types. (A,B) are examples for direct
estimation of amplitude (with fixed frequency) and frequency (with fixed amplitude) magnitude,
respectively; the participants need to assess the corresponding magnitude in the “Test sample” (right)
on the basis of the reference shapes (left and middle). (C) shows an example of a sawtooth amplitude
calibration against a sinusoidal reference; the task is to select the test shape (a–e) whose amplitude is
perceived as the closest to the “Reference” shape (left).

All shape images have size 512× 512 px and are displayed at size 50× 50 mm. Ta-
ble 1 summarizes the metric values used to generate the stimuli and gives the mapping
to the stimulus parameter values used for communication in the experiment (see also Fig-
ure 4A,B). In each question, the base shape was selected randomly. The survey comprises
two main categories of experiments.

Table 1. Metric values for the experiment with the glyph size 50 mm. The number in {}-brackets
are the corresponding visual variable values (arbitrary digital unit, adu) used for communication
in the experiment. Note that the frequency is proportional to the inverse period length. The colour
amplitude values are given as value/brightness V in [0, 1], in HSV colour space.

Visual Variable min [mm] max [mm] step [mm]

Geom. amplitude 0.1 {1} 1.2 {12} 0.1

Geom. period length 0.8 {12} 5.1 {1} 0.4

Colour period length 5.9 {5} 12.1 {1} 1.6

min [V] max [V] step [V]

Colour amplitude 0.425 {1} 0.85 {5} 0.10625

Magnitude estimation. We performed several magnitude estimation experiments [15]
to determine a proper quantization of the visual variables as well as the transformation
function between the stimuli and perception parameters.

Figure 4. Design of different geometric experiment types. (A,B) are examples for direct estimation of
amplitude (with fixed frequency) and frequency (with fixed amplitude) magnitude, respectively; the
participants need to assess the corresponding magnitude in the “Test sample” (right) on the basis of
the reference shapes (left and middle). (C) shows an example of a sawtooth amplitude calibration
against a sinusoidal reference; the task is to select the test shape (a–e) whose amplitude is perceived
as the closest to the “Reference” shape (left).

All shape images have size 512 × 512 px and are displayed at size 50 × 50 mm.
Table 1 summarizes the metric values used to generate the stimuli and gives the map-
ping to the stimulus parameter values used for communication in the experiment (see
also Figure 4A,B). In each question, the base shape was selected randomly. The survey
comprises two main categories of experiments.

Table 1. Metric values for the experiment with the glyph size 50 mm. The number in {}-brackets
are the corresponding visual variable values (arbitrary digital unit, adu) used for communication
in the experiment. Note that the frequency is proportional to the inverse period length. The colour
amplitude values are given as value/brightness V in [0, 1], in HSV colour space.

Visual Variable min [mm] max [mm] step [mm]

Geometric amplitude 0.1 {1} 1.2 {12} 0.1

Geometric period length 0.8 {12} 5.1 {1} 0.4

Colour period length 5.9 {5} 12.1 {1} 1.6

min [V] max [V] step [V]

Colour amplitude 0.425 {1} 0.85 {5} 0.10625
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Magnitude estimation. We performed several magnitude estimation experiments [15]
to determine a proper quantization of the visual variables as well as the transformation
function between the stimuli and perception parameters.

For each visual variable to estimate, the participants got displayed the available magnitude
range by presenting a minimum and maximum reference shape with the corresponding
stimulus parameter values in arbitrary digital unit (adu; for mapping of the metric or
intensity values to the respective adu, see Table 1). Figure 4A,B shows the design of the
magnitude estimation experiments for geometry, and Figure 2a,b for colour. The test
shape with randomly selected magnitude was hidden by default and was uncovered for
eight seconds by clicking the corresponding button, and the participants had to assign the
perceived magnitude from a drop-down list (the respective magnitude ranges available
for selection are displayed in Table 2). The stepsize for generating the visual stimuli for
the test shapes (see Table 1) was selected to be below a conservatively estimated JND, i.e.,
significantly smaller than the distance distinguishable by the experiment designers, to be
able to derive a suitable quantization from a statistical evaluation.

There are two subtypes of the magnitude estimation experiments in our survey (see Table 2):

1. Fixed second stimulus, e.g., geometric amplitude estimation with a fixed geometric
frequency.

2. Randomly selected second stimulus.

Table 2. Overview of survey experiments. Each row is one experiment type, where the visual
variables, i.e., the perceptional parameters to be assessed, are plotted bold-faced. Other parameters
might be fixed values, indicated by F, or randomly selected, indicated as R. The numbers given in
[]-brackets are the stimuli values defined in Table 1. The individual experiments are of two kinds:
[2 . . 10]→ [0 . . 12], for example, generates stimuli in the value range [2 . . 10] and asks for assessing
the perceptional values in [0 . . 12], while x|∈[2. .10] → [x− 2 . . x + 2] generates stimuli values x in the
range [2 . . 10] and asks for assessing the perceptional values in the dependent range [x− 2 . . x + 2].

Experim. Waveform Geometric Amplitude Geometric Frequency Colour Amplitude Colour Frequency # exp.

Ampl1 sin. [2 . . 10]→ [0 . . 12] F[6] n.a. n.a. 6

Ampl2 sin. [2 . . 10]→ [0 . . 12] R[2 . . 10] n.a. n.a. 20

Freq1 sin. F[6] [2 . . 10]→ [0 . . 12] n.a. n.a. 6

Freq2 sin. R[2 . . 10] [2 . . 10]→ [0 . . 12] n.a. n.a. 20

SawtAmpl sin.→sawt. x|∈[2. .10] → [x−method2 . . x + 2] F[6] n.a. n.a. 5

RectAmpl sin.→rect. x|∈[2. .10] → [x− 2 . . x + 2] F[6] n.a. n.a. 5

SawtFreq sin.→sawt. F[6] x|∈[2. .10] → [x− 2 . . x + 2] n.a. n.a. 5

RectFreq sin.→rect. F[6] x|∈[2. .10] → [x− 2 . . x + 2] n.a. n.a. 5

ColAmpl1 n.a. n.a. n.a. [1 . . 5]→ [0 . . 5] F[3] 3

ColAmpl2 n.a. n.a. n.a. [1 . . 5]→ [0 . . 5] R[1 . . 5] 6

ColFreq1 n.a. n.a. n.a. F[3] [1 . . 5]→ [0 . . 5] 3

ColFreq2 n.a. n.a. n.a. R[1 . . 5] [1 . . 5]→ [0 . . 5] 6

The experiments with fixed second stimulus had been placed at the beginning of the specific
experiment section to make the participants acquainted with the experimental setting, as
the experiments with randomly selected second stimulus are more challenging.

Waveform-dependent calibration has been performed by selecting the modified shapes
with the closest magnitude. To reduce the number of questions, all magnitude estimation
experiments for geometric visual variables are done with the sinusoidal waveform. To
estimate a waveform calibration function, the participants had to select one out of five
glyphs with the perceptually most similar magnitude to a presented sinusoidal reference
(see Figure 4C). The modified shapes offered for selection were created with the magnitude
levels l ∈ [lref − 2 . . lref + 2], where lref denotes the visual variable values (adu) used for
the reference shape, and have been arranged randomly. These experiments were done
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separately for each waveform, i.e., rectangular or sawtooth-like, and for each visual variable
(see Table 2).

We additionally performed one experiment to verify the visual distinguishability between
the three waveform types—sinusoidal, rectangular and sawtooth-like—for combinations
of low frequencies/low amplitudes and high frequencies/high amplitudes not listed in
Table 2. The recognition rates were approximately 92%, 99%, and 99% for sinusoidal,
rectangular, and sawtooth-like, respectively.

The design of the experiment assumes to have “cooperative” participants, i.e., partici-
pants that will not “cheap their way through” the experiment, and that the time limit for the
ability to concentrate is at most 20–25 min. Table 2 states the number of experiments taken
per experiment type. Each participant was asked to go through 90 experiments in total.

3.3. Survey Evaluation

We invited students and researchers mainly from our university from the fields of com-
puter science and sociology to participate in our online survey, and an anonymous group
of 73 persons participated. The average time to take the survey was ≈26 min. Given the
raw results from the survey experiments conducted by the participants, we determined the
required stimulus-to-perception transformation, quantization, and calibration parameters
after having applied an outlier removal.

3.3.1. Outlier Removal

First, the “senseless” answers are filtered out, i.e., answers which deviate from the
expected value to an extend not explainable by the subjective character of perception alone.
These outliers are mainly caused, e.g., by a misunderstanding of the respective experimental
setting or by an external distraction of the participant while conducting the experiment.
We apply the two-step Chebyshev outlier detection method of Amidan et al. [17], with the
filtering parameters p1 = 0.375 and p2 = 0.175 for all visual variables.

3.3.2. Modelling the Stimulus-to-Perception Transformation Function

Following Stevens [15], we assume that the stimulus-to-perception transformation has
the form of a power function e(x) = a · xb + c. Thus, having the perceived magnitudes,
as stated by the participants, as data points e(x) and the stimulus magnitudes x as the
independent parameter, a, b, and c are estimated using nonlinear least-square fitting.

3.3.3. Quantization

The aim is to find a quantization step ∆v in perceptual space such that all resulting
magnitude levels do not overlap with neighbouring confidence intervals for a given con-
fidence level. This is analogous to the principle applied by estimation of just noticeable
difference (JND), which is also defined regarding the probability of correct assignments,
usually 50%, which we also apply in our experiment. Table 3 gives an overview of the
quantization steps and the resulting number of discrete levels for each visual variable.

Table 3. Quantization results derived from the user experiment with the image size 50× 50 mm.

Visual Variable Geometric Amplitude Geometric Frequency Colour Amplitude Colour Frequency

Quant. step ∆v (adu) ≈2.91 ≈2.01 ≈1.23 ≈1.14

# levels (50 mm) 4 5 4 4

More precisely, the quantization step is calculated as follows:

1. For each discrete stimulus magnitude level, observe and model the distribution of
perceived magnitudes.

2. Compute the 50% confidence interval, symmetrically placed about the respec-
tive mean.

3. Use the largest confidence interval as ∆v.
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3.3.4. Waveform-Dependent Calibration

We aim to define a function that calibrates the stimulus amplitude and frequency of a
rectangular or sawtooth-like waveform against the respective parameters of a sinusoidal
shape. This calibration is modelled as a linear function h(x) = k · x + l, with x being the
reference sinusoidal magnitudes from the calibration experiments (see Section 3.2) and the
perceived magnitudes regarding the rectangular or sawtooth-like waveform as data points.
The fitting of h is done with a least-square method.

3.3.5. Evaluation of Perceptual Dependencies between Amplitude and Frequency

To evaluate the perceptual dependencies between geometric amplitude and frequency,
we additionally estimate stimulus-to-perception transformation functions of the investi-
gated visual variable v1 in dependence on the magnitude of the respective second visual
variable v2. To get a sufficient number of samples and taking advantage of the fact that
the differences between neighbouring magnitudes are sufficiently small, we pool v2 in
intervals. The resulting extended transformation functions for amplitude and frequency,
respectively, are

·ap = e(·as, {· fs}),
· fp = e(· fs, {·as}),

where · is a placeholder for g (geometry) and c (colour), and the second function parameter
is a set of adu levels of v2, which serves as a mask, i.e., only samples where v2 has a
corresponding value are considered. For instance, e(gas; {2, 3, 4}) gives perception of
stimulus geometric amplitude gas with geometric frequency g fs ∈ {2, 3, 4}. The function
fitting is performed in the same way as described in Section 3.3.2.

For geometry, we pool v2 in three intervals of three levels each. Since colour visual
variables have been tested with five adu levels in the user study, we apply the following
weighted pooling scheme to get three intervals again. Exemplarily, we pool the colour
frequencies as

e(cas, {1, 1, 2}), e(cas, {2, 3, 3, 4}), e(cas, {4, 5, 5}),

where a double occurrence of a level in a set signifies that it is considered twice, i.e.,
weighted with factor 2. Colour amplitudes are pooled analogously.

4. Results
4.1. Outlier Removal

Table 4 gives an overview for all visual variables. The overall amount of removed
outliers is 4.8%. The detailed statistics of the outlier removal are represented in Figure 5.

Table 4. Outlier removal results.

Visual Variable Geometric Amplitude Geometric Frequency Colour Amplitude Colour Frequency

# data 1796 1787 648 646

# outliers 102 111 9 11

4.2. Stimulus-to-Perception Transformation Function

The modelled functions for transformation of stimuli into perceived magnitudes are
presented in Figure 6 (for the estimation method, see Section 3.3.2). For both, geometry
and colour amplitude, we observe a mainly linear and positive power dependency of the
perceived magnitudes on the stimulus magnitudes, with the exponent b = 1.0604 and
b = 0.928, respectively. The corresponding relationship for frequency is in both cases close
to quadratic, b = 1.7918 and b = 1.9463.
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Figure 5. Results of the two-step Chebyshev outlier detection: outliers are marked in red; the point
size encodes the number of occurrences.
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Figure 6. Modelling stimulus-to-perception transformation: blue: fitted transformation functions;
orange: lines connecting perceptual means.

4.3. Quantization

The distributions of the perceived magnitudes reveal a mono-modal Gaussian nature
for most magnitude levels and a bi-modal Gaussian behaviour for medium values of the
geometric amplitude and frequency. The latter can be explained by a larger distance to the
min. and max. references, which can be seen as a design-related phenomenon. Figure 7
shows the distribution of the perceived magnitudes with the respective 50% confidence
intervals for each visual variable. We compute the 50% confidence for a bi-modal Gaussian
distribution by identifying the 25% and 75% limits of the cumulative distribution of the
superposition of both Gaussians. For the calculation methods, see also Section 3.3.3.

Table 3 gives an overview of the quantization steps and the resulting number of
discrete levels for each visual variable. We observe that the distinguishability of both
geometric and colour frequency is slightly better, i.e., their quantization steps are smaller
than in the case of the respective amplitudes.
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Figure 7. Perceived magnitudes as normal distributions. Red: simple Gaussian; green: two-
component Gaussian mixture; cyan: borders of 50% confidence intervals.
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4.4. Waveform Calibration

Figure 8 shows the modelled linear calibration functions (for the estimation method,
see Section 3.3.4). The data demonstrate that the influence of a specific waveform on the
perception of amplitude and frequency magnitudes is rather marginal, i.e., k ≈ 1 for all
four parameters.
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Figure 8. Calibration of rectangular and sawtooth-like waveforms against sinusoidal waveform: red:
fitted calibration functions; blue: lines connecting perceptual means.

4.5. Evaluation of Perceptual Dependencies between Geometric Amplitude and Frequency

The modelled functions for transformation of stimuli to perceived magnitudes in
dependence on the second visual variable are presented in Figure 9 (see Section 3.3.5 for the
evaluation method). For the geometric amplitude (Figure 9a), we observe slightly higher
perceived magnitudes for medium frequencies, which corresponds to an approximately
linear stimulus–perception relationship with the exponent bmedium = 0.903 (see Section 4.2),
while for low and high frequencies, the transformation function is close to the square root
form with blow = 1.2257 and bhigh = 1.3093, respectively. For the geometric frequency
(Figure 9b), the perceived magnitudes increase with increasing amplitudes, i.e., the trans-
formation function varies from a weaker to a more pronounced exponential function with
blow = 1.4345 < bmedium = 1.8575 < bhigh = 2.0297. A similar trend can be observed for the
colour frequency (Figure 9d). However, in this case, it can be explained by the contrast at
the colour interval borders: while high colour amplitudes lead to hard transitions, making
the interval alternation more salient, low amplitudes produce a kind of blurry borders,
making the intervals seem larger. Finally, colour amplitude perception does not show any
apparent pattern in its dependency on colour frequency (Figure 9c). In general, for all four
visual variables, the respective deviations are rather marginal.
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5. Transfer to Different Shape Sizes

The quantization levels of visual variables derived in Section 4 are based on the
experiments with a fixed image size 50× 50 mm. To allow a flexible application in different
visualization contexts, we propose a scheme of how to apply our quantization results to
glyphs with different sizes, even though the evaluation of this scheme must be deferred for
future research. Note that our scheme does not generate visual variables that are comparable
across different scales.

Before starting with the definition of the transferring rules, first, we sum up the
quantization process for the fixed size, introducing some necessary notation. More precisely,
for a perceived visual variable v, we initially fixed the minimum and the maximum stimulus
values smin, smax (in mm) and deduced the quantization size ∆v (in adu) applied to the
range vmin, vmax (in adu) from the user experiment, which corresponds to smin and smax (see
Section 3.3). Note that ∆v corresponds to ∆s(v) (in mm), which is in general not constant
(see Figure 6).

To transfer the aforementioned quantization parameters to shapes with a relative scale
ω > 0 to the original shape of 50× 50 mm, we propose the following rules, where we
assume 0 < ω < 1, since glyphs are rather used at smaller scales:

• Colour amplitude should not be scaled, as intensity is independent of size.
• The “perceptual” stepsize ∆v (and the corresponding stimulus stepsizes ∆s(v)) should

not be reduced to preserve the absolute variation (in mm), and thus, the visual
distinguishability.

• The minimum and the maximum stimulus and visual variable values smin, smax and
vmin, vmax, respectively, are scaled according to the following rules:

– The minimum values smin and vmin can only be scaled moderately, i.e., reduced
using ωmin > ω, potentially even ωmin = 1, to prevent, for example, visually
vanishing amplitudes.

– The maximum values smax and vmax should be scaled by ωmax = ω, to prevent,
for example, extreme distortions for small shapes.

Consequently, the number of levels gets potentially reduced for ω < 1 as the “us-
able” range [ωmin · smin, ωmax · smax] gets smaller while the stepsize ∆s(v) remains
unchanged. To counteract on this problem, we propose to reduce the scaling effect
for the maximum values ωmax = ω + ε ≤ 1 with a user-defined parameter ε that also
depends on the shape’s complexity.

Figure 10 shows some exemplary results of the quantization transfer to shapes with
ω = 0.4.

Figure 10. Transfer of quantization results to different shape’s sizes: geometric amplitude levels
l1, . . . , l3. Top row: original size. Bottom row: scaled with ω = 0.4. This figure needs to be displayed
according to the given scale. Note that the quantization levels are not intended to be comparable
across scales.
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6. Conclusions, Limitations, and Future Work
6.1. Summary

In this paper, based on the results of a user study, we defined a perceptually uni-
form quantization model of periodical contour modifications for a glyph-based visualiza-
tion design, comprising the visual variables such as geometric amplitude and frequency,
waveform as well as colour amplitude and frequency. The main model components are
stimulus-to-perception transformation, waveform-dependent calibration, and definition of
the quantified levels for the corresponding visual channels. Moreover, we evaluated the
potential impact of the perceptual dependencies between specific visual variables.

Below, we first sum up our core findings:

1. Following [15], the relation between stimuli and their perception for all four quantitative
visual variables, considered in the model, can be modelled as a power function (see
Section 4.2). Since the adu-scale used in the experiments does not have a proper
zero-origin, we extended the power function with an additive term to compensate
this fact.

2. The influence of waveform on the perception of geometric amplitude and frequency is
marginal (see Section 4.4). As a consequence, the corresponding calibration step in a
visualization design can be skipped.

3. The user study shows that the geometric as well as the colour frequency have a better
discriminative capacity than the respective amplitudes (see Section 4.3). Overall, the
geometric frequency has the highest number of quantified levels in the tested range.

6.2. Limitations

Additionally to these results, our study also allows the following assumptions regard-
ing further perceptual aspects of the contour modifications, which still require an in-depth
investigation or validation in future work:

1. A first insight into amplitude–frequency dependencies, provided in this work, shows
certain perceptual trends as a function of the respective second parameter, but the
resulting deviations are rather marginal and thus can be likely neglected by a visual-
ization design (see Section 4.5).

2. We propose a method to transfer our model, estimated for shapes with a fixed size
50× 50 mm, to arbitrary sizes (see Section 5). We heuristically derived the respective
rules and showed first exemplary results created with this method.

6.3. Future Work

Finally, our results can serve as inspiration for some related topics, which, however,
are beyond the scope of this study:

1. The current quantization has been statistically estimated on the basis of perceptual
data. It may be of interest to compare our results with other estimation methods, for
instance, direct JND tests.

2. We consciously narrowed the corresponding ranges of the geometric visual variables
to avoid the expected strong interferences for low and high magnitudes [4], as men-
tioned in Section 3.2. At the same time, we assume that the current maximum is still
relatively far away from critical magnitudes. Consequently, the current limit needs
further investigation in a separate experiment. Furthermore, we assume that the
amplitudes and frequency limits depend to some degree on the respective base shape,
especially on its local curvature.

3. Colour contour modifications, limited in the current user study to black-white images,
can be transferred to shapes with other foreground colours, but a potential reduction of
the number of colour amplitude levels, depending on the base shape intensity and
the resulting shift of zero amplitude, has to be taken into account.

4. A combination of two main modification types—geometry and colour—is also conceiv-
able. According to a specific visualization design, it can be implemented as four
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independent quantitative visual variables as well as in a coupled form, e.g., with
colour frequency equal to geometric frequency and colour amplitude linked to geo-
metric amplitude. Such combinations potentially entail dependencies between colour
and geometry perception.
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