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Abstract: Seismic full wave inversion (FWI) is a widely used non-linear seismic imaging method used
to reconstruct subsurface velocity images, however it is time consuming, has high computational
cost and depend heavily on human interaction. Recently, deep learning has accelerated it’s use in
several data-driven techniques, however most deep learning techniques suffer from overfitting and
stability issues. In this work, we propose an edge computing-based data-driven inversion technique
based on supervised deep convolutional neural network to accurately reconstruct the subsurface
velocities. Deep learning based data-driven technique depends mostly on bulk data training. In
this work, we train our deep convolutional neural network (DCN) (UNet and InversionNet) on
the raw seismic data and their corresponding velocity models during the training phase to learn
the non-linear mapping between the seismic data and velocity models. The trained network is
then used to estimate the velocity models from new input seismic data during the prediction phase.
The prediction phase is performed on a resource-constrained edge device such as Raspberry Pi.
Raspberry Pi provides real-time and on-device computational power to execute the inference process.
In addition, we demonstrate robustness of our models to perform inversion in the presence on noise
by performing both noise-aware and no-noise training and feeding the resulting trained models with
noise at different signal-to-noise (SNR) ratio values. We make great efforts to achieve very feasible
inference times on the Raspberry Pi for both models. Specifically, the inference times per prediction
for UNet and InversionNet models on Raspberry Pi were 22 and 4 s respectively whilst inference
times for both models on the GPU were 2 and 18 s which are very comparable. Finally, we have
designed a user-friendly interactive graphical user interface (GUI) to automate the model execution
and inversion process on the Raspberry Pi.

Keywords: full wave inversion; deep convolutional neural network; graphical user interface; data-driven
method; structural similarity index metric; peak signal-to-noise ratio; Additive White Gaussian Noise

1. Introduction

Seismic full-wave-inversion (FWI) has been widely used in subsurface geological
exploration to describe rock quality, stratigraphic geology, energy exploration, etc. [1–3].
Specifically, FWI methods present information about subsurface stratas and rock geological
properties where a 2D/3D velocity model is reconstructed from a given set of seismic
observations. The mathematical implementation of FWI can be in the frequency domain or
time domain [4–7]. In FWI, efficient seismic sources are used to produce seismic waves and
the wave measurements are recorded via a seismometer. In order to solve the inversion
problem, a forward model is used. The foward model characterizes how the seismic obser-
vations depend on the velocity model. The forward model can be either travel-time or FWI
method. Travel-time inversion [8] is a simple technique which is based on linear estimation
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of the forward model, however they result in suboptimal inversion performance and reso-
lution. FWI [9] techniques results in optimal inversion solutions but they are challenging
due to non-linearity of the forward model, high computational cost and ill-posedness.
The advantage of the FWI techniques is primarily their robustness to non-distributed data
that result from the presence of noise and other factors. Several techniques have been
proposed to solve the ill-posedness, which include: dynamic warping techniques [10],
regularization-based methods [11–13], prior information-based approaches [14,15], multi-
scale inversion techniques [16] and precondition approaches [4]. High computational cost
still remains a challenge when solving FWI problems. For instance, assuming there are
l search steps required to find the best step at each iteration in a given 2D n× n velocity
model, then the cost involved for the update will be O(ln2).

With the recent achievements of deep neural networks (DNNs) [17,18] in image
processing [19,20], data-driven seismic FWI techniques [21–24] have been developed which
takes the seismic waveforms as input and then output the corresponding velocity models.
Recently, Yang and Ma [25] proposed a supervised deep fully convolutional neural network
(CNN) for velocity model reconstruction using raw seismic data. They fed their deep
CNN model with multishot seismic data and their corresponding velocity models to
learn the non-linear projection between them. During testing, they fed new input seismic
data to the trained network to predict their velocity models. Their testing performance
demonstrated that salt model prediction is much quicker and efficient using their technique
compared to existing traditional and state-of-the-art techniques. Rojas-Gomez et al. [26]
also developed a hybrid inversion technique that incorporated physics based models
with data-driven methods. Their method consisted of an encoder-decoder network and
an adaptive data augmentation technique. The data augmentation utilized the forward
model to generate new training data that were more representative of the desired solutions.
The authors demonstrated the performance by applying their inversion method to detect
carbon sequestration leakage using synthetic datasets generated by subsurface model
for CO2 storage site in Kimberlina, California. Their results yielded high accuracy and
better generalization compared to the only data-driven and only physics driven techniques.
Mao et al. [27] proposed a deep learning method for seismic exploration. They used
CNN model which was fed with zero-offset multi-shot seismic data as input and the
network outputs the velocity model. After training, the data assimulation process is driven
to perform high precision inversion of the subsurface velocity. The authors tested their
method on a designed salt body model and compared with traditional FWI techniques
in high precision velocity inversion. Their results showed that the prior velocity model
obtained by their method completes the velocity inversion under the high velocity body
and successfully jumps out of the local minima caused by its inaccuracy.

Due to the extensive application of DNNs for data-driven seismic inversion, it becomes
necessary to ensure the fast execution of DNNs on edge devices (e.g., Raspberry Pis,
smartphones, Internet-of-Things (IoT) sensors) that are characterized by limited resources
and real-time requirements for real-time velocity inversion. Moreover, edge computing
techniques has been widely used for edge learning, which involves the deployment of
DNN models (supervised, unsupervised, and reinforcement learning) at the network
edge [28]. DNN computation on edge devices is challenging due to the limited resources
however, these devices are excellent prospects for DNN execution due to their direct access
to local raw data [29]. Due to computational requirements, DNNs are mostly executed on
GPUs. However, modern edge devices are also equipped with high performance central
processing units (CPU) or graphics processing units (GPU) which enable them to execute
several small-scale to large-scale DNN models.

With the current state-of-the-art, inversion techniques are performed on very bulky
high performance computing devices due to their high computational resources, however in
this work, we have made great efforts and shown that inversion process can be successfully
performed on portable and resource-limited devices such as Raspberry Pi within practical
inference time without affecting the inversion performance.
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2. Overview and Motivation

In this work, we present a seismic FWI approach based on the implementation of the
shallow and deep DCN models on Raspberry Pi 4 to effectively reconstruct subsurface
velocity models whilst achieving superior performance within an acceptable inference
time. Currently, the seismic data collected by data operators are sometimes affected by
interference such as noise and vibration effects which makes it very difficult to perform
accurate inversion. Due to this, we are proposing an edge computing-based inversion
technique. This is the first work to perform seismic inversion on a resource limited edge
device. With the help of our system, it can provide data operators with real-time visual-
ization and subsurface reconstruction capability for the data collected by the receivers on
the field. With this, operators can be able to discard inferior data and collect only correct
seismic data.

Our method includes two main phases: training and prediction phases. In the training
phase, we feed the DCN models with seismic multishot gathers to learn the non-linear
approximation between the seismic data and their equivalent velocity models. The training
phase is completely performed offline on a GPU-based cluster due to limited resources
on the Raspberry Pi device. In the prediction phase, the trained models are transferred
to the Raspberry Pi to predict new velocity models from new unseen seismic data. Even
though the training phase is computationally expensive which makes it difficult to execute
on the Raspberry Pi, the cost involved during the prediction phase is very negligible on
the Raspberry Pi. We demonstrate the robustness of our models to perform inversion even
in the presence of noise by adding Additive White Gaussian Noise (AWGN) at different
SNRs to our seismic data during training and testing. Here, we adopt two approaches:
(1) Noise-aware model training and testing, where we train our DCN models on both clean
and noisy data (0, 5, 10, 15, 20, 25 and 30 dB), and perform testing using both clean and
noisy data, and (2) No-noise model training and Noise-aware testing where we train the
models on only clean data, however we perform testing on both clean and noisy data.

In summary, the main contributions of our work include:

• We propose a novel edge computing-based inversion technique which is based on
the implementation of DCN models on Raspberry Pi for inversion. Our DCN models
are implemented based on modified versions of the UNet [30] and InversionNet [31]
architectures. Both model architectures consist of convolution and deconvolution
layers (encoder-decoder) which will be introduced in detail later in the paper.

• Our DCN models are implemented effectively on the Raspberry Pi to perform the
inversion in real-time with superior performance.

• The inference times achieved for both models on the Raspberry Pi are very comparable
to the inference times achieved on the GPU.

• We have designed a user-friendly and interactive GUI to automate and control the
model execution and inversion process on the Raspberry Pi.

3. Background

In this section, we will first introduce a brief overview of the governing physics equa-
tion (acoustic-waveform inversion), physics-driven FWI and data-driven FWI methods.

3.1. Physics-Driven Full-Waveform Inversion

The physics-driven techniques estimate the subsurface velocity model using the gov-
erning physics and equations. Mathematically, the forward model can be expressed in
terms of acoustic-wave equation using:

m =

[
1

K(r)
∂2

∂t2 −∇ ·
(

1
ρ(r)
∇
)]

p(r, t) = s(r, t) (1)
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where K(r) denotes the bulk modulus, ρ(r) refers to the density at spatial location r, p(r, t)
is the pressure wavefield, t represents the time and · is the divergence operator. The above
forward model in Equation (1) can be expressed as:

P = f (m) (2)

where P is the pressure wavefield in acoustic scenario or displacement wavefield in elastic
scenario, f is the acoustic or elastic forward modeling operator and m refers to the velocity
model parameter vector which includes the density and compressional, and shear-wave
velocities. Given the forward model in Equation (2), the regularized seismic FWI can be
expressed as:

m = argmin
M

{
‖d− f (m)‖2

2 + λR(m)
}

(3)

where d represents the recorded/field waveform dataset, f (m) is the equivalent forward
modeling result, ‖ · ‖2 denotes the L2-norm, ‖d − f (m)‖2

2 refers to the data misfit, λ is
the regularization parameter, R(m) is the regularization term and argmin denotes the
minimization term for the function. The commonly used regularization techniques are
Tikhonov regularization and total-variation regularization. The Tikhonov regularization
can be stated as:

E(y) = min
y
‖x− f (y)‖2

2 + λ‖Hy‖2
2 (4)

where H denotes a high-pass filter or an identity matrix. Tikhonov regularization is mostly
suitable for smooth models, hence waveform inversion with Tikhonov regularization results
in blurred interfaces for piecewise-wise constant velocity models. The total-variation
regularization was introduced in FWI to retain the sharp interfaces in the subsurface
models. The current state-of-the-art physics-driven computation approaches used to
reconstruct velocity models from their corresponding seismic data are based on gradient
optimization techniques which is very computationally expensive and usually results in
inferior resolution in detecting little structures.

3.2. Data-Driven Full-Waveform Inversion

The data-driven techniques converts the minimization problem in physics-driven
methods to a mapping problem. Hence, the parameters of the velocity model (v) are
learned using:

v = H(u) = f−1(u) (5)

where H = f−1(·) denotes the inverse operator of f (·), v is the subsurface velocity model
and u represents the seismic data. The loss function can be defined as the minimization of
the objective function below:

H = argmin
H

N

∑
i=1
‖vi − H(ui)‖2

2 (6)

where (ui, vi) represent the pairs of measured seismic observations and their equivalent
velocity maps, and ‖ · ‖2 denotes the L2-norm. Our data-driven approach directly obtains
an estimation of f−1 using a DCN which maps u to v. The DCN structure consists of
an encoder-decoder architecture since our objective involves transforming data from one
domain to another. The encoder extracts high-level features from the input data, thus
reducing the dimension of the data, whilst the decoder transforms the extracted features
into another domain based on our requirements.

4. Data and Model Description

This section presents the data preparation process which involves the design of the
model (output) and data (input) for both the training and testing datasets. We use two
datasets in this work namely SEG Salt and Kimberlina CO2 leakage datasets.
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4.1. Salt Velocity Model Design

In this work, we use the 2D SEG Salt velocity models. Each velocity model is assumed
to have 5–12 layers as the base velocity with the velocity values from 2000 to 4000 m/s.
Each velocity model has a salt body with random shape and position, and the salt body has
a constant velocity of 4500 m/s. The shape of each velocity model is x× z = 201× 301 grid
points with a spatial distance of ∆x = ∆z = 10 m. We used 130 seismic data and their
corresponding velocity models for the Salt SEG dataset (120 for the training set and 10 for
the test set). Within the 120 training velocity models, 75 of them have the salt structure
whilst the remaining 45 have no salt. Figure 1 shows a sample velocity model of the 2D
SEG Salt data.

Figure 1. Sample velocity model of the 2D SEG Salt data.

4.2. Salt Data Design

Here, we used 29 sources evenly placed to generate the seismic shot gathers and then
301 receivers evenly placed at regular intervals are used to record the seismic measurements.
During the training phase, we used a batch size of 3 random samples of velocity models
from the training set and for each batch of training data, we downsampled one-shot gather
data to 200× 301 using a downsampling ratio of 1:1. Figure 2 shows a sample seismic data
of the 2D SEG Salt data.

Figure 2. Sample seismic data of the 2D SEG Salt data.

4.3. Kimberlina Data and Velocity Model Design

We used the simulated Kimberlina dataset from Lawrence Livermore National Labora-
tory. The kimberlina dataset helps to understand and evaluate the performance of different
geophysical monitoring methods in detecting CO2 shallow leakage in a wellbore [32]. This
helps to obtain major reductions in atmostpheric CO2. The Kimberlina CO2 characterizes
the spatial and temporal movement of a critical CO2 plume within a reservoir, contain-
ing 991 CO2 leakage cases that are simulated over a period of 200 years with 10 leakage
maps given for each case. The Kimberlina dataset is created through a commercial-scale
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geological carbon sequestration (GCS) reservoir at the Kimberlina site in the southern
San Joaquin Basin, 30 km northwest of Bakersfield, CA, USA. The synthetic seismic data
is obtained from the CO2 leakage velocity models via forward modeling. Each velocity
model has a randomly shaped plume of a constant velocity. The shape of the velocity
model is x× z = 141× 401 grid points with spatial distance of ∆x, ∆z = 0.0177 m, 10 m.
The seismic data is generated using 9 sources and 101 receivers evenly distributed at regular
intervals. The shape of the seismic data is x× y× z = 9× 1251× 101 with spatial distance
of ∆y, ∆z = 0.002 s, 40 m. We used 130 seismic data and their corresponding velocity
models for the Kimberlina dataset (120 for the training set and 10 for the test set). Figure 3
shows a sample velocity model (left) and seismic data (right) of the Kimberlina data.

Figure 3. Sample velocity model (left) and seismic data (right) of the Kimberlina data.

4.4. DCN Architecture

In this work, our DCN architecture is implemented based on deep convolutional
layers. Specifically, we modified the UNet and InversionNet architectures to be compatible
with the input seismic data dimensions. Both architectures consist of the encoder and
decoder. The encoder comprises of a set of convolution blocks which contains convolution
layers, batch normalization [33] and ReLU [34]. The convolution layers convolve the input
seismic data by using filters to extract relevant features. Batch normalization is used to
normalize the inputs (zero-means, unit variance and decorrelated) to a layer for every mini-
batch. This stabilizes the training process and makes the network converge much faster.
The ReLU activation function accounts for non-linearities by assigning zero to negative
input values. The decoder consists of a mixture of convolution and deconvolution blocks.
The deconvolution block, also known as the transposed convolution expands the size of its
input by padding zeros on the input feature maps.

Modified UNet: Each convolutional layer in the UNet uses a fixed kernel size of 3× 3.
The channel dimensions used in the convolution layers are 64, 128, 256, 512 and 1024, as the
network depth increases. After the convolutions, the max pooling layer of kernel size 2× 2
with stride 2 is applied to reduce the shapes of the feature maps to half of their previous
shape. Deconvolution layers with the same channel dimensions as the convolution layers
are applied to the feature maps to expand the shape of the output feature maps to be
the same as the input. Specifically, we used a fixed kernel size of 5× 5 with stride 2 in
the deconvolution layers. Finally, the soft-max function is used to obtain the predicted
label. The predicted label shows the pixels that belong to the salt body within the seismic
data. We used the mean squared error (squared L2 norm) to compute the loss between the
predicted label and ground truth label which is defined by:

L2(yg, yp) =
n

∑
i=1
|ypi − ygi|2 (7)

where yg = {yg1, . . . , ygn} is the ground truth, yp = {yp1, . . . , ypn} is the predicted velocity
model and n is the number of spatial locations in the velocity model. Figure 4 shows the
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architecture of the UNet used for the seismic inversion. Mathematically, the operations in
the UNet can be represented by the expression below:

y = UNet(x; Θ) = S(K2 ∗ (P(α(K1 ∗ x + b1))) + b2) (8)

where UNet() represents non-linear mapping of the network, x denotes the input, y is the
output, K1, K2 are the convolutional kernel dimensions, b1, b2 are the biases,
Θ = {K1, K2, b1, b2} is the set of parameters to be learned, α denotes the activation function
such as the Rectified Linear Unit (ReLU), sigmoid, etc., P denotes the pooling function
(e.g., max-pooling), “∗” represents the convolution operation, S() denotes the soft-max
function. Since our approach is based on supervised learning, the network has to be fed
with input-output pairs (seismic data and their corresponding velocity models). Given that
our aim is to predict the velocity models using the seismic data, the UNet model learns
a non-linear mapping between the seismic data (input) and their corresponding velocity
model (output). Hence, the model projects the seismic data from the data distribution to
model distribution. The network learns by solving the objective function below:

Θ̂ = argmin
Θ

1
pN

N

∑
n=1

L2(vn, DCN(dn; Θ))

for ṽn = DCN(dn; Θ)

(9)

where p denotes the total number of pixels in a velocity model, L2(·) is the error value
between the ground-truth values vn and predicted values ṽn. In order to update the learned
parameters, Adam and back-propagation algorithms are used. The Adam optimizer [35]
updates the parameters iteratively using:

Θt = Θt−1 − α · m̂t/(
√

v̂t + ε) (10)

where m̂t ← mt/(1− βt
1), v̂t ← vt/(1− βt

2), α is the positive step size, ε = 10−8, β1 and
β2 have their default values of 0.9 and 0.999 respectively as used in the Adam paper.

Modified InversionNet: In this architecture, the encoder is implemented with a stack
of 14 convolution layers with the first layer having a kernel size of 7× 1 and the next six
layers having a kernel size of 3× 3. We used a stride of 2× 1 in the first convolution layer
to reduce the data dimension to the velocity model dimension. The six convolution layers
with kernel size 3× 3 are used to extract spatial-temporal features in the data where a stride
of 2 is used to downsample the data in each layer. Next, a convolution layer with kernel
size 10× 2 is used to flatten the feature maps to an output latent vector dimension (512 in
this case). The decoder comprises of first deconvolution layer with kernel size 5× 13 which
is applied on the latent vector to produce a 5× 13× 512 tensor followed by a convolution
layer with same input and output channel dimensions. After the first deconvolution layer,
series of deconvolution-convolution operations are performed with kernel sizes of 4× 4
and 3× 3 in the deconvolution and convolution layers respectively. Finally, we use the
negative padding technique with pad dimensions [−7,−8,−9,−10] to crop the feature
maps and apply a 3× 3 convolution layer to get an output of a single velocity map of
shape (141× 401). Both the convolution and deconvolution layers are followed with batch
normalization and LeakyReLU activation function. The L1 loss function is used to compute
the reconstruction error, which is given below:

L1(x, y) =
1
n

n

∑
i=1
|xi − yi| (11)

where y = {y1, . . . , yn} is the ground truth, x = {x1, . . . , xn} is the predicted velocity
model and n is the number of spatial locations in the velocity model.

Our modified InversionNet architecture consists of 14 CNN layers in the encoder and
13 layers in the decoder. Figure 5 shows the architecture of the InversionNet model.
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Figure 5. Modified InversionNet architecture used for the seismic inversion

5. Noise Addition

As stated earlier, we employed two techniques for the noise addition: Noise-aware
training and testing, and No-noise training and noise-aware testing. We used the SNR
method to generate the noise which is given by Equation (12). SNR refers to the measure
of the power of the desired signal relative to the background noise. Higher values of
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SNR results in a better image output. We used the SNR approach to precisely evaluate
our noisy seismic image quality, because high SNR is always required in modern vision
applications which involve edge-based processing where ML models are used to study the
processed images.

SNR(dB) = 10log10
Pimage

Pnoise
(12)

where Pimage is the image power in watts and Pnoise is the noise power. We generated noise
at 7 different levels (i.e., 5, 10, 15, 20, 25 and 30 dB). For noise-aware training, we generated
120 seismic data at each of these noise levels in addition to the clean data and fed all to the
DCN model. During testing, we fed a noisy data at any of these noise levels to the trained
models to predict the velocity model. The noise addition process as depicted in Algorithm 1
starts by first flattening the seismic image data. The image power (watts) is then computed
by taking the square of all the image pixel values. The average image power (watts) is
computed by taking the mean of all squared pixel values. The average image power (watts)
is converted to its dB equivalent using Equation (13).

Avg.Pimage(dB) = 10log10
Avg.Pimage(watt)

1watt
(13)

The average noise power in dB is computed by subtracting the set target SNR value (dB)
from the average image power in dB as shown in Equation (14). The average noise power
(dB) is then converted to its watt equivalent using Equation (15).

Avg.Pnoise(dB) = Avg.Pimage − Target SNR (14)

Avg.Pnoise(watt) = 10
Avg.Pnoise(dB)

10 (15)

Additive White Gaussian Noise (AWGN) of length equal to the flattened image is
generated. In order to model the AWGN, a zero-mean Gaussian random variable was
added to the seismic image. Hence, it should be noted that the mean (µ) of the generated
AWGN should be equal to zero and the standard deviation (σ) should be equal to the
square root of the average noise power. The variance of the random variable will then affect
the average noise power. For instance, given a Gaussian random variable X, the average
power E[X2], which is also known as the second moment is given by E[X2] = µ2 + σ2,
where σ2 is the variance. The generated noise is then added to the original flattened image
and finally reshaped back to the original image shape. Figure 6 shows the image of seismic
data at each noise level. The performance of the noise algorithm was analyzed in terms
of time complexity. Specifically, O(n) time is involved during the flattening the seismic
image, O(n) time for computing image power (watts), O(n) time for computing average
image power (watts), O(1) time for computing average image power (dB), O(1) time for
computing average noise power (dB), O(1) time for converting average noise power from
dB to watts, O(n) time for generating AWGN, O(n) time for adding generated noise to
image and finally O(n) time for reshaping noisy image to original image shape. Hence,
the resultant time complexity for the noise addition algorithm is linear time O(n) which
is greatly acceptable. Figure 7 shows an illustrative time complexity plot for the noise
algorithm for input length up to 1000. It can be seen from the figure that the time complexity
reduces for input length 0 up to input length 700 and starts increasing linearly after input
length 700 which demonstrates the linear time complexity of the noise algorithm (see
Algorithm 1) for increasing input length.
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Algorithm 1 Algorithm to add noise to the seismic image.

Require: Input seismic image
Ensure: Flatten seismic image to 1-D
Ensure: Set target SNR value. e.g., SNR = 10 dB

+ Step 1 Compute image power in watts (square all image pixels)
+ Step 2 Compute average image power in watts (mean of all squared image pixels)
+ Step 3 Compute average image power in dB (use Equation (13))
+ Step 4 Compute average noise power (dB) (use Equation (14))
+ Step 5 Convert average noise power from dB to watts (use Equation (15))
+ Step 6 Generate AWGN (µ = 0 and σ =

√
Avg.Pnoise) with length equal to

flattened image
+ Step 7 Add generated noise to original flattened image
+ Step 8 Reshape resulting image back to original shape

 

0 dB 5 dB 10 dB 15 dB 

20 dB 25 dB 30 dB 

Figure 6. Seismic image representation at each noise level.

Figure 7. Illustrative time complexity plot for the noise algorithm.

6. User Interactive GUI Design

In order to automate and control the inversion process on the Raspberry Pi, we
designed an interactive and user-friendly GUI application where the user can interact to
perform the inversion on the Raspberry Pi. Figure 8 shows the interface of the designed
GUI. The GUI incorporates different functionalities such as receiving the seismic data,
showing the predicted velocity model, plot seismic traces of receivers and velocity profiles
at specific locations, noise addition as well as zooming in and out options for the received
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seismic data and the predicted velocity models. The various parts of the GUI application
are described below:

Seismic Data: Here, the user can receive a randomly sampled test data from the locally
stored data. We also provide an option for the user to select and receive a specific test data
of interest to perform inversion on by selecting Local Data on the menu bar. By default, all
the received seismic data are from the second channel (source), however we have provided
an alternative for users to receive data from a specific source using the Enter Seismic
Source No. input. The receive seismic data button displays the randomly sampled or user
selected data.

 

Figure 8. Interface of the designed graphical user interface.

Trace: The trace provides information about the signals received by the receivers.
By default, we plot the trace of receivers 50, 150 and 250 for the Salt data and 30, 60 and 90
for the Kimberlina data. The user can also give different receiver numbers using the Set
1–3 input to plot the user-defined traces.

Velocity Model: The velocity model section comprises of the prediction and veloc-
ity profile. The user can perform prediction on the received test data using a specific
DCN model and plot the velocity profiles at different locations or distances. The velocity
profile gives information about the signals occurring at a specific location within the pre-
dicted velocity model. The location ranges for Salt and Kimberlina data are 0–3 km and
0–1 km respectively.

Model Selection: The various models used in this work are located under Models
in the menu bar. Specifically, we used four models namely: No-noise UNet, Noise-aware
UNet, No-noise InversionNet and Noise-aware InversionNet models.

Output Display: The output display shows the inference performance, time spent for
prediction, data and model that have been loaded by the user. In this work, we measure the
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inference performance for Salt data in terms of structural similarity index measure (SSIM)
and peak signal-to-noise ratio (PSNR) whereas we measure mean absolute error (MAE),
mean squared error (MSE) and SSIM for Kimberlina data.

For instance, from Figure 8, we can observe that the received seismic data is from
the second channel with noise 0 dB. Annotations for receivers 78, 56 and 12 are shown on
the seismic data which corresponds to offset values of 3.12 km (red), 2.24 km (blue) and
0.48 km (black) since 1 pixel on the offset corresponds to 40m. The traces for receivers 78,
56 and 12 are shown in the trace section. The prediction for the received data is shown in
the velocity model section. It can be observed that the model made a good prediction even
though the seismic data is very noisy. Annotations for velocity locations 0.5467, 0.321 and
0.93 are shown on the velocity model which corresponds position values of 2.1868 km (red),
1.284 km (blue) and 3.720 km (black). The velocity profiles corresponding to these locations
are also shown in the velocity profile section. On the output display, it can be seen that the
prediction was made using the no-noise InversionNet model. The prediction time involved
is recorded as 4 s whilst the testing MAE, MSE and SSIM are recorded as 0.0270, 0.0051 and
0.9476 respectively.

7. Experimental Setup and Results
7.1. Training Settings

As mentioned earlier, we conducted the DCN training on a Tesla K40m GPU with
12 GB memory. During training of the UNet, we fed 120 and 960 Salt data and their
corresponding velocity models to the network for no-noise and noise-aware training
respectively. A batch size of 3 is used during training and network is trained for 500 epochs.
We used a learning rate of 0.001 during training and models are saved at each 20 epochs.
The training times involved were approximately 1 h 30 min and 8 h for no-noise and
noise-aware training respectively. For InversionNet, we fed 120 and 960 Kimberlina data
and their velocity models for no-noise and noise-aware training respectively. A batch
size of 10 is used and network is trained for 500 epochs. A learning rate of 0.0001 is used
and models are saved at each 50 and 100 epochs for no-noise and noise-aware training
respectively. The training times involved for no-noise and noise-aware training were 1 h
30 min and 9 h respectively.

7.2. Inference Performance

After training, the saved models are transferred to the Raspberry Pi for inference.
Figure 9 shows our Raspberry Pi setup used for the inversion process. The Raspberry
Pi used in our work has the following specifications: Quad core Cortex-A72 @ 1.5 GHz
and 8 GB RAM. We used 10 Salt and Kimberlina data for the inference. During the in-
ference, we used a batch size of 1 where one random data is selected or user selects
a specific data from the test dataset and then the velocity model for that data is pre-
dicted by the model. We recorded the inference performance in terms of SSIM and PSNR
for Salt data and measure MAE, MSE and SSIM for Kimberlina data. PSNR measures
the quality between ground truth and predicted velocity images. The higher the PSNR
value, the better the quality of the predicted velocity image. SSIM measures the simi-
larity between ground truth and predicted velocity images. The SSIM ranges from 0 to
1, and higher values are better. MSE measures the average squared difference between
the predicted and ground truth. MAE measures the average absolute error between the
ground truth and predicted values. The lower the MSE and MAE values, the more ac-
curate the model is. Table 1 shows the comparison of inference performances (PSNR
and SSIM) for all the 10 clean Salt test data for no-noise and noise-aware UNet models
respectively. From the table, we can see that the no-noise models outperformed the noise-
aware models in most of the test data namely: sample 2 (PSNR, SSIM = 17.9765, 0.5340
vs. 17.8331, 0.5338), sample 3 (PSNR, SSIM = 12.9452, 0.5110 vs. 14.4647, 0.4907), sample 5
(PSNR, SSIM = 26.2139, 0.5325 vs. 24.2624, 0.4877), sample 6 (PSNR, SSIM = 22.5901, 0.5032
vs. 16.1032, 0.4251), sample 7 (PSNR, SSIM = 22.7110, 0.4629 vs. 19.2977, 0.4159) and
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sample 8 (PSNR, SSIM = 15.8107, 0.5168 vs. 14.9872, 0.4984) whilst noise-aware mod-
els outperformed the no-noise models in sample 1 (PSNR, SSIM = 16.0833, 0.5169 vs.
16.3088, 0.4873), sample 4 (PSNR, SSIM = 16.4363, 0.2779 vs. 13.4861, 0.2539) and sample
10 (PSNR, SSIM = 18.0979, 0.5965 vs. 13.9382, 0.5091). Table 2 shows the comparison of
inference performances (SSIM) for all the 10 clean Kimberlina test data for no-noise and
noise-aware InversionNet models respectively. From the table, the noise-aware models
outperformed the no-noise models in all the test data except sample 4 (SSIM = 0.983 vs.
0.983), sample 6 (SSIM = 0.993 vs. 0.992) and sample 9 (SSIM = 0.999 vs. 0.969).

 

Figure 9. Raspberry Pi setup for model execution and inversion.

Table 1. Test performance achieved on the raspberry pi by UNet model on Salt data.

No-Noise UNet Noise-Aware UNet

Sample PSNR SSIM PSNR SSIM

1 16.3088 0.4873 16.0833 0.5169
2 17.9765 0.5340 17.8331 0.5338
3 12.9452 0.5110 14.4647 0.4907
4 13.4861 0.2539 16.4363 0.2779
5 26.2139 0.5325 24.2624 0.4877
6 22.5901 0.5032 16.1032 0.4251
7 22.7110 0.4629 19.2977 0.4159
8 15.8107 0.5168 14.9872 0.4984
9 12.4938 0.4285 19.2041 0.3643
10 13.9382 0.5091 18.0979 0.5965

Table 2. Test performance achieved on the raspberry pi by InversionNet model on Kimberlina data.

No-Noise InversionNet Noise-Aware InversionNet

Sample SSIM SSIM

1 0.984 0.991
2 0.999 0.999
3 0.978 0.981
4 0.983 0.983
5 0.999 0.999
6 0.993 0.992
7 0.995 0.999
8 0.942 0.961
9 0.999 0.969
10 0.997 0.998



J. Imaging 2022, 8, 312 14 of 21

7.3. Inference Time

With the execution of the inference on the Raspberry Pi which has limited resources in
terms of computational power and memory requirements, it is very necessary to ensure
that the time taken for one prediction is within acceptable limits. For our experiments,
we observed that the time taken to make one prediction on the Raspberry Pi for Salt and
Kimberlina data were around 22 and 4 s respectively, which is very feasible and acceptable.
We compared our results with the inferences times achieved by performing inference
on GPU PC with specifications listed in Table 3. From the results in Table 3, running
InversionNet on Raspberry Pi obtains a smaller inference time (4 s) compared to 18 s on
the GPU PC. However, for UNet, the inference time on the GPU PC outperformed that
of the Raspberry Pi. We made great efforts to optimize our models to perform inversion
within feasible inference times on the Raspberry Pi. For instance, we achieved 4.5× lower
inference time on the Raspberry Pi compared to the GPU for the deep InversionNet model.

Table 3. Comparison of training and inference times on Raspberry Pi, GPU PC and Yang and Ma [25].

Specifications Hardware

Raspberry Pi 4
Model B

GPU NVIDIA GeForce
GTX 1600 Super

Yang and Ma [25]
HP Z840 workstation

Processor Quad core—A72 1.5 GHz Intel core i7 1.9 GHz 32 Core Xeon CPU
RAM 8 GB DDR4 SDRAM 16 GB DDR4 128 GB

Storage Micro-SD (128 GB) SSD (512 GB) -

Training time

UNet - 1 h 30 min (no-noise)
8 h (noise-aware)

43 min

Inference time per prediction (s)

UNet 22 s 2 s 2 s
InversionNet 4 s 18 s -

7.4. Reconstruction Results

Figure 10 shows some reconstruction results for no-noise and noise-aware models on
Salt data. We can observe from the results that both models are able to make very good
predictions. Comparing the no-noise and noise-aware results by visual inspection, we
can see that no-noise models made better predictions in the top left (SSIM = 0.5110 vs.
0.4907), top mid (SSIM = 0.5340 vs. 0.5338), mid left (SSIM = 0.5168 vs. 0.4984), mid right
(SSIM = 0.5325 vs. 0.4877), bottom mid (0.5032 vs. 0.4251) and bottom right (0.4629 vs.
0.4159) reconstructions compared to the noise-aware models. These imperfect predictions
by the noise-aware models resulted because of overfitting of the models to the training
data since more data were used for training the noise-aware models. Because the UNet
model is a shallow network with few layers (4 layers), the noise-aware models learn all the
unnecessary details within the data which negatively affects the generalization performance
on the test data. Notwithstanding that, the noise-aware models made better predictions
in the top right (SSIM = 0.5965 vs. 0.5091), mid middle (SSIM = 0.5169 vs. 0.4873) and
bottom left (0.2779 vs. 0.2539) reconstructions. Figure 11 shows some reconstruction results
for the Kimberlina data. In the case of Kimberlina dataset, the reconstruction results for
noise-aware models were quite better than the no-noise models. Specifically, by visual
inspection, we can observe that the noise aware models made better prediction for top
right (SSIM = 0.991 vs. 0.984), top mid (SSIM = 0.981 vs. 0.978), top right (SSIM = 0.999
vs. 0.995), bottom left (SSIM = 0.998 vs. 0.997) and bottom mid (SSIM = 0.961 vs. 0.942)
reconstructions. The no-noise models made a better prediction than the noise-aware models
in only the bottom-right (SSIM = 0.993 vs. 0.992) reconstruction. The noise-aware models
outperformed the no-noise models for the Kimberlina data because the InversionNet model
is a deep network with more layers (27 layers) and hence need more data to learn most
of the feature representations. Since the noise-aware model is trained with more data
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(960 in this case) compared to only 120 for the no-noise model, the noise-aware models
can learn more feature representations in the seismic data hence performs better than the
no-noise models.

 

 

Figure 10. Reconstruction results for no-noise (top) and noise-aware (bottom) models on the Salt
data. Ground truth (left) and Prediction (right).



J. Imaging 2022, 8, 312 16 of 21

Version November 10, 2022 submitted to J. Imaging 16 of 21
 

 

Figure 11. Reconstruction results for no-noise (top) and noise-aware (bottom) models on the Kimber-
lina data. Ground truth (left) and Prediction (right).

of these noise levels. For inversionNet, the reconstruction performance for both no-noise 381

and noise-aware models were very comparable to the ground truth except only at 0dB 382

where the reconstruction of the no-noise model was slightly different from the ground 383

truth. As stated earlier, the inversionNet has more layers hence the no-noise model can 384

even learn significant features from the clean data and translate it to noisy data to produce 385

good reconstructions. For noise-aware InversionNet, we can see from the results that all 386

the reconstructions were very similar to the ground truth at each noise level. Therefore 387

from the results, we can conclude that the noise-aware models were more robust to the 388

noisy data at different SNRs compared to the no-noise models, which is expected. 389

7.6. Scalability of datasets and proposed method to real-world/field applications 390

Our proposed technique can be applied in a wide range of applications depending 391

on the input seismic data. Some of the applications include subsurface characterization to 392

determine rock quality and geological nature of a specific site, and detect ground water 393

contamination, etc. For instance, in subsurface characterization, data operators collecting 394

data on the field can connect our designed system (edge device - Raspberry Pi, tablet, cell 395

phone, etc.) to the field data receivers via bluetooth, wireless or network cable to visualize 396

the real-time subsurface inversion reconstructions of the collected data. This can enable 397

these data operators to discard contaminated and inferior data in real-time based on the 398

subsurface inversion output. 399

Our synthetic dataset is affected by the parameters (e.g. model grid spacing, number 400

of sources and receivers used, source and receiver interval distance, etc.) used to generate 401

them. In this work, we generated the synthetic salt data with the parameters stated under 402

section 4.1 and 4.2 by applying forward modeling on the velocity models based on the 403

forward-propagated source wave equation. For Kimberlina dataset, we used the simulated 404

data generated based on the hypothetical numerical model built on the geological structure 405

of the GCS reservoir at the Kimberlina site. The P-wave and S-wave velocity maps used 406

in this work originated from the geophysical model built on the realistic geological-layer 407

characteristics from the GCS site. Since our models are trained on datasets with these 408
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7.5. Effects of Noise at Different SNRs on Reconstructions

In order to demonstrate the effects of different noise on reconstructions predicted
by both no-noise and noise-aware models, we conducted extensive experiments with
results displayed in Figure 12. Starting from the left with the reconstructions from the
no-noise UNet model, we can observe that adding noise with low SNR (e.g., 0 dB) resulted
in poor reconstructions (no salt detection). As the SNR value was gradually increased,
the quality of the reconstructed image started improving and detecting the salt structure.
At 30 dB, we can say that the noise component in the seismic data is very minimal, hence the
reconstructed image was good compared to the ground truth. Comparing reconstructions
from the no-noise and noise-aware UNet models, we can observe from the results that the
noise-aware reconstructions were better than the no-noise, which is very accurate. This is
due to the fact that the noise-aware models were trained on data from each of these noise
levels hence the model can produce a good reconstruction on any data affected with any
of these noise levels. For inversionNet, the reconstruction performance for both no-noise
and noise-aware models were very comparable to the ground truth except only at 0 dB
where the reconstruction of the no-noise model was slightly different from the ground
truth. As stated earlier, the inversionNet has more layers hence the no-noise model can
even learn significant features from the clean data and translate it to noisy data to produce
good reconstructions. For noise-aware InversionNet, we can see from the results that all
the reconstructions were very similar to the ground truth at each noise level. Therefore
from the results, we can conclude that the noise-aware models were more robust to the
noisy data at different SNRs compared to the no-noise models, which is expected.
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Figure 12. Effect of noise at different SNRs on reconstructions predicted by no-noise and noise-
aware models.

7.6. Scalability of Datasets and Proposed Method to Real-World/Field Applications

Our proposed technique can be applied in a wide range of applications depending
on the input seismic data. Some of the applications include subsurface characterization to
determine rock quality and geological nature of a specific site, and detect ground water
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contamination, etc. For instance, in subsurface characterization, data operators collecting
data on the field can connect our designed system (edge device—Raspberry Pi, tablet, cell
phone, etc.) to the field data receivers via bluetooth, wireless or network cable to visualize
the real-time subsurface inversion reconstructions of the collected data. This can enable
these data operators to discard contaminated and inferior data in real-time based on the
subsurface inversion output.

Our synthetic dataset is affected by the parameters (e.g., model grid spacing, number
of sources and receivers used, source and receiver interval distance, etc.) used to generate
them. In this work, we generated the synthetic salt data with the parameters stated under
Sections 4.1 and 4.2 by applying forward modeling on the velocity models based on the
forward-propagated source wave equation. For Kimberlina dataset, we used the simulated
data generated based on the hypothetical numerical model built on the geological structure
of the GCS reservoir at the Kimberlina site. The P-wave and S-wave velocity maps used
in this work originated from the geophysical model built on the realistic geological-layer
characteristics from the GCS site. Since our models are trained on datasets with these
specifications, to scale our datasets and proposed techniques accurately to the real-time
field data, the field data should be collected using similar parameters used in this work for
our models to effectively generate optimal subsurface reconstructions. However, if the field
setup used for the data collection has different configuration compared to our assumed
synthetic data generation parameters, samples of the field data can be collected and trained
on our models and then the trained models can be applied on the field data to obtain the
subsurface reconstructions in real-time. Moreover, since our training velocity models are
diverse (i.e., with salt and without salt structures), our models are able to learn the mapping
of the seismic data to their corresponding velocity models with or without salt structures,
hence our trained can produce good reconstructions on real-time field data whose velocity
models have salt or no salt.

7.7. Comparison of Our Results with Existing Works

In this section, we compare our proposed methods to the existing works such as Yang
and Ma [25]. In their work, the authors performed both training and testing on an HP
Z840 workstation with a Tesla K40 GPU, 32 Core Xeon CPU, 128 GB RAM. In order to
demonstrate the robustness and stability of their method, they added a fixed Gaussian
noise with zero mean and standard deviation of 5% to each of the testing data. In their
work, the total time involved for training 130 SEG salt data was 43 min. The inference
time for each seismic data was 2 s. However in our work, we performed training on Tesla
K40m GPU with 12 GB RAM and the trained models were used to perform testing on
the Raspberry Pi with these specifications: Quad core Cortex-A72 @ 1.5 GHz and 8 GB
RAM. In our work, we performed both no-noise training (similar to theirs) and noise-
aware training. The time involved for training our 120 seismic data without noise was
1 h and 30 min compared to 43 min in their work as shown in Table 3. To demonstrate
robustness and stability of our method, we added noise with different SNRs to the seismic
data during testing to perform inversion. The inference time per seismic inversion on the
Raspberry Pi was 22 s compared to 2 s on their Tesla GPU. Even though, our Raspberry
Pi has very limited resources compared to their Tesla GPU, the inference times are very
comparable and the difference is not much. Moreover, since we perform noise-aware
training in our work, our models are able to generate good reconstructions even at low
SNR noisy data compared to the ground truth, however we argue that their method will
fail to generate good reconstructions if we feed our low SNR noisy data to their trained
network. One of main contributions of our work is the execution of the inference on
the resource-limited Raspberry Pi. Our proposed system is very portable and hence can
provide real-time inversion results for data operators collecting data on the field in real
world applications. Our designed user-friendly and interactive GUI also enables real
time processing of the seismic data, fast model execution and generation of user-defined
inversion results. Figure 13 shows the comparison of some velocity inversion results from
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our work and [25]. From the results, we can observe that our models (both no-noise and
noise-aware) are able to generate better reconstructions compared to the results in [25].

 

Ours (no-noise model) 

Ground truth Ground truth 

Yang and Ma, 2019 Yang and Ma, 2019 

Ours (no-noise model) 

Ours (noise-aware model) Ours (noise-aware model) 

Figure 13. Comparison of reconstructions between our work and Yang and Ma [25].

8. Conclusions

In conclusion, we have proposed a novel edge-computing technique to perform seismic
inversion on portable resource-constrained edge devices using the supervised data-driven
based framework. Specifically, we implemented and executed DCN models to perform
velocity inversion accurately, efficiently and practically on the edge device. Our DCN
models consist of encoder and decoder structures built using layers of convolution and
deconvolution. We used modified versions of the UNet and InversionNet models. We made
great efforts to execute both UNet (shallow) and InversionNet (deep) models and performed
inversion on the Raspberry Pi with very limited resources whilst achieving very feasible
and acceptable inference time per seismic inversion. Even though, the training phase is
computationally expensive, the inference time on Raspberry Pi for UNet and InversionNet
models were 22 s and 4 s respectively which is very comparable to performing inversion on
bulky GPU computers in [25]. We also demonstrated the robustness of our models through
the addition of additive noise with different SNRs by performing no-noise training and
noise-ware testing, and noise-aware training and testing in which our models were able
to achieve superior performance. We also compared our results to the existing work [25]
where our models were able to generate better inversion results compared to their work. We
have also designed a user-friendly and interactive GUI application to completely automate
and control the model execution and inversion process on the Raspberry Pi.
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