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Abstract: Automatic Speech Recognition (ASR) systems are ubiquitous in various commercial applica-
tions. These systems typically rely on machine learning techniques for transcribing voice commands
into text for further processing. Despite their success in many applications, audio Adversarial Exam-
ples (AEs) have emerged as a major security threat to ASR systems. This is because audio AEs are able
to fool ASR models into producing incorrect results. While researchers have investigated methods for
defending against audio AEs, the intrinsic properties of AEs and benign audio are not well studied.
The work in this paper shows that the machine learning decision boundary patterns around audio
AEs and benign audio are fundamentally different. Using dimensionality-reduction techniques, this
work shows that these different patterns can be visually distinguished in two-dimensional (2D) space.
This in turn allows for the detection of audio AEs using anomal- detection methods.

Keywords: adversarial examples; automatic speech recognition; visualization; adversarial machine
learning; adversarial example detection

1. Introduction

Automatic Speech Recognition (ASR) systems are commonly used in many commer-
cial applications. These systems are typically used to transcribe user speech into text
and for recognizing user voice commands. Modern ASR systems rely on deep learning
techniques, which have been shown to achieve better speech recognition performance in
comparison with other traditional techniques [1–3]. Nevertheless, despite its success, deep
learning techniques suffer from a variety of security threats [4]. Among these, Adversarial
Examples (AEs) have emerged as a security threat that has attracted great interest within
the research community.

Research on AEs first appeared in the image-recognition field, where small perturba-
tions were applied to a benign (normal) image to generate an AE [5]. The goal of an AE is to
fool deep learning models into classifying it under a different label while being perceived
to be visually indistinguishable from the original image by a human. Research interest in
AEs has rapidly spread to other areas, such as Natural Language Processing (NLP) [6–8],
speech recognition [9–14], and speaker verification [15–17].

In conjunction with research on generating AEs, others have attempted to understand
and explain the reasons for AEs. For example, Tsipras et al. [18] provided a provable
demonstration, which showed that non-robust features referred to features that were
weakly correlated with the corresponding label. They reasoned that AEs exist because
classification is affected by such non-robust features in a data set. Ilyas et al. [19] affirmed
the intrinsic existence of non-robust features in data sets. Others have also shown that
perturbations in AEs can dominate classification. This can be seen as complementary to the
presence of non-robust features in a data set [20].

Other researchers have focused on methods for defending against AEs. For instance,
using intrinsic properties to differentiate between benign samples and AEs [21,22] and
training of a classifier with both benign samples and AEs to detect previously unknown
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attacks [23,24]. Despite the fact that adversarial training was shown to be one of the most
effective methods for defending against AEs [25], Zhang et al. [26] showed that successful
AEs with small perturbations can still be generated if data points are far from the training
set manifold.

While much research on AEs is in the image recognition field, this paper focuses on
AEs in the audio domain. In the audio domain, while researchers have proposed methods
for detecting audio AEs [27,28], the fundamental differences between audio AEs and benign
audio are not well studied or understood. To date, there is a lack of research on visually
analyzing audio AEs in relation to ASR systems. This paper investigates this by presenting
a method of visually analyzing the intrinsic properties of audio AEs. We show that these
properties can be used to differentiate audio AEs from benign audio. Consequently, this
research demonstrates that it is possible to detect previously unknown audio AEs using
these distinguishable features.

Our Contributions: This paper is an extended version of our work in [29]. We demon-
strate that the decision boundaries around audio AEs are fundamentally different from the
decision boundaries around benign audio. In our proposed method, we use heat maps to
visualize the decision boundaries of ASR models in relation to changes in loss function
values and normalized edit distances (Levenshtein distance). Using this approach, we show
that both targeted and untargeted audio AEs have different decision boundary patterns
in comparison with benign audio. By extracting features from decision boundaries and
projecting them into two-dimensional (2D) space, this paper illustrates that targeted and
untargeted AEs can clearly be separated from benign audio. As a result of this, we demon-
strate the feasibility of using simple anomaly detection models to distinguish between AEs
and benign audio.

The rest of this paper is organized as follows. Section 2 discusses related work that
provides a background to our work. Our proposed method is described in Section 3.
Section 4 discusses methods of generating attacks for detection, which is followed by the
results of our experiments in Section 5. Section 6 discusses the robustness of AEs against
our method, along with a promising direction for eliminating AEs. Finally, our conclusions
and future work are presented in Section 7.

2. Related Work

In this section, we provide a discussion on related work, which provides a back-
ground to our work. This section starts by describing audio AEs. This is followed by the
work on defending against such AEs. Then, it presents current techniques for visually
analyzing AEs.

2.1. Audio Adversarial Examples

AEs were first presented in the image-recognition field [5] and can be categorized into
targeted or untargeted AEs [30]. The difference between targeted and untargeted is that
targeted AEs fool a model into outputting a predetermined result, whereas untargeted AEs
simply cause a model to output an incorrect result. AEs can be generated under a white-box
or black-box threat model. A white-box threat model assumes that an adversary knows
everything about the target model. This includes its training data set, hyper-parameters,
model weights, and so on. On the other hand, under a black-box threat model, an adversary
is only able to obtain input and output pairs consisting of the AE and its corresponding
result. Thus, black-box AEs are a subset of white-box AEs [31]. Interest in AEs has spread
from the image domain to ASR systems. A summary of research efforts on audio AEs is
presented in Table 1.

In early work on white-box audio AE generation by Yuan et al. [32], they hid malicious
voice commands in songs to attack the Kaldi speech-recognition toolkit [33]. This work
also demonstrated the transferability of the techniques whereby the generated AEs could
be transferred to attack iFLYREC (https://www.iflyrec.com/, accessed on 1 November
2020). Transferability refers to the feature where an AE generated using one model is able
to fool other models. Kaldi is a hybrid ASR model, i.e., Deep Neural Network–Hidden

https://www.iflyrec.com/
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Markov Model (DNN-HMM), that outperformed traditional end-to-end DNN models.
Carlini and Wagner [9] proposed a white-box method of generating audio AEs against
DeepSpeech by optimizing the Connectionist Temporal Classification (CTC) loss. CTC
loss is used for training sequence-to-sequence neural networks with unknown alignment
between input and output sequences [34]. A limitation of their approach is that the max-
norm of perturbations is used to reduce noise in the resulting audio AEs. Liu et al. [35]
improved the quality and generation speed of the AE generation method proposed in [9]
by partially optimizing perturbations. Other studies [10,36] have shown that there are
better ways to suppress noise by incorporating psychoacoustics into the generation process.
However, a study by Eisenhofer et al. [37] showed that a defender can deliberately remove
inaudible components from input audio to avoid imperceptible adversarial perturbations.
Furthermore, recent work in Zong et al. [38] demonstrated that high-quality audio AEs can
be obtained without psychoacoustics.

Table 1. A summary of research efforts on audio AEs in ASR systems.

AE Type Assumption Method Target Model

Targeted
White-box

Yuan et al. [32] Kaldi
Carlini and Wagner [9] DeepSpeech

Liu el al. [35] DeepSpeech
Schoenherr et al. [10] Kaldi

Qin et al. [36] Lingvo [3]
Zong el al. [38] DeepSpeech

Black-box Taori et al. [39] DeepSpeech
Chen et al. [40] Commercial products *

Untargeted
white-box Neekhara et al. [41] DeepSpeech

Black-box Abdullah et al. [42] 7 models #

* including Google Assistant, Google Home, Microsoft Cortana, Amazon Echo, and IBM Speech to Text.
# including Google (Normal), Google (Phone), Facebook Wit, DeepSpeech, DeepSpeech2, CMU Sphinx, and
Microsoft Azure.

The generation of black-box audio AEs is more challenging compared with their white-
box counterparts because the internal workings of the ASR model are not accessible to the
adversary. Alzantot et al. [11] were the first to use genetic algorithms to generate black-box
audio AEs. However, the target model in their study was a lightweight keyword spotting
model, rather than an ASR model. In later work, Taori et al. [39] proposed black-box
audio AEs against DeepSpeech. In addition to genetic algorithms, they also employed a
gradient estimation technique to fine-tune perturbations when the edit distance between
the transcribed and target phrases was small. Target phrases in their work were limited to
two words. Chen et al. [40] proposed training a local surrogate model in which the decision
boundaries resembled a target model. Audio AEs were generated using the surrogate
model to attack a remotely deployed target. They demonstrated the success of their method
in forcing commercial ASR products to output predefined commands.

Unlike targeted AEs, which output predefined commands, untargeted AEs are less
malicious because they only cause a target model to output incorrect commands. Hence,
untargeted audio AEs have received less attention in the research community. Under
a white-box assumption, Neekhara et al. [41] proposed Universal Adversarial Pertur-
bations (UAPs) that can be applied to any input audio to cause incorrect output. They
empirically showed that their UAPs were more effective than random noise. Other work
by Abdullah et al. [42] assumed black-box access to a target model. In particular, they
proposed first decomposing input audio and then iteratively optimizing a threshold to
eliminate components. The end goal was to identify an optimal threshold that preserves
the perceptual quality of input audio while making a target model output incorrect results.
They empirically showed that their method was able to cause commercial products to
incorrectly transcribe input audio.
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2.2. Defending against Audio Adversarial Examples

As audio AEs are a serious threat to the security of ASR systems, the past few years
have witnessed an increase in the amount of research on defending against audio AEs.
In this subsection, we present an overview of such techniques. It should be mentioned
that the defense for other audio tasks, such as environmental sound classification [43], is
beyond the scope of this paper.

There are two lines of work for defending against audio AEs, which are summarized in
Table 2. The first line of work focuses on detecting the existence of adversarial perturbations
in input audio. Zeng et al. [27] proposed the use of multiple ASR models to transcribe an
input audio signal. If the resulting transcripts of these models diverged significantly, the
audio would be classified as an AE. Their detection method is based on the assumption
that audio AEs cannot be transferred between multiple ASR models. On the other hand,
this method requires the deployment of multiple ASR systems, which may not be practical
in real-world applications. Another defense method, proposed by Yang et al. [28], detects
audio AEs based on temporal dependency. They observed that unlike benign audio, audio
AEs cannot preserve temporal dependency. Specifically, they observed that the transcripts
of partial audio AEs, e.g., the first half of an AE, were significantly different compared with
the transcripts of the full AEs. In contrast, there was significant overlapping between the
transcripts of partial and full input for benign audio.

Table 2. Techniques for defending against audio AEs in ASR systems.

Defense Type Method Target Model Technique

Detection

Zeng et al. [27] DeepSpeech Multiple transcripts
Yang et al. [28] DeepSpeech, Kaldi Temporal dependency

Samizade et al. [44] DeepSpeech CNN
Guo et al. [45] DeepSpeech Multivariant partition

Hussain et al. [46] DeepSpeech, Lingvo Input transformation

Recovery

Yang et al. [47] DeepSpeech Speech quality enhancement
Guo et al. [48] DeepSpeech Noise reduction
Yuan et al. [32] Kaldi Downsampling
Chen et al. [40] IBM Speech to Text Downsampling

Recently, Samizade et al. [44] proposed a defense method where they trained a
Convolutional Neural Network (CNN) on the spectrograms of benign audio and AEs and
demonstrated that it could detect audio AEs with high accuracy. Nonetheless, their method
suffered from low performance when detecting previously unknown attacks. This is due to
the lack of generalization in out-of-distribution data. Improving the performance for out-
of-distribution data is still an active topic in the deep learning literature [49]. Guo et al. [45]
proposed another audio AE detection method, which was based on an efficient multivariant
partition based method for extracting features. Although their method demonstrated
high performance in detecting audio AEs, the requirement of training a classifier on both
attacks and clean audio may make it impractical when attacks are unknown in advance.
Another recent study by Hussain et al. [46] proposed a framework for detecting audio
AEs. The underlying idea behind their method is that transcripts of audio AEs will be
significantly altered if small modifications to the audio are introduced, whereas transcripts
of clean audio input will be stable. They thus proposed applying transformations to input
audio, and an audio AE was detected if its transcript changed significantly. Although the
methods discussed above have successfully detected audio AEs, the intrinsic properties
that differentiate audio AEs from benign audio are not well studied or understood.

The other line of work in this area focuses on recovering the original clean audio
by destroying adversarial perturbations in audio AEs. Yang et al. [47] used a speech-
quality-enhancement network to preprocess audio AEs. After adversarial training, this
network can efficiently remove adversarial perturbations. However, adversarial training
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introduces a tradeoff between model performance and robustness [50], which may limit
the performance of the speech-quality-enhancement network. Guo et al. [48] observed
that denoising techniques resulted in different performances after removing adversarial
perturbations in different audio AEs. Hence, they proposed an intelligent noise-reduction
method, called INOR, which was effective in removing adversarial perturbations from
different audio AEs. Yuan et al. [32] and Chen et al. [40] observed that audio downsampling
was able to destroy adversarial perturbations. Nonetheless, they performed experiments
on their proposed audio AEs.

2.3. Visualization Techniques for Analyzing Adversarial Examples

Visualization is useful for facilitating the understanding of deep learning techniques [51].
Several visualization efforts have focused on aiding in the intuitive understanding of AE
properties. In an initial attempt, Norton et al. [52] built a web-based interface to interactively
show the image AE generation process. Seminal work conducted by Liu et al. [53] visually
explained the transferability of image AEs. In their work, they visualized the decision
boundaries of several image recognition models and found that AEs could be transferred
due to their overlapping decision boundaries. In other work, Stutz et al. [54] showed that
image AE perturbations are interpretable if the AEs are constrained on the manifold of a
data set. In addition, different patterns in the loss function gradients of input images in non-
robust and robust models have been visually compared [18]. A study by Zhang et al. [20]
visualized logit vectors of a model in relation to an image AE, along with its corresponding
clean image and perturbations. The experimental results in their study showed that logit
vectors of an image AE and their corresponding perturbations are correlated.

Despite these research efforts on visualization for AEs, to date, there is limited research
on the visual analysis of audio AEs in the ASR domain. This paper fills this gap by
proposing a method of visually analyzing the intrinsic properties that can be used to
distinguish audio AEs from benign audio.

3. Proposed Method

The research in this paper proposes a method of visually analyzing targeted and
untargeted audio AEs. This section presents the details of our proposed method.

3.1. Visualizing Decision Boundaries

In general, benign audio is significantly more robust than audio AEs. Robustness refers
to whether audio can be transcribed correctly despite the presence of noise. Benign audio
is generally more robust as it can usually be transcribed correctly even when additional
noise is added to the audio signal. This implies that the decision boundary patterns around
benign audio are potentially different from those of audio AEs. Hence, we propose a
method of visualizing the decision boundaries of ASR models to show this difference.

Unlike in image recognition, where there are usually fixed sets of labels, the decision
boundaries of ASR models are more difficult to visualize as an audio signal can potentially
be transcribed into a large number of output strings. Moreover, if one were to simply treat
different transcripts as different labels, the visualization results would be confusing. This is
because a difference between labels cannot appropriately represent the difference in the
transcribed text. For example, if “paper” and “papers” were to be treated as two different
labels, such as 1 and 2 in numeric form, information on the similarity between these two
transcripts will be lost. Therefore, it makes more sense to visualize the decision boundaries
of an ASR model via changes in the resulting transcripts when input audio is modified.
Moreover, changes in the loss function values can also be used to represent the decision
boundary patterns of an ASR model.

In this paper, we propose a method of visualizing the decision boundaries of ASR
models using heat maps to show changes in loss function values and changes in normalized
edit distances. The reason for using heat maps is that they can clearly represent changes
in values visually. The proposed method is formally defined here. Let x be the input
audio and y be the transcript of x, which may be different from the ground truth if the
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audio signal is incorrectly transcribed; let f () be the ASR model; and let `net() be the
corresponding loss function. We can calculate the gradient of the loss function with respect
to x as ~g = ∇`net( f (x), y) and normalize it to be of unit length using g =

~g
||~g||2

. Then, we
initialize a random unit vector q that is not parallel to g. We obtain ~p = q− (q · g)× g and
p =

~p
||~p||2

. Thus, p is of unit length and perpendicular to g.
The heat maps of loss function values and normalized edit distances are defined as

the square matrices Mloss and Medit, respectively. The size of both matrices is n× n. Let s
be a predefined number controlling the extent to which x is modified. The definition of
Mloss and Medit is shown in Equation (1).

[Mloss]i,j = `net( f (x + si · p + sj · g), y)

[Medit]i,j =
dedit( f (x + si · p + sj · g), y)

hlength(y)
(1)

where sk =
−n·s

2 + n·s·(k−1)
(n−1) , dedit() is the function to calculate the edit distance and hlength()

returns the transcript length, which is used to normalize the edit distance. In Equation (1),
the audio data are evenly modified along g and p via a step size s. Normalizing the edit
distance is necessary because edit distance by itself cannot fairly compare the change in
transcripts for different y. For example, a small edit distance means a more severe change
for short y than for long y.

3.2. Feature Extraction

For additional insight into the heat maps, two-dimensional (2D) reduction techniques
were used to project the results into 2D space to identify potential patterns. For this,
we used the Principal Component Analysis (PCA) [55] and the t-distributed Stochastic
Neighbor Embedding (t-SNE) [56] techniques. A simple feature extraction method was
employed in this study. While more advanced methods, such as training a convolutional
neural network on heat maps, may potentially produce better results, a simple method
serves as a low bound that can be improved on. An investigation into feature extraction
methods for the proposed method is a potential direction for future work.

Given input audio, we calculate a vector vloss based on the change in loss function
values if we modify the audio along the gradient direction g and a perpendicular direction
p. g and p were previously defined in Section 3.1. Similarly, we calculate a vector vedit based
on the change in normalized edit distances. As defined in Equation (2), the feature vector
v f t representing the heat maps of an input audio is simply a concatenation of vloss and
vedit. In other words, v f t measures both the change in loss function values and normalized
edit distances when input audio is modified. Intuitively, using v f t would result in better
performance in distinguishing audio AEs from benign audio than using only vloss or vedit.
For simplicity, we refer to v f t as the features of input audio.

vloss =


`net( f (x + g), y)− `net( f (x), y)
`net( f (x− g), y)− `net( f (x), y)
`net( f (x + p), y)− `net( f (x), y)
`net( f (x− p), y)− `net( f (x), y)



vedit =


dedit( f (x + g), y)/hlength(y)
dedit( f (x− g), y)/hlength(y)
dedit( f (x + p), y)/hlength(y)
dedit( f (x− p), y)/hlength(y)


v f t =

[
vloss
vedit

]
(2)

4. Attack Generation

This section discusses the method of generating AEs for detection.
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4.1. Targeted Audio Adversarial Examples

This paper analyzes an improved version of the state-of-the-art targeted audio AE
generation process proposed by Carlini and Wagner [9]. In their research, distortion caused
by perturbations was measured by comparing the level of perturbations δ, in decibels (dB),
with the original waveform x. The calculation is given as dBx(δ) = dB(δ)− dB(x), where
dB(x) = maxi 20 · log10(xi), which is used in the formulation shown in Equation (3) [9].

minimize ||δ||22 + c · `net( f (x + δ), y)

such that dBx(δ) ≤ τ
(3)

where τ limits the max-norm of δ, ||δ||22 is the squared Euclidean norm of δ, f () represents
the ASR model, y is the target phrase, `net() represents the loss function of the ASR model,
and c is used as a trade-off between the amount of adversarial perturbation and making
δ small.

A major drawback of this method is that perturbations are limited by the max-norm,
which is arguably not suitable for minimizing noise in audio AEs. This is because max-norm
constrained perturbations are applied in a non-selective manner, such that noise is clearly
audible during quiet sections. In contrast, Qin et al. [36] showed that it is more appropriate
to incorporate psychoacoustics to suppress noise in audio AEs. Using their approach, they
divide the generation process into two stages. In the first stage, a targeted audio AE is
generated in the same way as [9]. Then, the second stage tries to limit perturbations to
be under the masking threshold that was proposed in [57]. The formulation to solve this
is shown in Equation (4) [36], where lθ() is the loss function to calculate the hinge loss
of the masking threshold and α controls the trade-off between the amount of adversarial
perturbation and it being imperceptible.

minimize `net( f (x + δ), y) + α · lθ(x, δ) (4)

It should be noted that limiting the max-norm of perturbations in stage 1 is somewhat
unnecessary since the original purpose of limiting the max-norm is to suppress noise.
Furthermore, in their approach, noise suppression is also done in stage 2.

Based on the method in Qin et al. [36], we improved the targeted AEs generation
process proposed by Carlini and Wagner [9] by constraining perturbations via the masking
threshold instead of the max-norm. Specifically, we solve the formula in Equation (5),
where X represents the set of valid audio data, ||δ||22 is the squared Euclidean norm of δ,
`net is the loss function of the ASR model, lθ is the hinge loss of the masking threshold
from [36], and β and α are factors used to balance the different losses. There are still two
stages. During stage 1, a targeted audio AEs is generated with α set to 0, so that the hinge
loss of the masking threshold will have no contribution. During stage 2, α is set to a small
value, e.g., 0.05, to suppress noise.

As asserted in [9], limiting the max-norm of perturbations would often result in the
optimization not converging, but rather oscillating around a solution. In contrast, we do
not limit the max-norm of perturbations in Equation (5), thereby potentially reducing AE
generation time.

minimize ||δ||22 + β · `net( f (x + δ), y) + α · lθ(x, δ)

such that x + δ ∈ X
(5)

4.2. Untargeted Audio Adversarial Examples

To the best of our knowledge, to date, there is limited research on untargeted audio
AEs. This is because untargeted audio AEs are less interesting compared to targeted AEs,
since they only lead to wrong or even meaningless transcripts. Nevertheless, for the sake
of completeness, we also analyze untargeted audio AEs in this research.



J. Imaging 2022, 8, 324 8 of 21

We devised two approaches to generate untargeted audio AEs. The first is based on
the Fast Gradient Sign Method (FGSM) [25]. This method simply takes one step along the
gradient of the loss function with respect to the input audio. Perturbations δ are calculated
as in Equation (6) [25], where x is the input audio, y is the target phrase, `net() is the loss
function, and ε is the step size.

δ = ε · sign(∇x`net( f (x), y)) (6)

An audio AE x′ is then calculated as: x′ ← x− δ. While this will not generate targeted
audio AEs, like the method in [9], this method can generate untargeted audio AEs if we set
y to be the reversed ground truth. The reversed ground truth is typically different from
the original. An untargeted AE is successfully generated if the edit distance between the
transcript and the ground truth exceeds a certain threshold. Edit distance is defined as
the minimum number of letter-level modifications, including insertions, deletions, and
substitutions, required to change one text to another.

The second approach to generating untargeted audio AEs was inspired by the black-
box targeted audio AE proposed by Taori et al. [39], where they used a genetic algorithm to
search for perturbations that led to an ASR outputting a target phrase. When the transcript
of the best solution is within a predefined edit distance of the target phrase, the generation
process uses a gradient estimation strategy to continue the search process. In this work,
we use the gradient estimation strategy in [39] to generate untargeted audio AEs. We also
incorporate the noise suppression technique from [36] in the generation process. As shown
in Algorithm 1, we first reverse the ground truth and use the reversed transcript as the
target for optimizing the input audio, as in the first approach of generating untargeted
audio AEs via FGSM. The generation is deemed to be successful when the edit distance
between the transcript and the ground truth exceeds a certain threshold.

Algorithm 1 Untargeted Audio AE Generation

Input: original audio signal, x; ground truth transcript, y; target ASR model m; maximum
iteration: max_iter; edit distance threshold: distance_min
Output: black-box untargeted audio AE, x′

x′ ← x
y_reverse← reverse the characters in y
While iter < max_iter do

y_reverse_loss← calculate loss of y_reverse
grad_estimate← estimate the gradient of the loss function x′ using y_reverse_loss
x′ ← x′-grad_estimate * learning_rate
// use the lowering noise technique from [36]
masking_loss←masking loss noise in x′

optimize masking_loss noise in x′

If EditDistance(y, transcript of x′) ≥ distance_min
return x′

End If
End While
If iter == max_iter

return fail
End If

5. Experiments and Discussion
5.1. Target Models and Data Sets

As with similar research in the ASR domain [9,10,39,44], we used DeepSpeech [1]
as one of the target models for our experiments. DeepSpeech 0.8.2 (DeepSpeech 0.8.2
was implemented by Mozilla https://github.com/mozilla/DeepSpeech (accessed on 1
November 2020)), which is the latest release at the time of writing, was used in this research.
It should be noted that DeepSpeech 0.1, which was used in previous studies [9,39], has been

https://github.com/mozilla/DeepSpeech
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superseded with newer versions. In addition, DeepSpeech2 [2], which is an improved
version of DeepSpeech that employs an end-to-end architecture, was also used. We used
DeepSpeech2 V2 (DeepSpeech2 V2 was implemented and released by Sean Naren https:
//github.com/SeanNaren/deepspeech.pytorch (accessed on 1 November 2020)).

LibriSpeech [58] was employed as the data set because DeepSpeech and DeepSpeech2
both provide pre-trained models on LibriSpeech. In the experiments, we used audio from
the test-clean and dev-clean data sets. For targeted AEs, one of the target phrases “power
off”, “turn on airplane mode”, “visit danger dot com”, “call malicious number”, and “turn
off lights” was selected at random to mimic malicious voice commands. The generation of
untargeted AEs was deemed to be successful if the edit distance between the transcript and
the ground truth was larger than 40% of the ground truth.

In previous work by Carlini and Wagner [9], they generated audio AEs using the
first 100 test instances of the Mozilla Common Voice data set [59]. Most of this audio was
short, between 1 and 8 seconds in duration. Carlini and Wagner [9] empirically observed
that the generation of targeted AEs was easier the longer the source phrase, while the
generation would be more difficult the longer the target phrase. Since our target phrases
were relatively short, we used audio below 5 seconds to balance the difficulty of generating
targeted audio AEs.

All experiments in this paper were performed with an Intel i7-8750H CPU and an
Nvidia GeForce GTX 1060 graphic card. Using randomly selected audio from the test-
clean data set of DeepSpeech and DeepSpeech2, respectively, we generated 150 targeted
AEs, 150 untargeted AEs using FGSM, and 150 untargeted AEs based on our proposed
method. For simplicity, in the remainder of this paper, we refer to untargeted AEs using
our proposed method as untargeted AEs and untargeted AEs using FGSM as FGSM AEs.
To obtain a balanced data set, we also extract 150 correctly transcribed and 150 incorrectly
transcribed audio from the test-clean data set of each model. In addition, we generated
150 noisy audio signals by applying Gaussian noise with a standard deviation of 0.01.

To generate targeted AEs, we ran 350 epochs for DeepSpeech and 300 epochs for
DeepSpeech2 to suppress noise during the second stage since we observed that it is easier
for DeepSpeech2 to suppress the noise without destroying adversarial perturbations. Noise
suppression in all targeted AEs against DeepSpeech2 was successful. However, some AEs
against DeepSpeech failed to lower noise within the 350 epochs. As such, we individu-
ally fine-tuned these noisy AEs by running extra epochs until the masking loss (lθ() in
Equation (5)) was below a specific threshold. The smaller the masking loss, the smaller the
distortion perturbations caused. We set the threshold to the masking loss calculated using
the −20 dB distortion set published by [9] (https://nicholas.carlini.com/code/audio_
adversarial_examples (accessed on 1 November 2020)).

The masking losses of our AEs were compared with the −20 dB distortion, −35 dB
distortion, and −50 dB distortion sets published by [9] and the first set of the imperceptible
adversarial examples published by [36] (http://cseweb.ucsd.edu/~yaq007/imperceptible-
robust-adv.html (accessed on 1 November 2020)). Figures 1 and 2 show these results.
Smaller dB values mean lower distortion. Carlini and Wagner [9] reported that the distor-
tion of 95% of their targeted AEs ranging between −15 dB and −45 dB. Thus, the resulting
distortion in our targeted AEs is comparable with the results of related work. It should
be mentioned that we can further lose masking loss by running more epochs, which will
require a longer generation time. We have made examples of AEs generated in this work
available at https://drive.google.com/drive/folders/1Ffed7xHmP5oKCuypEgJxQ80p35-
vSIBm?usp=sharing (accessed on 20 October 2022).

https://github.com/SeanNaren/deepspeech.pytorch
https://github.com/SeanNaren/deepspeech.pytorch
https://nicholas.carlini.com/code/audio_adversarial_examples
https://nicholas.carlini.com/code/audio_adversarial_examples
http://cseweb.ucsd.edu/~yaq007/imperceptible-robust-adv.html
http://cseweb.ucsd.edu/~yaq007/imperceptible-robust-adv.html
https://drive.google.com/drive/folders/1Ffed7xHmP5oKCuypEgJxQ80p35-vSIBm?usp=sharing
https://drive.google.com/drive/folders/1Ffed7xHmP5oKCuypEgJxQ80p35-vSIBm?usp=sharing
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(a) Targeted AE (DS) (b) Untargeted AE (DS)

(c) Targeted AE (DS2) (d) Untargeted AE (DS2)

Figure 1. Histograms comparing the masking loss (lθ() in Equation (5)) of our generated adver-
sarial examples (AEs) for DeepSpeech (DS) and DeepSpeech2 (DS2) with the −20 dB distortion,
−35 dB distortion, and −50 dB distortion sets published by [9] (labeled as −20 dB, −35 dB, and
−50 dB, respectively) and the first set of imperceptible adversarial examples published by [36] (la-
beled as imperceptible). The smaller the masking loss, the lower the resulting distortion perturbations.
Coordinates along the horizontal axis were calculated as ln(masking loss + 1). Overall, the masking
loss of targeted AEs against DeepSpeech2 was smaller compared with DeepSpeech. The masking
loss of most untargeted AEs was between −20 dB and −35 dB.

(a) FGSM AE (DS) (b) FGSM AE (DS2) (c) Noisy Audio

Figure 2. Histograms comparing the masking loss of fast gradient sign method (FGSM) AEs and noisy
audio for DeepSpeech (DS) and DeepSpeech2 (DS2) with the −20 dB distortion, −35 dB distortion,
and −50 dB distortion sets published by [9] (labeled as −20 dB, −35 dB, and −50 dB) and the first set
of imperceptible adversarial examples published by [36] (labeled as imperceptible). Coordinates of
the horizontal axis are calculated as ln(loss + 1), where loss is the masking loss proposed by [36]. We
can see that the masking loss of FGSM AEs is similar to the masking loss of noisy audio.

Table 3 shows a comparison of the time taken for generating the audio AEs. FGSM
was the fastest approach, but it had the lowest success rate. On average, it took 2.4 and
7.0 min to generate targeted audio AEs for DeepSpeech and DeepSpeech2, respectively. On
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the other hand, our proposed method required an average of 4.4 and 4.9 min to generate
untargeted audio AEs. While we generated AEs one at a time, the generation process can
be accelerated by generating multiple AEs in parallel. As a loose comparison, Carlini and
Wagner [9] reported that their approach took about one hour to generate a single targeted
audio AE on commodity hardware, while Zeng et al. [27] reported a time of 18 min on an
18-core CPU with dual graphic cards. While we cannot conclude that our generation process
is statistically faster as the source audio and target phrases were different, intuitively, our
method should speed up the generation of AEs because we do not limit the max-norm
of perturbations.

Table 3. Total time taken for generating the audio AEs and their success rates.

Type DeepSpeech DeepSpeech2

Targeted AEs 17.4 h (100.00%) 6.0 h (100.00%)
Untargeted AEs 11.0 h (98.68%) 12.3 h (100.00%)

FGSM AEs 0.13 h (28.79%) 0.07 h (38.66%)

5.2. Visualizing Decision Boundaries

As described in Section 3, the proposed method represents the decision boundaries
of ASR models using heat maps of loss-function values and normalized edit distances.
The Mloss and Medit were calculated for correctly transcribed benign audio, targeted, and
untargeted audio AEs. It was empirically observed that good results could be produced
using a matrix of 128× 128 and a step size s of 0.07. Figure 3 shows examples of resulting
heat maps.

In the heat maps shown in Figure 3, the horizontal axis represents the direction of the
gradient of the loss function the input audio, while the vertical axis represents a random
direction that is perpendicular to the gradient. The heat maps were generated by modifying
input audio along these two directions and recording the changes. The center of the heat
maps represents unmodified audio. In the experiments, we set y in Equation (1) to the
transcript of the unmodified audio, because we wanted to calculate the changes in loss
values and transcripts when modifying audio. For example, y is set to the target phrase of
a targeted audio AE or the incorrect transcript of an untargeted audio AE.

It is evident from the resulting patterns that changes in loss function values and
normalized edit distances are correlated. This aligns with the intuition that loss function
values returned by an ASR model should increase as the difference between the transcript
and y increases and vice versa. Furthermore, we can see that when a targeted audio AE is
modified slightly, the resulting loss function value and normalized edit distance change
significantly. This is true for both DeepSpeech and DeepSpeech2 and is consistent with
our observation that adversarial perturbations in the generated targeted audio AEs are not
robust. The significant changes in loss function values and normalized edit distances when
we modify AEs are an indication of the non-robust property of adversarial perturbations.

In contrast, changes in loss function values and normalized edit distances for correctly
transcribed benign audio are significantly smaller than for targeted audio AEs when audio is
slightly modified. This implies that correctly transcribed benign audio is much more robust
against perturbations than targeted audio AEs. This is consistent with our observation that
some correctly transcribed benign audio could still be correctly transcribed even when a
large amount of noise is present. Another observation is that slightly modifying untargeted
audio AEs also results in large changes in loss function values and normalized edit distances.
However, while this change appears to be less severe than targeted audio AEs, the resulting
patterns are different when compared with the results of correctly transcribed benign audio.
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(a) Targeted AE (DS) (b) Untargeted AE (DS) (c) Benign Audio (DS)

(d) Targeted AE (DS2) (e) Untargeted AE (DS2) (f) Benign Audio (DS2)

Figure 3. Heat maps of loss function values and normalized edit distances regarding different audio
AEs and benign audio for DeepSpeech (DS) and DeepSpeech2 (DS2), respectively. Changes in loss
function values and normalized edit distances of targeted and untargeted audio AEs are clearly
different from benign audio.

5.3. Dimensionality Reduction

Based on the different patterns in loss function values and normalized edit distances
in relation to targeted and untargeted audio AEs and benign audio shown in Section 5.2, it
is logical to consider the possibility of differentiating audio AEs from benign audio-based
differences in their patterns. Thus, we extracted features from the audio and projected
them into 2D space using the PCA and t-SNE methods, using the method described in
Section 3. It should be noted that if audio AE and benign audio features can clearly be
differentiated into 2D space, this indicates that they can also be separated in the original
higher-dimensional space.

In the experiment, benign audio was grouped as correctly and incorrectly transcribed
audio. This was carried out to investigate whether there was a difference between them. In
addition, noisy audio was also included. The features were normalized using their mean
values and standard deviation before projecting them in 2D space. These results are shown
in Figure 4.
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DeepSpeech DeepSpeech2

Figure 4. Results obtained by projecting the features of various types of audio using the principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) techniques.

The PCA projection results were almost the same for DeepSpeech and DeepSpeech2.
Correctly and incorrectly transcribed audio clustered around the origin, while the other
audio types were spread away from the origin. The correctly and incorrectly transcribed
audio almost overlapped, indicating that there is little difference between their features. As
previously discussed, the changes in loss function values and normalized edit distances for
correctly transcribed benign audio are small, which explains why correctly and incorrectly
transcribed audio cluster around the origin. In contrast, targeted audio AEs are far away
from the origin. This is because small modifications will result in significant changes for
targeted audio AEs, as discussed in the previous section. Untargeted audio AEs, FSGM
audio AEs, and noisy audio all spread slightly away from the origin in the same direction.
This implies that the features of these three audio types are similar.

Compared with PCA results, t-SNE projection was better at visualizing relationships
between the data samples. In Figure 4, t-SNE projection again shows similar results for
DeepSpeech and DeepSpeech2. Three clusters, excluding noisy audio, can be identified
as follows: targeted audio AEs are clearly grouped in the first cluster; the second cluster
mainly contains correctly and incorrectly transcribed benign audio; and the third cluster
consists of untargeted audio AEs and FGSM AEs, i.e., untargeted attacks. The results of
t-SNE projection are promising, since the various audio types are clustered according to
their categories. An interesting observation is that incorrectly transcribed audio does not
overlap with untargeted audio AEs or FGSM AEs, although all of them lead to incorrect
transcriptions. A potential explanation is that incorrectly transcribed audio from the test-
clean data set does not cause severe errors such as untargeted audio AEs and FGSM AEs.
In addition, noisy audio is contained in both the second cluster (benign audio) and the
third cluster (untargeted attack). This may be because some noisy audio is like benign
audioin that it can be transcribed correctly or with little error, while some noisy audio
behaves like untargeted attacks, which lead to significant errors in transcriptions. Upon
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closer inspection, the untargeted AEs and FGSM AEs are separate from each other in the
case of DeepSpeech2, but the same is not true for DeepSpeech.

5.4. Anomaly Detection

Visualization results presented in the previous subsection indicate the possibility of
detecting audio AEs based on their features. Hence, instead of training a classifier on
benign audio and audio AEs, we experimented with using anomaly detection to detect
audio AEs. In practice, audio AEs generated by adversaries are unlikely to be previously
seen. Anomaly detection is appropriate for defending against previously unknown attacks.

In the experiments, we used audio from the dev-clean data set to train an anomaly
detection model. This model was then used to detect audio AEs generated using the
test-clean data set. In particular, audio features from dev-clean were extracted using the
method described in Section 3. These features were used to train an EllipticEnvelope model
implemented by scikit-learn [60]. This model detects outliers in a Gaussian distributed
data set. We use the default parameters so that our experiment results can serve as a
lower bound for anomaly detection. We report true positive (TP), false positive (FP), true
negative (TN), false negative (FN), and detection rate (DR) for each category of benign
audio and audio AEs together with overall precision (Pre), recall (Rec), and accuracy (Acc).
Specifically, precision = TP

TP+FP , recall = TP
TP+FN , accuracy = TP+TN

TP+FP+TN+FN . For audio
AEs, DR = TP

TP+FP . For benign audio, DR = TN
TN+FN .

Table 4 presents the experimental anomaly detection results for DeepSpeech and
DeepSpeech2. Overall, the detection results are similar for both ASR models. As expected,
targeted AEs are easily detected at detection rates of 100%. This is in line with the observa-
tion that targeted AEs can clearly be separated from other audio types in lower-dimensional
space. It is reasonable that the detection rates of untargeted AEs were loan-targeted AEs
since some untargeted AEs were mixed with benign audio in the PCA projection, as
previously shown in Figure 4. The detection rates of FGSM AEs were surprisingly lone
untargeted audio AEs, although these two AEs were clustered together in the t-SNE pro-
jection. This indicates that the simple anomaly detection model that was used is too basic
for detecting FGSM AEs. In addition to benign audio, noisy audio could also be correctly
identified at high detection rates. This was not as expected, since some of the noisy audio
was mixed with untargeted AEs and FGSM AEs in low-dimensional space. This suggests
that noisy audio is actually clustered with benign audio in the original higher-dimensional
space, even though the 2D projection did not show this.

Table 4. Anomaly detection results of previously unknown audio AEs.

DeepSpeech DeepSpeech2

Type TP FP TN FN DR TP FP TN FN DR

Targeted AEs 150 - - 0 100.00% 150 - - 0 100.00%
Untargeted AEs 120 - - 30 80.00% 129 - - 21 86.00%

FGSM AEs 86 - - 64 57.33% 33 - - 117 22.00%
Noisy Audio - 9 141 - 94.00% - 8 142 - 94.67%

Correctly trans. - 4 146 - 97.33% - 2 148 - 98.67%
Incorrectly trans. - 6 144 - 96.00% - 12 138 - 92.00%

Pre Rec Acc Pre Rec Acc

94.93% 79.11% 87.44% 93.41% 69.33% 82.22%

In a study by Samizade et al. [44], they generated white-box and black-box targeted
audio AEs against DeepSpeech. They trained a neural network on white-box targeted audio
AEs to detect black-box targeted audio AEs and vice versa. Our detection accuracy for the
two ASR models of 87.44% and 82.22% is overall higher than their reported results of 82.07%
and 48.76%, respectively. While this may not be a fair comparison, as they used a different
approach, we mainly want to emphasize that the detection of previously unknown audio
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AEs is a challenging task. It is anticipated that if we extract more sophisticated features and
utilize a more advanced anomaly detection method, it is highly likely that the detection
results can be improved.

6. Discussion

In this section, we start by discussing the robustness of AEs against our method. Then,
we discuss a promising research direction for eliminating AEs.

6.1. Robust Audio Adversarial Example

The fundamental assumption underlying this research is that the decision boundary
patterns around benign audio and audio AEs are significantly different from one another.
In this study, we used heat maps of loss function values and normalized edit distances
to test the validity of this assumption. We also investigated whether the heat maps could
differentiate audio AEs from benign audio under a white-box threat model. Although we
demonstrated that heat maps of audio AEs and benign audio are significantly different,
these audio AEs were generated without prior knowledge of the heat map generation
process. It is conceivable that if an adversary has full knowledge of how the heat maps are
generated, they can potentially generate targeted audio AEs with small changes in loss
function values and normalized edit distances when the AEs are modified. We refer to this
type of AEs as robust audio AEs because they are potentially indistinguishable from benign
audio using our proposed heat map visualization method. Moreover, features extracted
from such robust audio AEs may not be distinct from benign audio features.

In research efforts to increase the robustness of AEs, Athalye et al. [61] proposed the
use of Expectation over Transformation (EoT). The idea behind this approach is to optimize
the loss function over various transformations, such as Gaussian noise. Qin et al. [36]
employed this method to incorporate reverberations in the generation process in order
for audio AEs to remain adversarial over the air. If such reverberations were used to
generate audio AEs, it is possible that there may be fewer changes in loss function values
and normalized edit distances for such robust AEs, at least in the directions considered
to be transformations. This is because the EoT directly incorporates this property in the
optimization formula. From another point of view, the EoT can be thought of as imposing
limits on the resulting decision boundary patterns around successfully generated AEs.

In light of this, we conducted experiments to verify the existence of AEs that were
robust against our method. In these experiments, we generated a robust audio AE against
DeepSpeech2 in a similar way to generating our targeted audio AEs, as discussed in
Section 4.1. During each epoch, we modified the audio along the gradient of the loss
function’s direction, denoted as g, as well as a perpendicular direction, denoted as p, and
optimized the audio together with the modified ones. It should be noted that p and g
are also used for generating heat maps and extracting features as discussed in Section 3.
Theoretically, this strategy of generating robust audio AEs is equivalent to the EoT. There
are two stages in the process. Stage 1 succeeds if the robust audio AE is transcribed as the
target phrase and the maximum edit distance between transcripts of all modified audio
and the targeted phrase is less than 3. Then, stage 2 focuses on lowering the noise in the
robust audio AE. Similar to the other experiments, we ran stage 2 for 300 epochs. We
successfully generated one targeted audio AE in 23.1 min, and the corresponding heat
maps are shown in Figure 5. As expected, the heat maps of this robust audio AE are similar
to the benign audios shown in Figure 3 because there is only a small change in loss values
and normalized edit distance when it is slightly modified along p and g. Although this
implies the success of this robust AE, its distortion is −11.2 dB, which is noisier than the
−20 dB distortion set. To demonstrate this, Figure 6 uses spectrograms to show that the
distortion is obvious.
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Figure 5. Heat maps of loss function values and normalized edit distances for a robust audio AE.
There are small changes in loss function values and normalized edit distances when this robust audio
AE is slightly modified.

Looking deeper, p is initialized from a fixed vector for the purpose of reproducibility
during implementation and this is fine under a black-box threat model in which adversaries
have no knowledge about p. However, this fixed initialization might be exploited under a
white-box threat model. Specifically, p would be almost fixed when g is stable and a robust
audio AE only needs to cause a small change in loss values and normalized edit distance
along the almost fixed p and g. This can happen when the loss is near a local minimum
or when optimization is stuck on a plateau. Hence, it is interesting to investigate whether
a defender can detect the robust AE by deliberately using different values of p. Figure 7
presents heat maps of the robust AE with different values of p. It shows that heat maps of
the robust AE still resemble heat maps of benign audio, which implies that the robust AE
can bypass detection even if different values of p are used.

(a) Benign audio (b) Robust AE

Figure 6. Comparing spectrograms of (a) benign audio with (b) the robust audio AE. Distortion in
the AE is obvious.
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(a) (b)

Figure 7. Using different values of p to generate heat maps of loss function values and normalized
edit distances for a robust audio AE. Different values of p were used to generate (a,b).

6.2. Eliminating Adversarial Examples

Research has demonstrated that the detection of adversarial perturbations in input
is efficient and can achieve high performance. This makes it suitable for potential de-
ployment in real-world applications. Nevertheless, existing detection methods cannot
theoretically guarantee the perfect detection of future AEs. This means there is still a
likelihood, no matter how small, that an AE can bypass detection and cause harm. Other
work on defending against AEs has focused on adversarial training [62,63] and theoretical
robustness [64]. However, these research directions have their own unsolved problems:
the performance of adversarially trained models is unsatisfactory because of the tradeoff
between performance and robustness [50], and methods that provide theoretical robustness
against AEs cannot work for real-world complex DNNs. We contend that the ultimate
solution for defending against AEs is to make the decision strategy of DNNs align with
human perception. In this manner, AEs can be eliminated because human perception is
robust against small perturbations.

There is currently a significant difference between the decision strategy of DNNs and
the perception of humans. This is demonstrated by the “Clever Hans” behavior in DNN
predictions [65]. Specifically, DNN predictions can be based on non-robust features that
allow distinction within the training data but are not related to the intended task [19]. An
example by Lapuschkin et al. [65] showed that an image classification model outputs a
“horse” label if a source tag is present because one-fifth of the horse images contained this
source tag. To demonstrate this, the researchers stamped the source tag onto an image of a
car and the prediction changed from “car” to “horse”.

The “Clever Hans” behavior also exists in ASR systems because of the existence of
audio AEs. Recall that small or even imperceptible perturbations can force an ASR system
to output a malicious command that was predefined by an adversary at a 100% success rate
as shown in Table 3. Geirhos et al. [66] explained this “Clever Hans” behavior in DNNs via
the concept of shortcut learning. In fact, shortcut learning also exists in biological neural
networks. They provided the example that rats distinguished between colors through the
odor of paint, which was an unintended solution in the experiments.

In the literature, the direction of aligning the decision strategy of DNNs with human
perception has attracted more and more attention from researchers in recent years. For
example, Liu et al. [67] proposed first identifying incorrect predictions and then increasing
their weight for retraining a DNN. Singla et al. [68] recently proposed a novel method to
identify spurious features that are learned by DNNs. These examples highlight that aligning
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the decision strategy of DNNs with human perception for improving the robustness of
models against AEs is an interesting direction for future work.

7. Conclusions and Future Work

With ASR systems becoming ubiquitous in commonly used commercial applications,
audio AEs pose a severe security threat to these systems. Despite the various methods pro-
posed by the research community for defending against audio AEs, the intrinsic properties
of audio AEs have not been well studied or understood. This paper presents a method for
visualizing the different decision boundary patterns around audio AEs and benign audio,
which allow them to be distinguished from each other. This paper also showed that by
extracting features based on the decision boundaries in conjunction with dimensionality-
reduction techniques, the features of audio AEs and benign audio can be clearly separated
in 2D space. In addition, this work demonstrated the possibility of detecting previously
unknown audio AEs using anomaly detection. Our experimental results showed that this
approach achieved significantly high detection rates for targeted audio AEs.

In future work, we will investigate various methods for improving audio AE detection
results through the incorporation of more advanced feature-extraction techniques and
anomaly-detection models. Another interesting direction for future work is on improving
the robustness of models against AEs via aligning the decision strategy of DNNs with
human perception.
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