
Citation: Wibawa, H.A.; Harjoko, A.;

Sumiharto, R.; Sasongko, M.B.

Efficient and Robust Method to

Detect the Location of Macular

Center Based on Optimal Temporal

Determination. J. Imaging 2022, 8, 313.

https://doi.org/10.3390/

jimaging8120313

Academic Editor: Reyer Zwiggelaar

Received: 20 September 2022

Accepted: 11 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Efficient and Robust Method to Detect the Location of Macular
Center Based on Optimal Temporal Determination
Helmie Arif Wibawa 1,2, Agus Harjoko 2,* , Raden Sumiharto 2 and Muhammad Bayu Sasongko 3

1 Department of Informatics, Faculty of Science and Mathematics, Diponegoro University,
Semarang 50275, Indonesia

2 Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences,
Gadjah Mada University, Yogyakarta 55281, Indonesia

3 Department of Ophthalmology, Faculty of Public Health Medicine and Nursing, Gadjah Mada University,
Yogyakarta 55281, Indonesia

* Correspondence: aharjoko@ugm.ac.id

Abstract: The location of the macular central is very important for the examination of macular edema
when using an automated screening system. The erratic character of the macular light intensity
and the absence of a clear border make this anatomical structure difficult to detect. This paper
presents a new method for detecting the macular center based on its geometrical location in the
temporal direction of the optic disc. Also, a new method of determining the temporal direction
using the vascular features visible on the optic disc is proposed. After detecting the optic disc,
the temporal direction is determined by considering blood vessel positions. The macular center is
detected using thresholding and simple morphology operations with optimum macular region of
interest (ROI) direction. The results show that the proposed method has a low computation time of
0.34 s/image with 100% accuracy for the DRIVE dataset, while that of DiaretDB1 was 0.57 s/image
with 98.87% accuracy.

Keywords: macular center detection; temporal direction; macular ROI

1. Introduction

Diabetic macular edema (DME) often threatens the vision of people with diabetes
when not treated properly, and fundus photos have been recommended for routine eye
screening [1]. Analysis of fundus images with computer technology can make such exami-
nations more effective and efficient.

DME severity is measured with polar coordinates that are determined by the appear-
ance of a hard exudate on the retinal fundus image and its distance to the macular area [2–4].
The center of the macular is used as the focus in this polar coordinate system [5,6], which
helps in measuring the distance of the hard exudate when it appears. Therefore, macular
center detection is considered the initial step for their determination [7]. Figure 1 shows
a polar coordinate system for the appearance and distribution of hard exudate in the
macular area.

In the retinal fundus image, the macula is identified as the small circular portion with
the darkest intensity [5] without the clear border of the optic disc area. Furthermore, as
this area does not contain blood vessels [8], it is more difficult to detect the macular than
anatomical structures such as the optic disc and blood vessels.
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Figure 1. An example of polar coordinates in retinal image (DD: disc diameter).

Therefore, the location of the macular center must be detected as the first step towards
establishing the polar coordinates. In the past, the detection of the macular center has been
performed using deep learning and traditional approaches. In one study, a deep-learning
approach using Convolutional Neural Network (CNN) to simultaneously detect the optic
disc and fovea [9] In another study, multi-stage segmentation of the fovea was performed
with fully convolutional neural networks and explained that the fovea was segmented
and localized using an end-to-end encoder–decoder network [10]. It has been found that
deep-learning usage involves very complex parameters that influence each other, even
though it provides high accuracy results [9]. Furthermore, the inspection and repair process
in this approach is more complicated compared to the traditional method because of its
black-box nature. This is consistent with [11–14], which stated that the deep-learning
method requires large amounts of data to achieve optimal results.

The traditional approach has been used to directly detect the macula based on the
darkest intensity [15], while other studies have employed template matching to identify
the fovea [16–19]. For example, a template based on the Gauss function was used in [16,19],
while a histogram of the mean intensity was employed in [17]. A similar process was also
utilized by [8] to perform matching for the extracted local features. Support Vector Machine
(SVM) has also been used to determine macula candidates [3]. Furthermore, [20–22] em-
ployed geometric techniques in center detection and compared the location of the macular
center to the optic disc or blood vessels. Zheng et al. [23] detected the macular center based
on the location of the optic disc (OD) by using the temporal direction. However, the method
failed to detect the macular center when the macular area was not clear.

It is important to note that the traditional methods mentioned above focus on deter-
mining and formulating specific characters for describing the fovea [24], such as the area
with the darkest intensity or the fewest blood vessels. This formulation is difficult when
conditions that do not fulfill the criteria are encountered, such as the appearance of hard
exudate or a large black area in the fovea. The method proposed in this paper attempts to
overcome these shortcomings and focuses on parameter formulation as well as the features
for determining the macular center in the temporal area. Moreover, this method does not
require large amounts of data to formulate an optimal model.

This paper also proposes an approach for obtaining the location of the macular center
via determination of the optimum macular region of interest (ROI) based on the temporal
direction. After the optic disc is detected, a feature for determining the temporal direction
is extracted, which helps with accurate identification of the macular center location. The
contributions of this study can be summarized as follows:

1. The macular center can be detected based only on its geometrical location in relation
to the optic disc. This often leads to robust variations when detecting the intensity.

2. The method uses the inherent features in the optic disc to determine the temporal
direction in which the macula is located, thereby making the process run faster.

3. Macular ROI with the right direction, location, and size reduces the detection area,
facilitating a simpler detection process.
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The study is presented in the following order: Section 2 describes the materials
and methods used, including the sequence of processes for macular center detection.
Sections 3 and 4 respectively present the results and discussion, while the conclusions are
contained in Section 5.

2. Materials and Methods
2.1. Materials
2.1.1. Dataset

A total of four datasets were used in this study: 3 public datasets, namely DRIVE,
DiaretDB1, and Messidor, and 1 local dataset. DRIVE [25] consists of 40 color images with
8-bit depth. The images have a 768 × 584 size with a 45◦ field of view (FOV).

DiaretDB1 contains 89 retinal images taken from Kuopio University Hospital. The
images have a size of 1500 × 1552 pixels and were taken with a 50◦ FOV [26]. The
Messidor dataset contains 1200 retinal images; of these, 212, 400, 588 images with a size of
2304 × 1536, 2240 × 1488, 1440 × 960 pixels, respectively, were included [27].

The images from the local dataset were taken from the Jogjakarta Eye Diabetic Study
in the Community (JOGED.com) [28]. This local dataset has two sizes, namely 2124 × 2056
and 3696 × 2448, with 73 and 26 images, respectively.

2.1.2. Environment

The experimental results were obtained using MATLAB R2018b on a computer with
a 2.50 GHz Intel (R) Core (TM) i5– 4200 CPU, 4GB RAM, and Intel (R) HD Graphics
4600 graphics card.

2.2. Methods

In this study, the macular center was determined based on its geometrical location
relative to the optic disc. The macula was considered as the area with the darkest intensity
in the retinal image, and its center was located at 2.5 optic disc diameter (DD) temporally
from the optic disc [23]. The search for the optic disc location and the temporal direction
are prerequisites for determining the macula position. The method used for identifying
the macular center consists of several main steps, which include optic disc localization,
determining temporal area direction, identifying the macular region of interest (ROI), and
macular center point coordinates extraction. Figure 2 shows the flow of macular center
point detection.
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2.2.1. Optic Disc Localization

The OD center served as a reference point when determining the location of the
macular coordinates. Furthermore, the blood vessels visible on the OD were useful for
determining the direction of the temporal area on the retinal image [23]. It is important
to note that the OD is an anatomical structure in the retinal image that has a higher light
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intensity compared to others, and this is the reason for it being localized through its
intensity character. In this study, localization was conducted by combining the thresholding
and morphological operation methods [29]. This thresholding technique was employed to
determine the intensity value limit that distinguishes the OD from other areas. Meanwhile,
the morphological operation was conducted to improve the thresholding results in order to
provide an optimal OD area.

Before the OD localization process, image preprocessing was conducted, consisting of
image resizing and intensity normalization. This image resizing was performed to equalize
the image height between datasets for more uniformity and to reduce the processing time.
The height of the image was resized to 565 pixels, while the width of the image was adjusted
to the proportion of the input image. The value of 565 was taken from the height of the
image in the DRIVE dataset, which has the smallest size compared to other datasets. This
resizing process is formulated in Equations (1) and (2).

h′ = 565 (1)

w′ =
h

565
× w (2)

where h′ is the normalized height, w′ denotes the normalized width, h represents the height,
and w represent the width of the input image.

The next step was intensity normalization to overcome uneven lighting in the retinal
image, which causes some areas other than the OD to appear brighter, thereby leading
to localization errors. Intensity normalization is performed to minimize the effect of non-
uniform lighting. Normalization was conducted by combining several morphological
operations, as formulated in Equations (3)–(5). These operations were applied to the green
layer of the image.

Ipre1(I) = I + Iθ
bt(I) + Ibg(I) (3)

Ipre2(I) = Iσ
op(I) + Ibg(I) (4)

Ic(I) =
Ipre1(I) + Ipre2(I)

2
(5)

Ipre1 and Ipre2 represented precondition images used for uniform lighting while main-
taining the brightness level of the OD area (Figure 3c,d). I represents the green layer of the
resized input image. Iθ

bt(I) = εθ
(
δθ(I)

)
− I was the morphological top-hat of I, performed

with a disc structuring element, θ. Here, ε is morphological erosion and δ represents
morphological dilation. Ibg denotes the background image generated through filtering op-
erations using an average filter. According to [30], the filter utilized was 89 × 89, in which
Ipre2 was generated from the sum of Iop and the background image, while Iσ

op = δσ(εσ(I))
was the morphological opening of I with structuring element of σ. The average of Ipre1
and Ipre2 produced an image called Ic with more even lighting, and the optic disc area was
maintained as shown in Figure 3e.

In order to obtain the OD ROI, Ic was first binarized through the thresholding operation
on the Ic image as conducted in [29], while the threshold value used was 0.89 of the
maximum Ic intensity. The threshold value was obtained through a series of empirically
conducted experiments against a range of possible values. The resulting image is shown in
Figure 3f. Then, the coordinates of this center point candidate were employed as the retinal
image cropping center, while the crop size was (w′×l′)

4 . The retinal image cropping was
performed on the red layer of the input image (Figure 3g). In the red layer, the OD was still
clearly visible, and the presence of blood vessels did not have much effect [23].
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The OD ROI was further processed to obtain the optic disc. The process began with
contrast enhancement using Contrast-Limited Adaptive Equalization (CLAHE) and contin-
ued with opening morphology to remove blood vessels. The next step was binarization
of the resultant image using the Otsu’s threshold. In order to obtain the candidate blob
of the OD, morphological closing morphology followed by morphological opening were
performed. Disc-structuring elements of radius 10 and 15 were used in these morphological
operations (Figure 3h). Then, the resulting image was cropped according to the bounding
box of the blob to obtain the OD (Figure 3i). The cropped optic disc image was called IOD
and was used in the process of determining the temporal direction. Furthermore, the center
point of the blob was determined to be the center point of the OD, which was then plotted
on the retinal image to show the results of OD localization (Figure 3j). Figure 3 shows the
series of results for the OD localization.

2.2.2. Temporal Area Determination

The macula is a small area on the circular retina that has low intensity but does not
contain blood vessels. According to [31], the center of the macula is located at 2.5 DD from
the optic disc center. In [32], the retinal was vertically divided into temporal and nasal areas
but horizontally divided into inferior and superior. One study found that the macular area
is temporally located on the retina from the optic disc center [23]. Therefore, the temporal
direction information was used in the proposed method to determine the macular ROI.

The main blood vessels of the retina converged at the optic disc. It was also observed
that the blood vessels’ appearance has a unique character. For example, the blood vessels
on the optic disc tended to gather at one side within the optic disc, indicating temporal and
nasal directions on retinal images. This means that a relationship was formed between the
nasal and temporal directions on the retinal image with the appearance of blood vessels.
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Moreover, when the optic disc was vertically divided by 2, the temporal direction was
indicated by the area containing fewer blood vessels. The relationship between the temporal
directions and the appearance of blood vessels on the retinal image viewed from the optic
disc center is shown in Figure 4.
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In this proposed method, the number of blood vessel pixels on the optic disc was
utilized as a feature for determining the retinal image’s temporal direction. Furthermore,
the optic disc area containing fewer blood vessels showed the temporal direction, and
the pixel number was calculated on the binary image generated from the green layer
of the OD ROI. This green layer was selected because it shows the blood vessels more
clearly [23]. After the contrast enhancement process using CLAHE, a bottom-hat operation
was conducted on the CLAHE image to further emphasize the blood vessels. A disc-
structuring element of suitable pixel radius was used. This type of structuring element was
appropriate for maintaining the shape of blood vessels. The size of the structuring element
was selected to be slightly larger than the width of the blood vessel; 5 were selected.

It is important to note that blood vessel pixels were computed from black and white
pixels generated through an adaptive thresholding process using Otsu. Unlike the technique
employed by Zheng [23], this proposed method only involved vertically oriented blood
vessels because there is a possibility that an optic disc is filled with blood vessels, thereby
causing an error in detecting the temporal direction. On closer inspection, the blood vessels
that tend to be vertical occupied the area opposite the temporal direction. Therefore, this
method aims to eliminate horizontally oriented blood vessels before calculating the number
of pixels in the optic disc, indicating that only the pixels showing the vertical blood vessels
remain. The horizontal blood vessels were eliminated through a combination of opening
and closing morphological operations. Therefore, a rectangular structuring element with a
vertical orientation was used to maintain vertical vessels. Rectangular-shaped structuring
elements of size 15 × 1 and 50 × 15, respectively, were used in this process. Figure 5 shows
an example of a blood vessel extraction on the OD.
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Figure 5. The extraction process of blood vessels on the optic disc; (a) optic disc on the green layer;
(b) the extraction result of blood vessels on the optic disc; (c) the result of elimination of horizontal
blood vessels.

After the vertically oriented blood vessel images were obtained, the next step was
determining the temporal area direction in the retinal image. The eliminated image was
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divided vertically into left and right segments, and then the number of white pixels on
each segment was calculated. The temporal area was located in the segment with fewer
blood vessels, indicating that when the left segment has more white pixels, the temporal
direction was to the right, but when the right segment has more white pixels, the temporal
direction was to the left.

2.2.3. Macular ROI Determination

Macular ROI was determined to reduce the search area of the macular center and
search time. In this method, the macular ROI was obtained through the following limits:

• The determination of macular ROI was based on the temporal direction. Furthermore,
the macula located in the temporal area was obtained geometrically with reference to
the OD center point [23].

• The macular center was 2.5 times of OD diameter from the OD center [5,20,33] and
located slightly below the OD [34].

Using these limits, the central location of the macular ROI was determined in this
study via Algorithm 1. Figure 6 shows an illustration of macular ROI determination. The
inputs for Algorithm 1 were the temporal direction, center point of OD, and diameter of OD.
The OD center had been obtained when performing OD localization, while the diameter of
the OD was obtained by measuring the ratio between the width of the OD and the width of
the retinal image. The experimental results showed that the appropriate OD diameter was
v′
12 where v′ was the width of the retinal in the image segmented by Otsu thresholding on
the grayscale image. The use of these three parameters, as shown in Algorithm 1, could
provide an optimal macular ROI.

Algorithm 1: Macular ROI determination

Input: directiontemporal , OD center coordinates (xOD, yOD), OD diameter (DD)
Parameter: abscissa factor (p), ordinate factor (q), ROI box factor (r)
1: if arahtemporal = LEFT then
2: xM ← xOD − p× DD
3: else
4: xM ← xOD + p× DD
5 : yM ← yOD + q× DD
6: dimROI ← r× DD
7: determine the macular ROI with the center (xM, yM) and the size o f dimROI
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Figure 6. Illustration of macular ROI determination. The red box shows the macular ROI.

As shown in Figure 6, the ROI of the macula was determined in the form of a square
shape with a size of r × DD, where r was the ROI box factor. In this study, the best values
of the parameters p, q, and r were selected through parameter tuning, with possible values
of p = {3.6, 3.8, 4.0}, q = {0,25, 0,5}, and r = {2.0, 2.25, 2.5}.

2.2.4. Macular Center Extraction

After determining the macular ROI, its center was obtained through thresholding and
morphological operations. The first step was to increase the contrast of the macular ROI
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image using CLAHE with a clip limit value of 1, while the value of parameter number of tile
was [8 8]. In order to obtain the candidate blob of macula, binarization was performed on
resultant. The threshold value was selected based on the maximum intensity, as formulated
in Equation (6).

τ = 0.98×max(Im) (6)

In order to minimize detection errors when the macula was in a dark area, a dilation
morphological operation was performed. This operation was followed by an opening
process, which enlarged the candidate of macular area. The largest candidate blob was
selected as the macular area, and then the center of the blob was designated as the center of
the macula. The extraction process results of the macular center point is shown in Figure 7.
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Figure 7. The extraction process results of the macular center point, (a) retinal image, (b) macular
ROI localization result (red box), (c) macular ROI gray image, (d) macular ROI binarization result,
(e) dilation + opening operation result, (f) macular center point detection result.

3. Results

This method has been tested on the DRIVE, DiaretDB1, and Messidor public datasets,
as well as the local dataset from JOGED.com. All images in the DiaretDB1, Messidor, and
JOGED.com datasets were utilized in this test, but five images were not used for macular
center detection in the DRIVE dataset. This is in line with [23], which stated that five images
in the macular center area were invisible. The five images include image#4, image#15,
image#23, image#31, and image#34. The macula center detection validation was conducted
based on the Euclidean distance measure of the detected centers of macula from the ground
truth (GT) centers. According to Medhi [35], if the automatically located center of macula
was located less than of 50 pixels from ground truth, it was considered as a correct detection.
The Euclidian distance formula is shown by Equation (7) [5,36]:

distance =
√(

xsystem − xGT
)2

+
(
ysystem − yGT

)2 (7)

These results were plotted on a Cartesian diagram, as shown in Figure 8. The ground
truth value validated by experts was employed as the center point of the coordinates, while
the points on the diagram showed the distribution of the points generated by the proposed
method. In addition, a red circle with a radius of 50 indicated the acceptable distance limit
for well-detected results. Therefore, the point distribution in this diagram showed the
distribution of the accuracy of the proposed method in detecting the center of the macula in
a dataset. There were several points that lie outside the red circle, as shown in Figure 8b–d.
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These points showed the coordinates of the macular center points that were not precisely
detected. Examples of detection results are presented in Figure 9.
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Figure 9. Examples of the detection results and location of the ground truth. The red ‘+’ symbol
represents the detection result while the blue ‘+’ indicates the location of the ground truth.
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Based on experiments on the four datasets, this method works well and is stable. Out
of the 35 images in the DRIVE dataset, the system was able to detect the macular center
with 100% accuracy. Meanwhile, on the DiaretDB1 dataset, the proposed method achieved
an accuracy of 98.87%, and on the Messidor dataset, 94.67%. Furthermore, the accuracy of
this proposed method on the local JOGED.com dataset was 93%. The optimum value for
the four datasets was successfully obtained by setting the abscissa distance to 3.8DD and
the ordinate to 0.25DD. Consequently, the optimal macular ROI box size was obtained at
2DD × 2DD. The distance between the points recorded by the system and the ground truth
produced the shortest average distance in the DRIVE with a value of 7.1, while those of
DiaretDb1, Messidor, and JOGED.com were 15.8, 8.7, and 13.5, respectively.

The computation time test results showed that the method requires very little time.
Specifically, it involved an average time of 0.34 s/image to detect the macular center in
the DRIVE, while the DiaretDB, the Messidor, and the local JOGED.com were 0.57, 0.64,
and 0.78 s/image, respectively. Table 1 shows that the time achieved by this proposed
method exceeded others. This comparison was performed in studies that utilized the
DRIVE, DiaretDB1, and Messidor datasets.

Table 1. Comparison of macular center detection results with other studies.

Method
DRIVE DiaretDB1 Messidor JOGED.com

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

Zheng [23] 100% 12 93.3% 12 - - - -
Medhi [35] 100% - 95.51% - 97.98% - - -

Chalakkal [17] 100% 25 95,5% 25 98.5% 25 - -
Sedai [10] 100% 0.4 - - - - - -

Romero-oraá [24] 100% 0.54 100% 14.55 99.67% 27.04 - -
Proposed method 100% 0.34 98.78% 0.57 94.67% 0.64 93% 0.78

4. Discussion

The results showed that macular center detection by temporal area selection provided
stable outcomes. It was observed that the selection of the right temporal direction provided
a simple process for determining macular ROI. Furthermore, determining the optimal
geometric macular ROI was able to provide stable detection results, which were not affected
by image conditions that sometimes have uneven lighting.

In addition to the high-accuracy results, Table 1 also shows that the computational
time of macular center detection in the proposed method surpassed others. For example,
it significantly outperformed other methods on the DiaretDB1 dataset with large image
size. Although the accuracy obtained for the DiaretDB1 and Messidor datasets was slightly
below that of the other methods as reported in [24], the proposed method was much faster.
Resizing and determining the macular ROI with an appropriate temporal reference are the
keys to obtaining these results. This makes computing lighter and provides faster execution
time, even with large images, namely the DiaretDB1 dataset.

The average computation time obtained by this method was slightly slower than the
average time reported by Sedai, which had an average time of 0.4 s/image. However,
the method in [23], which was based on deep learning, used high computational facilities
supported by a 12 GB GPU. This can reduce computational time significantly, as stated by
Chalakkal in [17].

The proposed method failed to detect the macular center of image059.png in the
DiaretDb1 dataset and several images in the JOGED.com dataset. The detection failure
of the macular center was caused by the inability to recognize the optic disc location
due to irregular lighting in the image. It was observed that the non-optic disc area has a
higher intensity compared to the optic disc. This condition causes OD candidate selection
failures as well as OD localization and further leads to inaccuracy when determining the
macular center. The geometric properties used in this method, which make the optic disc
center a reference point, require precision in the localization of the optic disc. Therefore,
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failure in optic disc center localization resulted in failure when detecting the macular center.
An example of a macular center detection failure that occured on image059.png in the
DiaretDB1 dataset is shown in Figure 10.
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5. Conclusions

This study described a new method for detecting the macular center location based
on the temporal direction in retinal images. The proposed method was based on the
geometric relationship between the macular area and the optic disc. The temporal direction
determination provided optimal macular ROI, thereby leading to a detection process with
low computation time and high accuracy. When compared to other methods, the results
showed that the proposed method was faster while maintaining high accuracy.
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