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Abstract: Self-supervised learning approaches have seen success transferring between similar medical
imaging datasets, however there has been no large scale attempt to compare the transferability
of self-supervised models against each other on medical images. In this study, we compare the
generalisability of seven self-supervised models, two of which were trained in-domain, against
supervised baselines across eight different medical datasets. We find that ImageNet pretrained
self-supervised models are more generalisable than their supervised counterparts, scoring up to 10%
better on medical classification tasks. The two in-domain pretrained models outperformed other
models by over 20% on in-domain tasks, however they suffered significant loss of accuracy on all
other tasks. Our investigation of the feature representations suggests that this trend may be due to
the models learning to focus too heavily on specific areas.

Keywords: self-supervised learning; medical imaging; image classification; BYOL; MoCo; PIRL;
SWaV; SimCLR

1. Introduction

In recent years, machine learning algorithms like convolutional neural networks
(CNNs) have been massively successful across a variety of computer vision tasks, such as
classification [1–3], object localization and detection [4–7] and segmentation [8]. These algo-
rithms have found success in medical imaging, with models achieving results comparable
to trained medical professionals in a variety of areas, such as chest radiography, fundus
imaging and dermatology [9–11].

Most of these models are trained within the supervised learning paradigm, where the
model is given a dataset of image-label pairs. To achieve strong performance when training
CNNs—which often have millions of learnable parameters—with supervised learning, the
training dataset must be extremely large [12]. The curation of massive, human-annotated
datasets, however, is prohibitively time-consuming and expensive. This annotation process
is particularly challenging within the medical domain, as often expert personnel is required
for the interpretation of the medical images and there are privacy concerns when using
patients’ medical data [10,13,14].

Self-supervised learning (SSL), in contrast to supervised learning, does away with the
necessity for annotated data, using the data itself as the supervisory signal for learning rich
feature representations, allowing it to leverage large, unlabelled datasets during training.
The learned features are then optimised for a task downstream, finetuning the features with
supervised-learning on a smaller, target task-specific dataset [15]. The algorithm by which
the features are learned is known as the pretext task. State-of-the-art pretext tasks build the
representation space on the core idea of similarity, where representations for images which
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encode similar semantic content are embedded near one another in feature space, and far
apart for images which encode different semantic content. The state-of-the-art pretext tasks
do however differ in their exact methodology, and a brief overview is provided in Section 2
of this paper.

Self-supervised learning, therefore, is particularly promising for medical image analy-
sis, where unlabelled datasets are abundant and labelled data is scarce. Previous works
using SSL for medical imaging, surveyed in [14], tend to directly pretrain and then finetune
on the same dataset [16,17]. However, we instead seek to investigate the transferability of
learned image features from pretrained networks on ImageNet [18] to medical datasets.
The motivation behind this is fourfold:

i. ImageNet supervised pretrained features have been found to transfer very poorly
to medical imaging tasks [19]. However, in [20], it is demonstrated that ImageNet
self-supervised pretrained features tend to transfer much better than their supervised
counterparts to a variety of downstream tasks, some with large domain shifts from
ImageNet. It remains to be seen, however, if this improved transfer performance also
applies to medical imaging.

ii. Medical images differ significantly in their structure to the natural images found in
ImageNet, which are non-cluttered and have a clear global object. Many medical
images are extremely unstructured, such as skin lesions [21]. Even those with a clearer
object-like structure, for example X-rays, have characteristic signatures associated
with the different categorical labels (which in a medical context often correspond to
different pathologies) that tend to be minute local textural variations [19]. Medical
image analysis has therefore proven to be a difficult task for deep learning models.
Consequently it provides a strong test of the generalisability and robustness of the
features learned by self-supervised pretraining.

iii. Refs. [16,17] find improved performance over supervised ImageNet pretrained fea-
tures through performing self-supervised pretraining, as well as finetuning, on the
target medical dataset. However, it is unclear whether such domain-specific self-
supervised pretrained models significantly outperform similarly pretrained ImageNet
alternatives.

iv. Taking publicly available pretrained models and finetuning them is significantly less
computationally expensive than pretraining from scratch, and therefore allows us
to perform interesting, and, to the best of our knowledge, new analysis without
massive resources.

In this work, a detailed analysis of a broad spectrum of experiments is carried out. The
transfer performance of pre-trained models is analysed to understand the generalisability
of both supervised and self-supervised (domain-specific as well as ImageNet pretrained)
models to a variety of medical imaging datasets.

All code is open-sourced (https://github.com/jonahanton/SSL_medicalimaging (ac-
cessed on 30 September 2022)). The datasets and models considered can be found in
Sections 4.1 and 4.2, respectively.

In total, 3 ImageNet supervised pretrained models, 5 ImageNet self-supervised
pretrained models, 2 domain-specific self-supervised pretrained models, and 9 medical
datasets, covering chest X-rays, breast cancer histology images, and retinal fundus images
are considered. We seek specifically to answer the following research questions:

Q1. How do supervised, self-supervised methods compare for medical downstream
tasks? A: We find that self-supervised methods are able to outperform supervised
methods across the vast majority of medical downstream tasks with few-shot and
many-shot linear learning. Of the self-supervised methods, the Bootstrap Your Own
Latent (BYOL) method was found to be the best overall performer. More careful
treatment of hyperparameters is needed to come to conclusive results about many-
shot finetune learning.

Q2. Is there a clear benefit to domain-specific self-supervised pretraining?

https://github.com/jonahanton/SSL_medicalimaging
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A: Yes, provided the downstream task is also in the same domain. Domain-specific
pretrained self-supervised models, trained on chest X-rays, were much better than self-
supervised or supervised models on two of the four chest X-ray datasets. However, it
is observed that the performance drops off significantly as the domain of the dataset
shifts, and hence even the slight shift in domain of the remaining two chest X-ray
datasets was enough to drastically reduce the classification accuracy.

Q3. What information is encoded in the pretrained features?
A: The domain-specific models appear to encode only very specific areas for in-domain
data with a significantly lower attentive diffusion than the other types of models.
Due to the nature of disease manifestations occurring as small texture differences
in medical images, this hyperfocus on key areas may help explain its improved
performance compared to the more holistic approach of SSL and supervised models.

Contribution and Novelty

This paper makes the following key contributions:

1. To the best of our knowledge, this is the first large scale comparison of pretrained SSL
models to standard pretrained models for transferring to medical images.

2. This is also one of the first attempts to directly compare the transferability of SSL
models pretrained on ImageNet vs. those pretrained on a medical domain specific task
for a variety of different medical imaging datasets, allowing us to directly quantify
the benefits of both approaches.

3. Finally, we are able to show through the analysis of the encoded features how in
domain pretraining leads to a more focused feature extraction than standard ImageNet
pretraining, which can massively boost performance for in domain tasks at the expense
of generalisability.

The remainder of this paper is organised as follows. In Section 2, a brief overview of
self-supervised learning and the current state-of-the-art is given. In Section 3, the related
works are discussed, and in Section 4 we present the methodology by which the analysis
is performed. Our results and discussion are presented in Section 5, and we conclude in
Section 6 with a summary and comment on possible future developments.

2. Overview of Self-Supervised Learning

Self-supervised learning is a paradigm in which the unlabelled data itself is used as a
supervisory signal for machine learning. As this type of learning does not require labels, it
is particularly valuable for the medical domain where creating annotated medical image
datasets can be prohibitively expensive [14]. While self-supervised learning approaches
can be broadly split into three categories (generative, contrastive and predictive), the state-
of-the-art SSL methods are dominated by contrastive approaches [14]. Contrastive learning
develops effective representations through analysing the similarity of input pairs.

Contrastive learning is a type of instance discrimination, which treats augmented
versions of the same image as a similar pair, contrasted against the similarity of all
other possible inputs. By introducing a variety of strong data augmentations, invari-
ances can be learned which allow the models to be robust to changes in orientation,
colour, scale and other transformations. However, these approaches are generally lim-
ited by the need to have significant numbers of dissimilar pairs for the model to be
effective [20].

There are multiple solutions to the above problem. The Simple Contrastive Learning
(SimCLR) framework [22] uses large batch sizes, allowing direct comparison of instances
across the batch, while Pretext-invariant Representation Learning (PIRL) [23] instead stores
dissimilar instances in a memory bank. PIRL also heavily leverages a Jigsaw pretext task,
where the model is trained to learn invariance to random shuffling of image patches within
the inputs. The Momentum Contrast (MoCo) [24] model uses a momentum encoder and a
queue to produce contrastive instances, with the added benefit of smoother updates and
smaller memory requirements.
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An alternative approach is introduced in the Bring Your Own Latent (BYOL) ap-
proach [25], which allows the model to learn without explicitly sampling negative pairs.
Instead, two networks, an online network and a target network, where the target network
is a moving average of the online network, are used in parallel on the same input after
different augmentations [25]. The online network predicts the feature projection of the
target network.

Swapping Assignment between Views (SWAV) [26] is one of the most popular SSL
learning approaches that does not rely on instance discrimination, and while the initial
steps of the learning framework are similar to those in SimCLR, the feature vectors undergo
(soft) clustering online to a set of learnable prototypes. These soft cluster assignments are
known as codes. Similar to BYOL, it is required that the feature vector of one view can
compute the code for the other view of the same image, and vice versa, allowing the model
to learn feature representations that are invariant to the chosen data augmentations [26].

The above is a brief summary of SSL, focussing specifically on the approaches used in
this paper. See [27] for a more comprehensive discussion and survey of SSL techniques.

3. Related Work
3.1. Transfer Performance of Self-Supervised Models

Ericsson et al. [20] evaluate how well (ImageNet) self-supervised pretrained models
transfer to a variety of downstream tasks (including few-shot recognition, object detection
and dense prediction), specifically in comparison to one another and (ImageNet) super-
vised pretrained models. They find that self-supervised pretrained models outperform
supervised ones across almost all tasks considered, indicating the generalisability of self-
supervised features. Our work builds on this, specifically looking at transfer performance
applied to classification tasks on medical datasets, further investigating the robustness of
self-supervised models. Other works [28,29] have investigated the transfer performance
of self-supervised pretrained models to medical datasets, but they have either only used
a small number of models [28] or a single domain [29]. Our work attempts to further the
analysis started in these papers, specifically looking at how a large number of SSL models
compare across a variety of medical domains.

3.2. Domain-Specific Self-Supervised Learning for Medical Image Analysis

Many works that apply SSL to medical images transfer the model within domain to
a related downstream task [14,16,17,30]. Sowrirajan et al. [16] perform self-supervised
pretraining with MoCo on the CheXpert chest X-ray dataset [31], and then finetune on
CheXpert with different fractions of labelled training data. They find that their model out-
performs a supervised ImageNet pretrained model, both on CheXpert and Shenzhen-CXR,
a small chest X-ray dataset [32]. Sriram et al. [17] also uses MoCo on CheXpert, however
first performs supervised pretraining on the chest X-ray dataset MIMIC-CXR-JPG [33]
before applying the model for COVID-19 prognosis. They found that the SSL pretrained
model transferred better to the COVID-19 dataset than supervised alternatives [17]. In this
work, we also do in-domain transfers with the above two models, however they are applied
to four chest X-ray datasets and their performances are compared against one another
to further investigate their transferability within domain. Navarro et al. [34] investigate
the generalisability of self-supervised and supervised models-trained on multi-organ seg-
mentation - to unseen kidney segmentation data. However, the multi-organ segmentation
dataset also included kidney segmentations. In our work, we further investigate model
performance on datasets that are of a significant domain shift from the training data.

3.3. Generalisability of Self-Supervised Features

Ref. [35] investigates the generalisability of self-supervised features, specifically
looking at features learned through contrastive instance discrimination. They suggest
that supervised features are less generalisable than self-supervised ones due to forced
minimisation of intra-class variation. Supervised learning methods force the model to
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assign the same categorical label to all instances within the same class, potentially ignoring
unique information related to each instance. This can lead to poor transfer performance if
there exists any misalignment between pretraining and the downstream task. We continue
this analysis by investigating whether this robustness of self-supervised features also
translates to a more holistic and accurate modelling of medical images.

4. Materials and Methods
4.1. Models

The following pretrained models are considered.
Supervised: ResNet-50 [2], ResNet-18 [2], and DenseNet-121 [3]. All these models

were pretrained on the ImageNet training set (1.3M images) in a supervised learning
fashion, and are available from the PyTorch Torchvision library [36].

Self-Supervised: SimCLR-v1 [22], MoCo-v2 [24,37], PIRL [23], SwAV [26], and
BYOL [25]. All of the above models use ResNet-50 backbone feature extractors and have
been pretrained on the ImageNet training set. In the following text, unless explicitly stated
otherwise, we use the term self-supervised models only to refer to SSL methods that were
pretrained on ImageNet.

Domain-specific Self-Supervised: We consider two domain-specific self-supervised
pretrained models, MIMIC-CheXpert [17] and MoCo-CXR [16], both of which were pre-
trained on chest X-ray datasets. The authors provide three pretrained MIMIC-CheXpert
models, all of which use a DenseNet-121 backbone, differing in the learning rate used
during MoCo pretraining, ∈ 10{−2,−1,0}. All three models are considered, however often
only the results for the best performing one is presented. MoCo-CXR is available with two
different backbone architectures, DenseNet-121 and ResNet-18. Both are considered in
this work.

All of these models have different training schedules, hyperparameters and data aug-
mentations applied. Exact details can be found in the original publications. For all models
the weights are made available by the original authors, except for with PIRL, for which the
ones provided by the PyContrast GitHub repository (https://github.com/HobbitLong/Py
Contrast, accessed on 5 April 2022) are used. The majority of the models use a ResNet-50
backbone, except for the domain-specific self-supervised models (MIMIC-CheXpert, MoCo-
CXR), which use the DenseNet-121 and ResNet-18 architectures. Therefore, we evaluate
the corresponding supervised pretrained architectures for comparison. For all models the
inputs are normalized with the mean and standard deviation of the ImageNet training
set, except for SimCLR-v1, as the model has not been trained on normalised inputs, and
MIMIC-CheXpert, which expects histogram normalisation [17].

4.2. Datasets

8 different medical datasets are considered, covering a range of medical domains.

4.2.1. Preliminaries

We explore the comparative transfer performance of self-supervised models pretrained
on the CheXpert dataset [31] to self-supervised and supervised models pretrained on
ImageNet. As part of this comparison, the classification performance across a variety of
different medical datasets is investigated. We classify the datasets into 2 broad classes:
in-domain versus out-of-domain (relative to the domain-specific self-supervised models).

In-domain datasets comprise the chest X-ray datasets. Three additional chest X-ray
datasets are explored on top of CheXpert, which we consider to be small, in-domain,
distributional shifts: ChestX-ray14 [38], Montgomery-CXR [32], and Shenzhen-CXR [32].
ChestX-ray14 is the smallest shift, as it has a similar range of pathology labels to CheXpert
(7 overlapping labels). Montgomery and Shenzhen are slightly larger shifts, as they only
contain images of a single pathology, Tuberculosis, rather than multiple, and Tuberculosis
is not present in CheXpert.

https://github.com/HobbitLong/PyContrast
https://github.com/HobbitLong/PyContrast


J. Imaging 2022, 8, 320 6 of 26

We have four out-of-domain datasets that include all non chest X-ray images:
iChallenge-PM [39], iChallenge-AMD [39], EyePACS, and BACH [40]. The first three are
all retinal fundus images, which, similar to chest X-rays, project a 3D object onto a 2D plane,
and hence contain no depth information [10]. All three are regular RGB images, although
taken with different types of cameras. The BACH dataset contains stained breast histology
images and represent a similarly large shift from X-rays. The images from this dataset
contain false colouring due to the staining agent, and are of microscopic tissue, a medical
imaging domain which has not been represented in any of the other datasets [40].

Dataset specifics, including the number of images per dataset, can be found in
Table 1, and a few example images are shown in Figure 1. Terminology pertaining to
our categorisation of datasets and models can be found in Table 2.

Table 1. The type, number of images, and number of classes for each medical dataset considered.
Type CXR corresponds to Chest X-rays and BHM to Breast Histology Microscopy slides. Note that
here we provide the total number of classes available for the datasets. This does not mean, however,
that all class labels are used. For example, CheXpert is treated as Pleural Effusion many-to-one. More
details can be found in Section 4.2.

Dataset Type # Images # Classes

CheXpert CXR 224,316 14
Shenzhen-CXR CXR 662 2
Montgomery-CXR CXR 138 2
ChestX-ray14 CXR 112,120 14
BACH BHM 400 4
EyePACS Fundus 35,126 5
iChallenge-AMD Fundus 400 2
iChallenge-PM Fundus 400 2

(a) (b) (c) (d) (e)
Figure 1. Example images from the (a) CheXpert, (b) ChestX-ray14, (c) Shenzhen-CXR, (d) EyePACS,
(e) BACH datasets.

Table 2. Summary of terminology used for datasets and models.

Models

Supervised
Supervised pretrained on ImageNet
(ResNet-50, ResNet-18, DenseNet-121)

Self-supervised
Self-Supervised pretrained on ImageNet
(SimCLR-v1, MoCo-v2, PIRL, SwAV, BYOL)

Domain-specific
Self-Supervised Self-Supervised pretrained on chest X-rays (MIMIC-CheXpert, MoCo-CXR)

Datasets

In-domain
All chest X-ray datasets
(CheXpert, Shenzhen-CXR Montgomery-CXR, ChestX-ray14)

Out-of-domain All non chest X-ray datasets (BACH, EyePACS, iChallenge-AMD, iChallenge-PM)

4.2.2. Preprocessing

All images are converted to RGB. For greyscale images, like those in the chest X-ray
images, the images are stacked to give a valid three-channel output as in [41].
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The labels are converted to binary where possible. For the CheXpert dataset, which
is multi-label, this is done through many-to-one, as in [30]. The most common pathology
(Pleural Effusion, 40.34% of all images) is given a positive label, and all other pathologies
and a lack of disease are labelled as negative. For datasets with textual labels, like Mont-
gomery and Shenzhen, [32] is followed, treating any abnormal X-ray as a positive label. A
similar approach is taken with the iChallenge-PM dataset, combining the normal and high
myopia classes into a single negative label, while the pathological myopia class is treated
as the positive label, as suggested in [39]. For BACH, a multi-class categorical dataset, the
labels are treated as ordinal and converted to a single number between 0 and 4, as in [42].
ChestX-ray14, which is multi-label, is treated as in [43], with only the images with a single
pathology being used for multi-class classification.

4.3. Evaluation Setup

Unless otherwise stated, the design decisions made in [20] are followed to allow for
fair comparison of results.

4.3.1. Few-Shot Learning

Many of the datasets considered contain only a small number of images: Shenzhen-
CXR, Montgomery-CXR, ChestX-ray14, BACH, iChallenge-AMD and iChallenge-PM all
include under 1000 images (Table 1). Finetuning a pretrained model on the training set
of these datasets would lead to severe overfitting, resulting in very poor classification
performance on the test set. Therefore, for these datasets we are in the (cross-domain)
“few-shot” regime, where the model is tasked with learning to categorize a new set of
classes, disjoint from those seen during training, with very few examples per class [43].

Following from [20], we use the technique of Prototypical Networks [44] for few-shot
recognition. During each training episode, the model is presented with N randomly selected
examples from K randomly selected classes. This constitutes the support set S = {xi, yi}K×N

i=1 ,
and is known as "K-way N-shot" few-shot learning. Prototypes ck for each class k are then
learned as the centroid of the embedded features from the model for that class,

ck =
1
N ∑

(xi ,yi)∈Sk

fφ(xi), (1)

where fφ(·) is the model. A query set is then randomly selected, constituting of NQ samples
for each class k, and classification is performed for each query by finding the nearest
class prototype.

For all pretrained models and each of the 8 datasets we consider 2-way 20-shot transfer,
except for the datasets ChestX-ray14 and EyePACS, for which 5-way 20-shot transfer is
used since these contain more than 2 classes. 600 episodes are randomly sampled and the
average accuracy is reported along with 95% confidence intervals. The query set always
contains 15 images per class (NQ = 15).

4.3.2. Many-Shot Learning

We choose to perform many-shot recognition on the datasets CheXpert and EyePACS,
which contain over 200,000 and 30,000 images, respectively, and so are both firmly in the
“many-shot” regime. Given a pretrained model fφ(·), many-shot recognition is performed
through two different methods: linear or finetune.

Linear: The pretrained model is frozen and leveraged as a fixed feature extractor. A
multinomial logistic regression is fitted on top of the fixed features,

P(y = ci|x) =
ewi ·x

∑K
k=1 ewk ·x

, (2)

where x is the feature representation, {w1, . . . , wK} are a learned set of weights,
wi ∈ Rd where d is the dimensionality of the extracted features (d = 2048 for a ResNet-50
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backbone, 1024 for DenseNet-121, 512 for ResNet-18), and {c1, . . . , cK} are the set of class
labels. Following from [20], the `2 regularization constant is selected on the validation set
considering 45 logarithmically spaced values between 10−6 and 105. The logistic regression
model is then retrained on the entire training and validation set with the selected `2 regu-
larization constant, and evaluated on the test set. No data augmentation is applied during
training, except for bicubic resampling to 224 pixels followed by a centre crop of 224 × 224.

Finetune: All pretrained parameters are refitted, along with an attached linear classifi-
cation head, in a supervised learning fashion on the target dataset. The model is trained
for a maximum of 5000 steps, optimised using Stochastic Gradient Descent (SGD) with
Nesterov momentum, with the momentum parameter set to 0.9. Early stopping is imple-
mented with a patience of 3 using the classification accuracy on the validation set as the
relevant metric, checking every 200 steps. We train with a batch size of 64 for all models,
except for those which use a DenseNet-121 backbone, which train with a batch size of
16 (due to GPU memory constraints). Due to resource constraints, the learning rate is fixed
to 10−2 and the weight decay to 10−8. Random crop with resize and horizontal flip data
augmentations are applied during training.

4.4. Analysis Tools

To investigate the representations learned, a variety of tools are developed. These
tools provide further insight into what the model prioritizes in its representations.

4.4.1. Saliency Maps

In order to investigate where in an image the models focus, activation saliency maps
are computed. Following from [20], an occlusion-based saliency method is used, where a
10 × 10 mask is passed over the images (resized to 242 × 242). The root relative squared
error (RRSE) is computed between the original image feature and the occluded image
feature, which is added to the attention value for each pixel every time it is occluded by
the mask. The attention values are averaged over all times a pixel is occluded (102), and
the image is then cropped to 224 × 224 to ensure all pixels are occluded the same number
of times. A high attention value for a given pixel means that the extracted feature vector
is strongly perturbed by the occlusion of that pixel, meaning that the network is highly
sensitive to this region. The attentive diffusion values are also computed, which correspond
to the proportion of the saliency map with value above its mean [20]. A high attentive
diffusion value corresponds to a broad focus. We use this occlusion-based saliency method
instead of more popular methods to extract saliency maps, such as Grad-CAM [45], since it
is independent of the choice of task [20].

4.4.2. Deep Image Prior Reconstructions

We investigate what information from the original images is retained in the extracted
features from the different models. To do so, we use the methodology as in [35] and observe
the ability to reconstruct original images from the features. The feature inversion algorithm
relies on the Deep Image Prior [46] to invert the pretrained networks’ feature maps. Given
an original image, an encoder-decoder network is trained to map a fixed noise z to an image
x, whose representation is as close as possible to the original image’s representation in the
embedding space.

To quantify the quality of the reconstructed images, the Learned Perceptual Image
Patch Similarity (LPIPS) perceptual distance metric from [47] is used, which measures the
distance between two images’ deep embeddings across the layers of a pretrained deep
neural network (specifically the AlexNet, SqueezeNet, and VGG architectures).

4.4.3. Invariances

As part of our investigation, we would like to know why certain models transfer
better than others. Hence, we consider the impact transformation invariances have on the
generalisability of the model.
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We measure the invariance of feature vectors, from different datasets, to different data
transformations. Following from the method proposed in [48], the invariance of images
x in a dataset D, to a set of transformations tθ parameterised by parameters θ ∈ Θ, with
associated features fφ(x), is measured by the cosine similarity

LTΘ
f (D) =

1
|D||Θ| ∑

x∈D,θ∈Θ

z · ztθ

||z||||ztθ
|| , (3)

where TΘ = {tθ}θ∈Θ,
z = L( f̄φ − fφ(x)), (4)

ztθ
= L( f̄φ − fφ(tθ(x))), (5)

L is the Cholesky decomposition of the feature covariance matrix Σ−1 = LLT , f̄φ is the
mean feature, and we average over all images x ∈ D and θ ∈ Θ. A cosine similarity close
to 1 implies strong invariance, whereas one close to 0 implies little to no invariance. As an
example, for horizontal flip invariance, the set Θ corresponds to True if a horizontal flip
transformation is applied or False if not. A variety of synthetic data transformations are
considered, including rotation, horizontal flip, and hue transforms, as well as multi-view
invariance. Multi-view invariance is unique to the CheXpert and EyePACS datasets, since
both contain more than one perspective of the same object being imaged. In this case,
the transformation t is not parameterised by a set of parameters θ, but instead the scalar
product in Equation (3) is considered to be between features extracted from an image pair,
x1 and x2, corresponding to two different perspectives of the same object. In practice, to
compute the mean feature vector fφ and covariance matrix Σ, we consider 1000 randomly
chosen images from the dataset D (or the entire dataset in the case that |D| < 1000), and to
compute the cosine similarity we average over 100 randomly sampled images.

5. Results
5.1. How Do Supervised, Self-Supervised Methods Compare for Medical Downstream Tasks?

The accuracy of the transferred models in the few-shot and many-shot regimes are
given in Tables 3 and 4, respectively. We find that, in general, the SSL models (pretrained
on ImageNet) outperform their supervised pretrained counterparts across the majority of
downstream tasks, as shown in Figure 2.

There are two notable exceptions to the above trend: the performance on iChallenge-
AMD, and the performance on finetune CheXpert and EyePACS.

For iChallenge-AMD, we hypothesize that the improved performance for supervised
models may be due to the nature of age-related macular degeneration (AMD). A key
indicator of AMD is an abnormal macula, which is located in the centre of the retina.
AMD containing fundus images therefore hold the pertinent image information in the
central portion of the image. ImageNet images similarly have this central focus, which may
allow for supervised models to transfer more effectively than they have for other medical
imaging tasks.
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Figure 2. Bar chart of model transfer performance on different downstream tasks. SSL (blue) refers to
the average over the self-supervised models (SimCLR, MoCo, SwAV, BYOL, PIRL) and Supervised
(orange) refers to the average of the supervised models (ResNet-50, ResNet-18, DenseNet-121). For
each downstream task, all results are scaled between 0 and 1 (across the SSL and Supervised models -
not including the domain-specific models).

The performance with finetuning is less surprising. Catastrophic forgetting of previously
learned information can occur in neural networks due to their shared weights [49]. Without
careful treatment of the network and hyperparameter tuning, the beneficial representa-
tions learned during pretraining can be forgotten. Due to resource constraints, thorough
hyperparameter tuning is not conducted, which may explain the difference in performance.

To assess the impact of the specific SSL method applied, the various SSL models specif-
ically pretrained on ImageNet are compared against each other in Figure 3. Overall, BYOL
appears to be the most robust SSL method, achieving the highest average performance
with small standard deviation.

Table 3. Few-shot shot transfer performance of the pretrained models on the different medical
datasets. All are evaluated as 2-way 20-shot, except ChestX and EyePACS, which are 5-way 20-shot.
Results are reported as average accuracy over 600 episodes with 95% CI. Key: best, second best.

CheXpert Shenzhen Montgomery ChestX BACH EyePACS iC-AMD iC-PM

SimCLR-v1 59.73 ± 0.72 74.46 ± 0.66 63.20 ± 0.80 29.86 ± 0.46 80.61 ± 0.74 32.78 ± 0.42 47.90 ± 0.62 94.92 ± 0.32
MoCo-v2 57.39 ± 0.75 73.76 ± 0.66 63.54 ± 0.74 28.69 ± 0.44 82.53 ± 0.71 34.07 ± 0.43 74.91 ± 0.64 94.21 ± 0.33
SwAV 57.61 ± 0.77 75.22 ± 0.65 67.38 ± 0.71 27.76 ± 0.44 82.78 ± 0.65 34.47 ± 0.43 70.94 ± 0.66 94.69 ± 0.31
BYOL 58.44 ± 0.74 76.29 ± 0.65 70.98 ± 0.67 30.28 ± 0.46 83.28 ± 0.66 33.66 ± 0.41 74.58 ± 0.61 95.83 ± 0.28
PIRL 58.51 ± 0.76 77.48 ± 0.60 63.58 ± 0.76 28.52 ± 0.44 81.02 ± 0.69 34.19 ± 0.41 75.26 ± 0.60 93.49 ± 0.35

Supervised (r50) 56.14 ± 0.76 70.86 ± 0.72 62.31 ± 0.75 27.71 ± 0.46 80.49 ± 0.68 31.32 ± 0.43 75.70 ± 0.64 94.80 ± 0.33
Supervised (r18) 57.69 ± 0.80 74.16 ± 0.66 62.94 ± 0.69 28.58 ± 0.40 80.78 ± 0.71 32.96 ± 0.41 74.59 ± 0.62 93.68 ± 0.35
Supervised (d121) 57.41 ± 0.78 73.43 ± 0.65 65.31 ± 0.67 27.88 ± 0.44 81.21 ± 0.70 33.49 ± 0.42 77.12 ± 0.60 94.86 ± 0.30

MIMIC-CheXpert 62.45 ± 0.75 73.22 ± 0.64 69.15 ± 0.66 34.82 ± 0.48 71.60 ± 0.98 25.71 ± 0.40 65.05 ± 0.72 83.66 ± 0.54
MoCo-CXR 60.33 ± 0.74 73.89 ± 0.64 65.02 ± 0.70 29.01 ± 0.46 69.07 ± 0.82 27.78 ± 0.41 68.17 ± 0.72 87.59 ± 0.47
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Further, we consider if there exists any correlation with ImageNet accuracy and transfer
performance. A linear fit is performed across all models for each dataset (Appendix D). We find
there to be no significant correlations and suggest that this may be due to large differences
between ImageNet and medical datasets. This is in line with [20], as they find that for large
domain shifts, ImageNet performance is not indicative of transfer performance.

Figure 3. Box-and-whisker plot of model type (SSL models pretrained on ImageNet) against per-
formance for few-shot recognition. Performance values are scaled between 0 and 1 for each dataset
across all models. The performance on each dataset is plotted as a dot for each model.

Table 4. Many-shot shot transfer performance of the pretrained models on the different medical
datasets. For EyePACS we do not perform many-shot recognition (linear or finetune) with the domain-
specific models (MIMIC-CheXpert, MoCo-CXR), as each run takes over 24 h and we anticipate very
poor results, as with few-shot. Key: best, second best.

Linear Finetune
CheXpert EyePACS CheXpert EyePACS

SimCLR 75.01 31.51 75.82 36.48
MoCo 74.94 32.18 79.96 45.64
SwAV 74.97 37.61 77.84 44.47
BYOL 74.61 34.27 78.97 41.17
PIRL 74.20 31.51 78.30 40.89

Supervised (r50) 73.47 31.46 79.43 47.08
Supervised (r18) 71.43 30.52 79.31 42.66
Supervised (d121) 72.50 33.96 79.62 40.18

MIMIC-CheXpert 77.28 78.80
MoCo-CXR 74.76 74.98

5.2. Is There a Clear Benefit to Domain-Specific Self-Supervised Pretraining?

We classify models into 3 broad classes—supervised, self-supervised and domain-
specific self-supervised. As discussed in Section 4.2.1, the medical datasets are classified as
in-domain or out-of-domain, according to whether they are chest X-ray images. We plot the
scaled performance of different classes of models on different types of datasets in Figure 4.
We note that in this figure we only focus on MIMIC-CheXpert for the domain-specific
self-supervised method, as we find significantly inferior performance with MoCo-CXR
(Tables 3 and 4). This trend is explored later in this section.
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Figure 4. Performance (few-shot, linear, and finetune) on in-domain and out-of-domain datasets for
the different model types, Self-supervised learning (pretrained on ImageNet), Supervised and MIMIC-
CheXpert. In-domain datasets are comprised of CheXpert, ChestX, Montgomery and Shenzhen, while
out-of-domain datasets are comprised of BACH, EyePACS, iChallenge-AMD, iChallenge-PM. Results
are scaled between 0 and 1 (across all models), averaged over each model type, and then averaged
over each dataset. Error bars correspond to 1σ variations across the individual models that are
averaged over.

We observe that MIMIC-CheXpert outperforms supervised and self-supervised meth-
ods on in-domain datasets but suffers a significant deterioration in performance for out-of-
domain datasets. This suggests a benefit that while there are benefits to domain-specific
pretraining, they come at the expense of generalisability to out-of-domain datasets. This is
likely due to the vast structural differences between medical image types and the monochro-
matic nature of chest X-ray images, which is causing the features learned from chest X-ray
pretraining to generalise poorly. This result remains true but is less pronounced when we
include the performance of MoCo-CXR in our in-domain self-supervised models.

Furthermore, the finding that specialised self-supervised training improves in-domain
performance but worsens out-of-domain performance depends on how much in-domain
pretraining is done. In Figure 5, the average performance of the MIMIC-CheXpert models
is directly compared against the average performance of the MoCo-CXR models, and is
found to perform significantly better in most in-domain datasets (Montgomery, ChestX,
CheXpert) even though both models are trained on chest X-ray images. However, the
MIMIC-CheXpert models are worse on out-of-domain datasets. This is likely due to
the more extensive pretraining on chest X-rays for MIMIC-CheXpert. MoCo-CXR was
trained only for 20 epochs using MoCo on CheXpert, compared to MIMIC-CheXpert,
which was pretrained on MIMIC-JPG in a supervised manner for 10 epochs, followed by
self-supervised training on MIMIC-CheXpert for 200 epochs.

From Table 3, we also note that performance of in-domain self-supervised models
(MIMIC-CheXpert and MoCo-CXR) is actually worse than the other self-supervised and
supervised models on the Shenzhen-CXR dataset, despite the fact that the Shenzhen-CXR
dataset also contains chest X-ray images. The images from the Shenzhen-CXR dataset
appear to have significant visual differences to those from the other chest X-ray datasets
(compare, for example, Figure 1a–c). The domain shift from CheXpert to Shenzhen-CXR
may, therefore, be too large for CheXpert pretraining to provide significant performance
benefits over the ImageNet pretrained models.
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In conclusion, we find that improvements in performance can be achieved through
the use of domain-specific self-supervised pretraining. However, the features learned
during this pretraining are not nearly as generalisable as those learned from ImageNet,
and require the downstream dataset to not only be the same domain (i.e., chest X-rays) but
also to be similar to the original dataset upon which the model was pretrained. A possible
justification for this trend is explored in Section 5.3.

Figure 5. Bar chart of model transfer performance on different downstream tasks for the MIMIC-
CheXpert (green) and MoCo-CXR (red) models. Results are scaled between 0 and 1. All in-domain
datasets are located to the left of the dotted line.

5.3. What Information Is Encoded in the Pretrained Features?

Deep image prior reconstructions are created for a single image from each dataset
and for each model, and the associated perceptual distance metric is calculated for each
of the three different architectures AlexNet, SqueezeNet, and VGG (see Tables A4–A6 in
Appendix B). For each model, the average perceptual distance across the three reconstruc-
tions is plotted against the transfer accuracy for a given dataset, and a linear fit is performed
(see Figure A3 in Appendix D).

A visual inspection of a few specific reconstructions in Figure 6 suggests that super-
vised pretrained models in general have better colour consistency to the original than
self-supervised pretrained models, supporting the assertion made in [20]. However, we
find that none of the linear regression fits are appropriate for the data, with no fit having a
χ2

ν less than 1.5.
This at first glance appears counter-intuitive, since one would naively expect a strong

correlation between reconstruction quality and transfer performance, since a better re-
construction implies a more robust feature representation. One possible explanation for
the difference could be due to the nature of medical images, where different pathologies
are often characterised by minor textural differences located in specific areas [19]. Hence,
while reconstruction is important, it is the reconstruction of the key areas of the image
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which matter the most. Furthermore, perceptual distance, which attempts to quantify the
similarity of images from a human perspective, may focus more on the general overall
structures in the image than on the details, as humans do [47,50]. Hence, this may not be a
particularly useful metric to assess how effective the feature representations of each model
are for medical images, as the small variations in images are significantly more important
than the general overall structure.

Figure 6. Deep image prior reconstructions for an image from the CheXpert dataset (left) for PIRL
(centre) and Supervised DenseNet-121 (right). The original image is shown on the left for comparison.

Without image segmentation of diseased regions, it is difficult to directly assess the
quality of the reconstructions in the key areas. However, the above discussion suggests
that the best models will be highly focused on particular regions of the image, where the
diseases tend to manifest. This can be explored through the saliency maps discussed in
Section 4. Using the same images as the prior reconstructions, saliency maps are created for
all possible dataset-model combinations (see Figure A6 in Appendix D) and the associated
attentive diffusion is calculated (see Table A7 in Appendix C). The attentive diffusion
of each model is plotted against transfer accuracy for a given dataset, and a linear fit is
performed (see Figure A2 in Appendix D).

When the images are in-domain (i.e., chest X-ray datasets) and classified by a model
pretrained with domain-specific self-supervised methods, we find that there exists a clear
linear relationship between attentive diffusion and transfer accuracy, as in Figure 7. This
supports the hypothesis suggested earlier, that domain-specific models, which generally
have the strongest performance on X-rays, focus exclusively on specific areas of the image
while the supervised and SSL models focus more on the image holistically.

This is further supported by the saliency plots, displayed in Figure 8, which show that
the MoCo-CXR model focuses exclusively on the lung section of the X-ray, which is where
most of the CheXpert pathologies manifest [38]. However, when the dataset is not a chest
X-ray, there is no relation between attentive diffusion and transfer accuracy. We attribute
this lack of a trend to a limitation of attentive diffusion as a metric; a low attentive diffusion
implies that the model focuses on a particular area, however this does not check that this
area is the important area of the image where the disease may manifest. Hence, while
the domain-specific SSL models focus on the correct image regions, on outside-of-domain
images they may focus on unimportant areas.

This observation further aids the analysis presented in Section 5.2. The benefits of
in-domain training are significant, as the models learn to focus on the areas of the image
which are most important to classifying the diseases. This claim is supported by Figure 9
which demonstrates that domain-specific models (MIMIC-CheXpert, MoCo-CXR) have a
low attentive diffusion for in-domain datasets (the chest X-ray datasets) and thus focus
on very specific image regions. However, this comes at the cost of generalisability. When
applied to domain-shifted data, even if the domain shift is small (e.g., to Shenzhen-CXR),
the model may over-focus on unimportant image regions. SSL models pretrained on
ImageNet, in contrast, generally focus on a larger image region, which can allow them
to adapt to significantly different domains as they view the image more holistically. This
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is demonstrated in the higher attentive diffusion for SSL methods (trained on ImageNet)
which reveals that they tend to have a broader focus (Figure 9).

Figure 7. Few-shot accuracy on the CheXpert dataset plotted against attentive diffusion values for
the reconstructed CheXpert image for all models. Shown overlaid are the Pearson’s r correlation
coefficient and associated p value. A negative Pearson’s r close to −1 (with a low associated p value
close to 0) implies a strong negative correlation.

Figure 8. Saliency map for an image from the CheXpert dataset for the MoCo-CXR (left), BYOL
(centre) and Supervised ResNet-50 (right) models. The three saliency maps have attentive diffusion
values 0.33 (MoCo-CXR), 0.50 (BYOL), and 0.47 (Supervised r50).

We also attempt to understand how well invariances have been encoded into the
pretrained features. As shown in [48], during self-supervised pretraining, the model
learns invariances to different data augmentations. We seek to answer whether these
learned invariances transfer downstream to the target medical datasets, and if particular
invariances are beneficial to specific medical downstream tasks. To quantify invariance to a
given transformation, we use the cosine similarity metric as defined in Equation (3). We
find that, in general, enforced invariances during pretraining do translate to invariances on
target medical datasets. Consider, for example, MoCo-CXR, which achieves a horizontal
flip invariance (cosine similarity) of 0.997 on CheXpert, the dataset it is pretrained on,
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and 0.778 on ChestX. Full results can be found in Appendix A. However, we generally
find no significant correlation between invariance strength (cosine similarity) and transfer
performance for any of the datasets with any of the transformations considered, suggesting
a more nuanced relationship between learned invariances and feature generalisability.

Figure 9. Box-and-whisker plot of model type (SSL, Supervised, and Domain-Specific SSL (MIMIC-
CheXpert and MoCo-CXR)) against attentive diffusion values, split between in-domain (CheXpert,
ChestX, Montgomery, Shenzhen) and out-of-domain (BACH, EyePACS, iChallenge-AMD, iChallenge-
PM) datasets.

One exception to that is for CheXpert, where we find a clear correlation between multi-
view invariance and transfer performance (Pearson’s r of 0.82, which has an associated
p value of 0.0068). This result is consistent with those found by Azizi et al. [30], who find
that when they enforced this invariance to different views of the same underlying pathology
during self-supervised pretraining, with a technique they call Multi-Instance Contrastive
Learning (MICLe), there is a significant performance gain on CheXpert classification. We
note that the multi-view invariance cosine similarity values themselves are all very low
(below 0.025), however we suggest that this is likely due to this specific invariance not
being enforced during pretraining.

6. Conclusions

Extending the work of [20], we have conducted the first systematic evaluation of
SSL performance on medical datasets. This is not only novel but significant given the
intrinsic difficulty of medical image analysis as well as the expensive annotation costs
in medical data which reduces the scope for supervised training. Our work finds that
(1) self-supervised models (trained on ImageNet) generally outperform supervised models
(trained on ImageNet) in medical datasets due to the improved generalisability of self-
supervised pretrained features. Unlike in [20], we find that (2) ImageNet performance does
not correspond to downstream performance on medical datasets. In addition, there is no
clear best-performing model (supervised/self-supervised) across all datasets, and although
BYOL is best on average it is outperformed on multiple datasets by other models. Hence,
one will still need a systematic evaluation of different methods on the specific medical
dataset to determine the best method for that dataset.

Apart from considering “off-the-shelf” supervised and self-supervised methods trained
on ImageNet, we also investigate the performance of in-domain self-supervised methods
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which have been trained on chest X-rays. We find that (3) in-domain self-supervised train-
ing offers a benefit only on in-domain datasets, but performance deteriorates significantly
when out of that domain, highlighting a substantial decrease in generalisability. This is
true even if there may be just a small shift in domain. Hence, we (4) recommend in-domain
self-supervised training if one has access to a large section of unlabelled data, and only if
one is certain that the downstream data is in a very similar domain as the pretraining data.

Finally, we also attempt to investigate the reasons behind the differing downstream
performances by considering differences in feature representations. We find (5) no signifi-
cant correlation between feature reconstruction and downstream performance, suggesting
that pathologies are characterised more by minor changes rather than the overall structure
of an image. Using saliency plots, (6) we find that domain-specific self-supervised methods
focus on a small and salient area of the image, but focus incorrectly when outside of domain.
This explains their improved in-domain performance at the expense of poor generalisability
due to attentive overfitting [51]. Finally, we find that (7) enforced invariances during
self-supervised pretraining translates to invariances on target medical datasets, but that
has no correlation with transfer performance in general.

Our work has several limitations. First, we focus only on classification problems
for our downstream task—ideally, we hope to extend our analysis to a variety of dif-
ferent downstream tasks. In particular, segmentation is a critical problem in medical
imaging [14] and we are in the midst of including further analysis on this problem. Second,
due to limited computational resources and time, we are unable to perform hyperparameter
tuning for our finetuning tasks. Due to GPU memory issues, we also have to limit the batch
size to 16 for DenseNet-121 architectures during finetuning (while batch sizes for all other
architectures are 64). Therefore, we have been careful in drawing firm conclusions based
on our finetune results.

Future works may consider investigating whether the trends noted in this report
extend to other medical imaging fields not considered. Further, in this analysis we only
consider in-domain pretraining on chest X-rays. It would therefore be interesting to see if
in-domain pretraining on a different type of medical dataset, e.g., retinal fundus images,
would lead to more generalisable features.
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Abbreviations
The following abbreviations are used in this manuscript:

SSL Self-supervised learning

SimCLR
Simple framework for Contrastive Learning of visual representations
(see Section 2)

PIRL Pretext-Invariant Representation learning (see Section 2)
MOCO Momentum Contrast (see Section 2)
BYOL Bootstrap Your Own Latent (see Section 2)
SwAV Swapping Assignments Between Views (see Section 2)
CXR Chest X-rays
BHM Breast Histology Microscopy slides

MIMIC-CheXpert
Self-supervised model pre-trained on chest X-rays dataset
(see Section 4.1)

MoCo-CXR
Self-supervised model pre-trained on chest X-rays dataset
(see Section 4.1)

iChalleng-PM Pathological Myopia (PM) retinal fundus images dataset (see Section 4.2)

iChallenge-AMD
Age-related Macular degeneration (AMD) retinal images dataset
(see Section 4.2)

EyePACS Retinal images dataset for diabetic retinopathy detection (see Section 4.2)
BACH Breast Cancer Histology images dataset (see Section 4.2)

Appendix A. Invariances

Table A1. Rotational invariance evaluated on the retinal fundus datasets, as well as Hue colour
invariance evaluated on the BACH dataset, as measured by cosine similarity. Key: best, second best.

EyePACS iChallenge-AMD iChallenge-PM BACH

SimCLR 0.159 0.011 0.056 0.063
MoCo 0.266 0.120 0.152 0.319
SwAV 0.232 0.015 0.059 0.077
BYOL 0.185 0.012 0.057 0.097
PIRL 0.354 0.187 0.220 0.498

Table A2. Horizontal flip invariance evaluated on the chest X-ray datasets, as measured by cosine
similarity. Key: best, second best.

CheXpert ChestX Shenzhen Montgomery

SimCLR 0.582 0.423 0.506 0.503
MoCo 0.719 0.517 0.587 0.547
SwAV 0.843 0.433 0.569 0.505
BYOL 0.689 0.445 0.551 0.504
PIRL 0.716 0.547 0.682 0.574

MIMIC-CheXpert 0.662 0.518 0.001 0.003
MoCo-CXR 0.997 0.778 0.803 0.530

https://registry.opendata.aws/stoic2021-training/
https://registry.opendata.aws/stoic2021-training/
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Table A3. Multi-view invariance evaluated on the CheXpert and EyePACS datasets, as measured by
cosine similarity. Key: best, second best.

CheXpert EyePACS

SimCLR 0.017 0.273
MoCo 0.012 0.312
SwAV 0.014 0.325
BYOL 0.014 0.241
PIRL 0.023 0.472

MIMIC-CheXpert 0.008
MoCo-CXR 0.024

Appendix B. Perceptual Distances

Table A4. Perceptual distance values, as measured by the LPIPS (Learned Perceptual Image Patch
Similarity) metric using the AlexNet architecture [47], for the reconstructed images for each model
for each dataset. A low value close to 0 indicates a strong perceptual similarity between the original
and reconstructed images.

Shenzhen Montomery EyePACS ChestX BACH iC-AMD iC-PM CheXpert ImageNet

SimCLR 0.95 0.80 0.75 0.80 0.92 0.76 0.86 0.78 0.78
MoCo 0.79 0.74 0.72 0.70 0.74 0.54 0.77 0.70 0.50
SwAV 0.90 0.75 0.78 0.77 0.85 0.64 0.90 0.76 0.74
BYOL 0.96 0.76 0.66 0.76 0.80 0.73 0.72 0.77 0.60
PIRL 0.80 0.76 0.66 0.68 0.66 0.63 0.64 0.79 0.62

Supervised (r50) 0.84 0.89 0.47 0.76 0.37 0.46 0.50 0.80 0.51
Supervised (r18) 0.90 0.76 0.55 0.80 0.64 0.68 0.84 0.82 0.56
Supervised (d121) 0.51 0.45 0.33 0.34 0.49 0.22 0.19 0.23 0.48

MIMIC-CheXpert 0.79 0.70 0.71 0.81 0.79 0.74 0.84 0.72 0.75
MoCo-CXR 0.79 0.64 0.68 0.72 0.72 0.68 0.71 0.75 0.69

Table A5. Perceptual distance values, as measured by the LPIPS (Learned Perceptual Image Patch
Similarity) metric using the SqueezeNet architecture, for the reconstructed images for each model for
each dataset. A low value close to 0 indicates a strong perceptual similarity between the original and
reconstructed images.

Shenzhen Montomery EyePACS ChestX BACH iC-AMD iC-PM CheXpert ImageNet

SimCLR 0.92 0.77 0.64 0.79 0.87 0.72 0.73 0.69 0.80
MoCo 0.67 0.67 0.60 0.67 0.71 0.43 0.50 0.61 0.43
SwAV 0.83 0.68 0.65 0.81 0.65 0.56 0.71 0.75 0.76
BYOL 0.84 0.65 0.51 0.74 0.61 0.58 0.58 0.71 0.50
PIRL 0.85 0.76 0.52 0.66 0.56 0.50 0.49 0.68 0.59

Supervised (r50) 0.89 0.89 0.34 0.81 0.26 0.32 0.38 0.78 0.38
Supervised (r18) 0.79 0.73 0.46 0.76 0.47 0.57 0.68 0.79 0.46
Supervised (d121) 0.53 0.40 0.22 0.32 0.27 0.14 0.14 0.40 0.39

MIMIC-CheXpert 0.73 0.64 0.62 0.75 0.80 0.63 0.72 0.76 0.73
MoCo-CXR 0.88 0.60 0.63 0.72 0.65 0.62 0.61 0.78 0.64
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Table A6. Perceptual distance values, as measured by the LPIPS (Learned Perceptual Image Patch
Similarity) metric using the VGG architecture, for the reconstructed images for each model for each
dataset. A low value close to 0 indicates a strong perceptual similarity between the original and
reconstructed images.

Shenzhen Montomery EyePACS ChestX BACH iC-AMD iC-PM CheXpert ImageNet

SimCLR 0.84 0.79 0.74 0.81 0.92 0.88 0.90 0.79 0.89
MoCo 0.73 0.77 0.91 0.81 0.87 0.64 0.83 0.70 0.64
SwAV 0.84 0.73 0.83 0.80 0.83 0.75 0.96 0.86 0.93
BYOL 0.79 0.78 0.73 0.78 0.82 0.74 0.82 0.76 0.74
PIRL 0.77 0.76 0.72 0.72 0.79 0.77 0.76 0.89 0.78

Supervised (r50) 0.88 0.89 0.56 0.77 0.59 0.51 0.57 0.81 0.61
Supervised (r18) 0.75 0.76 0.61 0.77 0.65 0.75 0.85 0.91 0.67
Supervised (d121) 0.57 0.56 0.46 0.45 0.57 0.35 0.32 0.19 0.59

MIMIC-CheXpert 0.82 0.85 0.84 0.91 1.00 0.79 0.89 0.86 0.87
MoCo-CXR 0.79 0.69 0.87 0.75 0.81 0.73 0.79 0.82 0.83

Appendix C. Attentive Diffusions

Table A7. Attentive diffusion values for the saliency maps for each model for each dataset. A low
value close to 0 implies a narrow focus. The attentive diffusion corresponds to the proportion of the
saliency map with value above the mean [20].

Shenzhen Montomery EyePACS ChestX BACH iC-AMD iC-PM CheXpert ImageNet

SimCLR 0.47 0.51 0.45 0.39 0.55 0.46 0.47 0.39 0.26
MoCo 0.40 0.43 0.44 0.46 0.43 0.40 0.45 0.49 0.41
SwAV 0.48 0.54 0.48 0.53 0.48 0.42 0.48 0.52 0.49
BYOL 0.39 0.41 0.47 0.41 0.41 0.36 0.42 0.50 0.39
PIRL 0.45 0.49 0.43 0.49 0.48 0.45 0.50 0.49 0.47

Supervised (r50) 0.42 0.44 0.40 0.34 0.43 0.43 0.46 0.47 0.43
Supervised (r18) 0.43 0.43 0.36 0.43 0.43 0.39 0.47 0.51 0.35
Supervised (d121) 0.45 0.49 0.47 0.43 0.43 0.41 0.40 0.52 0.40

MIMIC-CheXpert 0.44 0.34 0.48 0.33 0.44 0.45 0.49 0.34 0.45
MoCo-CXR 0.47 0.31 0.47 0.36 0.47 0.50 0.55 0.33 0.42
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Figure A1. Invariances, as measured by cosine similarity (Equation (3)), plotted against few-shot
performance for the different medical datasets. The invariances plotted include rotation, horizontal
flip, hue transform and multi-view (the invariance considered in each plot can be found in the y-axis
label). Shown overlaid are the Pearson’s r correlation coefficients and associated p values. We find
no significant correlations for any of the plots (high p values), except for multi-view invariance on
CheXpert, which shows a strong positive correlation.

Figure A1. Invariances, as measured by cosine similarity (Equation (3)), plotted against few-shot
performance for the different medical datasets. The invariances plotted include rotation, horizontal
flip, hue transform and multi-view (the invariance considered in each plot can be found in the y-axis
label). Shown overlaid are the Pearson’s r correlation coefficients and associated p values. We find
no significant correlations for any of the plots (high p values), except for multi-view invariance on
CheXpert, which shows a strong positive correlation.
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Figure A2. Attentive diffusion values for the reconstructed images plotted against transfer perfor-
mance. Shown overlaid are the Pearson’s r correlation coefficients and associated p values.

Figure A2. Attentive diffusion values for the reconstructed images plotted against transfer perfor-
mance. Shown overlaid are the Pearson’s r correlation coefficients and associated p values.
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Figure A3. Perceptual distance values for the reconstructed images (averaged over the AlexNet,
SqueezeNet, VGG architectures) plotted against transfer performance. Shown overlaid are the
Pearson’s r correlation coefficients and associated p values.

Figure A3. Perceptual distance values for the reconstructed images (averaged over the AlexNet,
SqueezeNet, VGG architectures) plotted against transfer performance. Shown overlaid are the
Pearson’s r correlation coefficients and associated p values.
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Figure A4. ImageNet top-1 accuracies plotted against transfer performance. Shown overlaid are the
Pearson’s r correlation coefficients and associated p values.

Figure A4. ImageNet top-1 accuracies plotted against transfer performance. Shown overlaid are the
Pearson’s r correlation coefficients and associated p values.
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Figure A5. Deep image prior reconstructions for all models on one image from each dataset.

Figure A6. Saliency maps for all models on one image from each dataset.
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39. Fu, H.; Li, F.; Orlando, J.I.; Bogunović, H.; Sun, X.; Liao, J.; Xu, Y.; Zhang, S.; Zhang, X. PALM: PAthoLogic Myopia Challenge.
2019. Available online: https://ieee-dataport.org/documents/palm-pathologic-myopia-challenge (accessed on 14 April 2022).

40. Aresta, G.; Araújo, T.; Kwok, S.; Chennamsetty, S.S.; Safwan, M.; Alex, V.; Marami, B.; Prastawa, M.; Chan, M.; Donovan, M.; et al.
BACH: Grand challenge on breast cancer histology images. Med. Image Anal. 2019, 56, 122–139. [CrossRef]

41. Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Using Artificial Intelligence to Detect
COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology
2020, 296, E65–E71. [CrossRef]

42. Kwok, S. Multiclass Classification of Breast Cancer in Whole-Slide Images. In Proceedings of the Image Analysis and Recognition;
Springer International Publishing: Cham, Switzerland, 2018; pp. 931–940.

43. Guo, Y.; Codella, N.C.F.; Karlinsky, L.; Smith, J.R.; Rosing, T.; Feris, R.S. A New Benchmark for Evaluation of Cross-Domain
Few-Shot Learning. arXiv 2019, arXiv:1912.07200.

44. Snell, J.; Swersky, K.; Zemel, R.S. Prototypical Networks for Few-shot Learning. In Advances in Neural Information Processing
Systems, Long Beach, CA, USA, 4–9 December 2017.

45. Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-based Localization. In Proceedings of the IEEE international Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

46. Ulyanov, D.; Vedaldi, A.; Lempitsky, V.S. Deep Image Prior. In Proceedings of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

47. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; pp. 586–595.

48. Ericsson, L.; Gouk, H.; Hospedales, T.M. Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on
Downstream Tasks. arXiv 2021, arXiv:2111.11398.

49. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2016, 114. [CrossRef]
[PubMed]

50. Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: from error visibility to structural similarity. IEEE Trans.
Image Process. 2004, 13, 600–612. [CrossRef]

51. Zagoruyko, S.; Komodakis, N. Paying More Attention to Attention: Improving the Performance of Convolutional Neural
Networks via Attention Transfer. arXiv 2016, arXiv:1612.03928.

http://dx.doi.org/10.1109/MSP.2021.3134634
http://dx.doi.org/10.1109/ICCV48922.2021.00346
http://dx.doi.org/10.3978/j.issn.2223-4292.2014.11.20
http://dx.doi.org/10.1038/s41597-019-0322-0
https://ieee-dataport.org/documents/palm-pathologic-myopia-challenge
http://dx.doi.org/10.1016/j.media.2019.05.010
http://dx.doi.org/10.1148/radiol.2020200905
http://dx.doi.org/10.1073/pnas.1611835114
http://www.ncbi.nlm.nih.gov/pubmed/28292907
http://dx.doi.org/10.1109/TIP.2003.819861

	Introduction
	Overview of Self-Supervised Learning
	Related Work
	Transfer Performance of Self-Supervised Models 
	Domain-Specific Self-Supervised Learning for Medical Image Analysis 
	Generalisability of Self-Supervised Features 

	Materials and Methods
	Models
	Datasets
	Preliminaries
	Preprocessing

	Evaluation Setup
	Few-Shot Learning
	Many-Shot Learning

	Analysis Tools
	Saliency Maps
	Deep Image Prior Reconstructions
	Invariances


	Results
	How Do Supervised, Self-Supervised Methods Compare for Medical Downstream Tasks?
	Is There a Clear Benefit to Domain-Specific Self-Supervised Pretraining?
	What Information Is Encoded in the Pretrained Features?

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

