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Abstract: Advances in Artificial intelligence (AI) and embedded systems have resulted on a recent
increase in use of image processing applications for smart cities’ safety. This enables a cost-adequate
scale of automated video surveillance, increasing the data available and releasing human intervention.
At the same time, although deep learning is a very intensive task in terms of computing resources,
hardware and software improvements have emerged, allowing embedded systems to implement
sophisticated machine learning algorithms at the edge. Additionally, new lightweight open-source
middleware for constrained resource devices, such as EdgeX Foundry, have appeared to facilitate the
collection and processing of data at sensor level, with communication capabilities to exchange data
with a cloud enterprise application. The objective of this work is to show and describe the develop-
ment of two Edge Smart Camera Systems for safety of Smart cities within S4AllCities H2020 project.
Hence, the work presents hardware and software modules developed within the project, including a
custom hardware platform specifically developed for the deployment of deep learning models based
on the I.MX8 Plus from NXP, which considerably reduces processing and inference times; a custom
Video Analytics Edge Computing (VAEC) system deployed on a commercial NVIDIA Jetson TX2
platform, which provides high level results on person detection processes; and an edge computing
framework for the management of those two edge devices, namely Distributed Edge Computing
framework, DECIoT. To verify the utility and functionality of the systems, extended experiments
were performed. The results highlight their potential to provide enhanced situational awareness and
demonstrate the suitability for edge machine vision applications for safety in smart cities.

Keywords: smart cities; edge; EdgeX Foundry; embedded machine vision; artificial intelligence;
deep learning

1. Introduction

Ensuring citizens’ safety and security has been identified as the number one priority
for city authorities when it comes to the use of smart city technologies. Automatic under-
standing of the scene, and the associated provision of situational awareness for emergency
situations and civil protection, are able to efficiently contribute to such domains. Tradi-
tional video surveillance systems demand human intervention to some extent. However,
as the number of IP or other types of cameras increases explosively, a fully automatic
video recognition framework becomes essential, replacing the manual monitoring. The
video data captured by the camera are transmitted to the cloud server to do the entire
recognition process, which may hamper real-time video recognition due to transmission
delays through the communication channel. In this context, recent trends in Internet of
Things (IoT) applications adopt edge computing that appears to decrease latency and
computational processing. The edge computing technology allows computation to be
performed at the network edge so that computing happens near data sources or directly in
the real-world application as an end device [1]. In these terms, edge computing could scale
from a single person to a smart individual building to even an entire city.
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This is possible due to advances in the manufacturing of new processors [2]. Such
devices request services and information from the cloud, as well as perform several real-
time computing tasks (e.g., storage, caching, filtering, processing, etc.) of the data sent
to and from the cloud. Although in [3] the authors highlighted some drawbacks and
aspects that should be considered when applying edge computing such cases of unreliable
devices, possible low computing power of individual edge notes, load balancing, high
operational expenses, and concerns in the system’s security and trustworthiness [4–6], edge
computing is able to fully contribute to situational awareness applications [7,8]. Situational
awareness applications continuously generate enormous amounts of data of several types.
Edge computing is able to provide a homogeneous approach for data processing and
generation of associated alerts or events or raw information. In summary, edge computing
can be used for real-time smart city environments under the public safety aspect, enabling
(i) context-awareness, (ii) geo-distributed capabilities, (iii) low latency, and (iv) migration
of computing resources from the remote cloud to the network edge.

In this background, [9] provided in their study a modular architecture with deep neural
networks as a solution for real-time video analytics in an edge-computing environment. In
their modular architecture, two networks of Front-CNN (Convolutional Neural Network)
and Back-CNN were exploited. Experimental results on public datasets highlighted the
potential of their approach. In [10], a video streaming optimization method in the IIoT
environment was proposed under the edge computing concept. In the same framework, the
author of [11] designed an edge enhanced deep learning system for large-scale video stream
analytics system. In their proposed methodology, they performed an initial processing of
the data close to the data source at edge and fog nodes, resulting in significant reduction
in the data that are transferred and stored in the cloud. The results on the adopted object
recognition scenario showed high efficiency gain in the throughput of the system by
employing a combination of edge, in-transit and cloud resources when compared to a
cloud-only approach. The authors of [12] focused on leveraging edge intelligence for video
analytics in smart city applications. Their approach encompasses architecture, methods,
and algorithms for (i) dividing the burdensome processing of large-scale video streams
into various machine learning tasks, and (ii) deploying these tasks as a workflow of data
processing in edge devices equipped with hardware accelerators for neural networks.
In [13], the authors investigated an architectural approach for supporting scalable real-time
video stream processing using edge and in-transit computing. Concerning the privacy
aspect, the authors of [14] proposed how to consider to a privacy-oriented framework when
video feeds are exploited for surveillance applications.

Other recent works emphasized the important role of edge computing for several
sectors, such as automated manufacturing [15], healthcare systems and Industry 4.0 [16],
telecommunications [17], autonomous traffic systems [18] and smart cities [19–22]. Through
the continuous advancements of ubiquitous computing, wireless sensor networks and
machine-to-machine communication (M2M), connected devices are growing in number.
Heterogeneous physical devices are enabled to transfer signals over the internet and become
uniquely identifiable [20]. A sustainability roadmap for edge computing was proposed
in [23]. Their approach aims to serve the developers’ and managers’ communities in the
edge computing field to include sustainability dimensions, such as the usage of distributed
renewable energy sources for edge nodes, as concerns that are as important as the technical
concerns ensuring the functionality and efficiency of edge computing. Edge computing has
been also identified as an enabling technology for numerous use cases in the development of
Internet of Things and the 5th Generation Network (5G) [24] and is, therefore, an important
piece to study. In [25], a cyber-physical social system for early fire detection was proposed,
employing a scalable edge computing framework receiving captured information from
several IoT nodes. In [26], the authors developed a fire alarm system for smart cities
using edge computing via different types of sensors, such as temperature and humidity;
whenever a node detects a fire, it signals the centralized node to alert the user.
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Finally, with the complex structures of hierarchical layers being able to capture features
from raw data, deep learning models have shown outstanding performances in several
novel applications, such as machine translation, object detection, smart question and
answer systems, and semantic segmentation [27–29]. Traditionally, most deep learning-
based applications are deployed on a remote cloud center, and many systems and tools
are designed to run deep learning models efficiently on the cloud. Recently, with the rapid
development of edge computing, the deep learning functions are being offloaded to the
edge. Thus, it calls for new techniques to support the deep learning models at the edge [30].
In this context, many deep learning packages have been widely used to deliver the deep
learning algorithms and deployed on the cloud data centers, including TensorFlow [31],
Caffe [32], PyTorch [33], and MXNet [34]. However, the models deployed in the cloud
are usually computationally expensive and traditionally executed in a high-end computer
equipped with powerful and expensive graphical processing units (GPU). This equipment
is not adequate for a large-scale deployment because of the high power-consumption, the
lack of miniaturization and the resultant high costs. To solve this issue and motivated
by the great success of the deep learning techniques, many hardware manufactures have
developed embedded hardware devices powerful enough to execute some of the most
successful models. In addition, those devices usually integrate a powerful co-processor
specifically designed for the deployment of deep learning models. These co-processors
provide considerable computing power along with small footprint for high integration
and high-power efficiency, and support new edge-based deep learning frameworks, tools
and lightweight solutions, such TensorFlow lite [35], Caffe2 [36], DeepViewRT [37], or
ONNX [38].

The work in this paper has been supported within the S4AllCities EU funded project [39].
The S4AllCities project aim is to make cities’ infrastructures, services, ICT systems and
Internet of Things more resilient, while promoting intelligence and information sharing
amongst security stakeholders. The objective of this work is to highlight the utility and
functionality of two different schemes of embedded vision systems with edge computing
capabilities in smart city applications focused on person detection in terms of situational
awareness. Furthermore, their overview and the performance results via extended experi-
ments in real scenes are provided. Both edge computing machine vision systems run deep
learning models to detect people and suspicious behaviors. These detections are notified
as events to safety forces through an edge device scheme based on the EdgeX Foundry
framework [40] to increase the safety on the future smart cities.

1.1. Edge Computing Frameworks

The authors of [30] listed several edge computing systems, projects and tools that
were designed and developed in previous years for various applications (general usage
scenario, vehicular data analytics, smart home, video stream analytics, virtual reality), such
as: (i) Cloudlet [41], (ii) CloudPath [42], (iii) PCloud [43], (iv) ParaDrop [44], (v) SpanEdge
project [45], (vi) Cloud-Sea Computing Systems project [46], (vii) Cachier [47], (viii) Pre-
cog [48], (ix) FocusStack [49], (x) AirBox [50] and (xi) Firework [51]. On the other hand,
several open-source edge computing frameworks have gained significant attention over
the last years due to their open use, efficiency and flexibility. Some well-known open-
source edge computing frameworks are [30] (i) CORD (Central Office Re-architected as a
Datacenter) [52], (ii) Akraino Edge Stack [53], (iii) EdgeX Foundry [40] and (iv) Apache
Edgent [40,54].

The authors of [30] summarized the features of the above open-source edge comput-
ing systems and compared them from different aspects, including the main purpose of
the systems, application area, deployment, target user, virtualization technology, system
characteristic, limitations, scalability and mobility. According to such a comparison, as
well as recent studies [55–58], the EdgeX Foundry is considered in the bibliography as a
highly flexible and scalable edge computing framework facilitating the interoperability
among devices and applications at the IoT edge, such as industries, laboratories, and
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datacenters. Hosted on a reference software platform that is completely independent of
hardware and operating systems, the EdgeX Foundry framework enables a plug-and-play
component ecosystem to unify the computing open platform at the edge of the IoT and
accelerate deployment of solutions [55]. It is also considered as a lightweight edge com-
puting framework [56] and supports the connections to heterogeneous device protocols,
providing various management functions for devices, data, and edge computing environ-
ments. Additionally, according to several organizations (e.g., Alliance for Internet of Things
Innovation-AIOTI [59]), it is recognized, among others, as one of the Open-Source Software
(OSS) initiatives that are currently focusing on edge computing.

1.2. Low-Cost Edge Platform with a Dedicated DL Co-Processor

There are many hardware devices competent to execute DL algorithms. In fact, most
modern micro-controllers are currently able to run a set of DL algorithms [55]. However, one
of the goals of this work is to deploy machine vision DL algorithms with high computing
power demand. On average, the number of operations required to compute a complete
inference from an input image is around some tens of billions of operations or Giga-
Operations (GOPS) [60]. Considering a video sequence of 30 to 60 frames per second,
it is estimated that the minimum computational power is around one Tera-Operations
per second (TOPS). That figure leads to the consideration of a device with a specific DL
integrated mathematical co-processor.

There are three main solutions to integrate a DL-oriented co-processor in embedded
hardware:

1. Use a general-purpose processor that already integrates a co-processor in the same
semiconductor die. This solution provides high integration, high speed inter-processor
communication and simplified hardware design, but it is less versatile and adaptative
to changes in application requirements.

2. Include a separate Application Specific Integrated Circuit (ASIC) designed for DL
inference, together with the general-purpose processor in the embedded hardware
design, allowing the separation of the general-purpose processing and peripheral
handling and the DL processing issues. In exchange, the chipset intercommunication
and synchronization should be solved.

3. Use a programmable logic device (CPLD or FPGA) to implement custom co-processor
hardware. This is the most versatile alternative that even allows the design of the
architecture of the DL co-processor itself but involves more complex development
and design stages.

There are many examples of those solutions in the market. The survey in [61] describes
some of most successful embedded AI application development platforms. The Nvidia
Jetson Nano [62], for example, uses an embedded floating point Graphical Processing Unit
(GPU) with a highly parallel architecture of 128 cores to run deep learning applications.
The evaluation kit specifies a 472 Giga Floating-Point Operations per Second (GFLOPS) of
computing power. Another very popular device is Google’s EdgeTPU coprocessor [63]. The
device is an ASIC designed to specifically run Neural Network inference at the edge with
up to 4 Tera operations per second (TOPS) of computing power. The EdgeTPU, as opposed
to Jetson Nano, performs the mathematical operations using 8-bit fixed point integer
arithmetic. This feature allows very high inference speed but at limited accuracy and, as
it is explained below, the architecture has a notable impact in the software deployment
stage. A representative example of an FPGA based AI development board is the Ultra96
board based on a Xilinx System on Chip (SoC) which integrates an FPGA fabric and a quad
ARM Cortex A54 cores [64]. This mixed architecture could be scaled to a high-performance
AI-oriented-design-based FPGA with even hundreds of TOPS of computing power such as,
for example, the Intel Stratix 10 NX FPGA [65]. However, the implementation of a specific
IP core for machine learning model execution presents some challenges that should be
carefully considered [66].
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2. Materials and Methods

This section presents the hardware and software modules developed for Edge comput-
ing machine vision purposes in the context of the S4AllCities project. First, the Distributed
Edge Computing framework (DECIoT), an edge computing framework for the management
of edge devices, is introduced. Then, a custom hardware platform specifically developed
for the deployment of deep learning models is presented and a people detection application
is integrated with the DECIoT. Finally, a custom Video Analytics Edge Computing (VAEC)
system is deployed on a commercial NVIDIA Jetson TX2 platform and integrated with the
DECIoT, providing enhanced situation awareness for person detection.

2.1. Distributed Edge Computing Framework (DECIoT) for the integration of Edge Devices

The designed and developed DECIoT platform for the S4AllCities project is based
on the EdgeX Foundry. In general, the DECIoT platform is able to address, among others,
the problem of gathering, filtering and aggregating data, it allows the interoperability
between devices, interacts with the IoT devices, provides security and system management,
provides alerts and notifications, executes commands, stores data temporarily for local
persistence, transforms/process data and, in the end, exports the data in formats and
structures that meet the needs of other platforms. This whole process is performed by
using open-source microservices that are state-of-the-art in the area of distributed edge
IoT solutions. The DECIoT is a scalable, secure, flexible, fully controlled, potentially
interoperable, and modular open-source framework that ensures information sharing
with other platforms or systems. Through the DECIoT, computation, data storage, and
information sharing are performed together, directly in the edge device, in a real-time
manner.

The DECIoT platform consists of multiple layers and each layer contains multiple
microservices. The communications between the micro-service within the same or different
layers can be performed either directly with the use of REST APIs or with the use of a
message bus that follows a pub/sub mechanism. Both schemes are exploited in this study.
DECIoT consists of a collection of reference implementation services and SDK tools. The
micro services and SDKs are written in Go [67] or C programming languages. A detailed
documentation and implementation of the DECIoT is provided in [68,69]. In the following,
we present the main different layers of DECIoT (see also Figure 1):
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Figure 1. DECIoT architecture. The four main different layers of the proposed edge computing
framework. From left to right: (i) the Device Service Layer acts as an interface of the system with
physical devices and is tasked with the functionality of collecting data and actuating the devices
with command; (ii) the Core Services Layer is used for storing data, commanding and registering
devices; (iii) the Support Services Layer includes microservices for local/edge analytics and typical
application duties, such as logging, scheduling, and data filtering; (iv) the Application Services Layer
consists of one or more microservices to extract, transform, and send data from the previous layer to
other endpoints or applications.
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• The Device Service Layer: Acts as an interface of the system with physical devices
and is tasked with the functionality of collecting data and actuating the devices with
commands. It supports multiple protocols for communication though a set of device
services (MQTT Device Service, REST Device Service, Virtual Device Service, etc.) and
an SDK for creating new Device Services. Here, the MQTT Device Service was used to
receive information from the person detection process. Between the person detection
process and the MQTT Device Service, there is a MQTT broker (Mosquito) [70].

• The Core Services Layer: Located at the center of the DECIoT platform and is used for
storing data, as well as commanding and registering devices. The Core Data Service is
used for storing data, the Command Service initiates all the actuating commands to
devices, and the Metadata Service stores all the details for the registered devices. This
microservices are implemented with the use of Consul, Redis, and adapters developed
in Go for integration with all other microservices.

• The Support Services Layer: Includes microservices for local/edge analytics and
typical application duties, such as logging, scheduling, and data filtering. The Schedul-
ing Service is a microservice capable of running periodic tasks within DECIoT (for
example, cleaning the database of the Core Data Service each day) and initiating
periodic actuation commands to devices using the Command Core Service. This is an
implementation in Go that exploit features of Consul and Redis. The Rules Engine
Service performs data filtering and basic edge data analytics, and Kuiper is used in
this microservice. The Logging Service, a Go language implementation, is used for
logging messages of other microservices. Here, the relevant microservices were not
exploited as no logging, scheduling, and data filtering was needed.

• The Application Services Layer: Consists of one or more microservices with the func-
tionality of communicating with external infrastructures and applications. Application
Services are the means to extract, transform, and send data from the DECIoT to other
endpoints or Applications. Using this Layer, the DECIoT can communicate with a
variety of middleware brokers (MQTT, Apache Kafka [71], etc.) or REST APIs with
the goal of reaching external applications and infrastructures. At the same time, the
support of an SDK allows the implementation of new Application Services that fit
the use case. Here, a new Application Service has been implemented to send data
to the smart city’s middleware (in this study, the Apache Kafka was used) using the
Go language.

In the context of S4AllCities project, the proposed DECIoT framework is used to
integrate embedded edge processing platforms with the Smart City Middleware (Figure 2).
On the one hand, a low-cost custom platform based on the NXP I.MX8M Plus SoC is
presented. This platform makes use of novel hardware specific tools, such as the NXP Image
Signal Processing (ISP) and the DeepViewRT model inferencing framework, to reduce the
processing time of a person detector application. In case of necessity, the image can be
streamed to the smart city for manual human-recognition purposes. On the other hand, a
commercial NVIDIA Jetson RTX2 is used to deploy and evaluate a pre-trained and a custom
YOLOv5s based model, able to detect people in crowded indoor or outdoor scenarios and
from different terrestrial or aerial perspectives. Being a more powerful platform, the
NVIDIA Jetson RTX2 platform has been also used as a host server for the deployment of
the DECIoT services. These services have the capability for: (i) collecting the alerts or raw
data generated by edge devices through different IoT communication protocols; (ii) post-
processing the information from different sources, taking into account historical data to
detect specific events and generate the corresponding alerts; (iii) filtering and sending the
most interesting events to higher-level layers using different communication protocols.

This work also presents two scenarios where the edge devices send the number of
people detected to the DECIoT through the MQTT protocol. The DECIoT framework
processes the incoming data and, using the communication microservices based on Kafka,
transmit events to the smart city platform.
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2.2. AI Embedded Platform

Based on the criteria presented in Section 1.2, the AI hardware selected for Tekniker AI
Embedded Platform was the I.MX8M Plus processor. It is an NXP heterogeneous multi-core
processor for high-performance applications focused on video processing and DL [72].
Based on this processor, the edge processing machine vision device was developed and
manufactured (Figure 3).
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The I.MX8M Plus processor for machine vision integrates a Neural Co-Processing
Unit (NPU) which can process 2.3 Tera-operations per second (TOPS), enabling the NPU
to run deep learning model inference in nearly real time. It is also quite remarkable that
the NPU is integrated onto the same die as the general-purpose processors and shares
the high-speed internal memory bus. This architecture helps speed up the Deep Neural
Network (DNN) based inference since the data interchange between both computing units
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is optimized. The NPU is a Vivante VIP8000 specifically designed for being embedded in
processors of the i.MX family. It works with 8-bit integer data types (INT8) rather than
32-bit floating-point data (FLOAT32). This means that the DNN needs to be transformed
(quantized) before being executed in the NPU. NXP provides the entire ecosystem of tools
to manage the entire workflow pipeline, including the design, deployment and inference of
neural networks. The processor also features a powerful image-processing pipeline, camera
interfaces and a comprehensive set of communication peripherals.

The embedded software is based on a Linux distribution created using Yocto project.
The Yocto framework allows creating and configuring a custom Linux distribution with
the minimum packages, libraries and drivers that exactly fit the application requirements
based on the hardware devices and use case functionalities. The Yocto version used was
Yocto Zeus (v5.4.70_2.3.2) (Variscite, Lod, Israel).

2.2.1. NXP Enhanced Solutions to Accelerate Machine Learning Application’s Performance

One of the most difficult challenges in the design and deployment of DL models in
embedded devices is the requirement of a set of tools specifically designed for the selected
embedded hardware architecture. The following subsections enumerate the resources that
NXP brings for AI application development:

• ISP: The software image signal processing (SoftISP) includes several functions that
are executed on the GPU of the NXP® i.MX 8 family device, i.e., bad pixel correction,
white balance, histogram equalization, high-quality demosaicing and high-quality
noise reduction (Figure 4). This pipelined image-processing engine, designed to take
in high-speed video streams, is optimized for the on-chip GPU using two computing
standards, OpenCL™ 1.2, and OpenVX™.

To take advantage of the ISP, the NXP partner Au-Zone [73] provides a highly opti-
mized software libraries called Vision-Pack [74]. Vision AI Acceleration Library (VAAL) is
a core library of Vision-Pack. On the input processing side VAAL offers accelerated image
processing functions which connects cameras and codecs to image and graphics processors
through DMA to the NPU or GPU. On the output processing side, provides accelerated
decoding and interpretation of model results to minimize the time from inference results
to user-readable data structures. These libraries have been used during the evaluation of
the custom platform to optimally get the video from a camera to the inference engine and
visualize the results.
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• eIQ tools: The eIQ Toolkit enables machine learning development through an intu-
itive GUI, eIQ Portal, and development workflow tools, along with command line
host tool options that simplifies vision-based ML solutions development. It enables
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graph-level profiling capability with runtime insights to help optimize neural network
architectures on target processors. The eIQ Portal provides two workflow pipelines
according to user requirements. In the “bring your own data” (BYOD) pipeline, eIQ
Portal takes the user data and generates a fully deployable DNN inference model using
an adequate proprietary model zoo instance. In the “Bring your own model” (BYOM),
an already existing model is modified and optimized to be compatible with one of the
embedded AI run time libraries, as described below (Figure 5).
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• eIQ inference engines: The eIQ Tolkit provides an output model that seamlessly feeds
into the embedded run time. The available options are DeepViewRT, TensorFlow
Lite, TensorFlow Lite Micro, Glow and ONNX runtime inference engines, as seen in
the Figure 6. The eIQ inference engine library allows one to deploy the model into an
appropriate hardware processor and to control the inference execution. In this work a
model related with the NPU is tested and evaluated.
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2.2.2. Deep Learning Frameworks and Models

To test the performance of the custom AI Embedded Platform along with the accom-
panying inference engines, we have made use of models provided by Au-Zone and state of
the art models provided by Model Zoo from Tensorflow.

An already trained SSD-MobilenetV2 networkwas downloaded from Tensorflow
ModelZoo [78]. Then, the model was transformed to TensorFlow Lite using a Tensorflow
script (model (1) in Table 1), and to a DeepViewRT format using the eIQToolkit (model (2)
in Table 1).

Table 1. Models used for inference tests of the Tekniker AI Embedded Platform.

# Model Name Format Description

1 mobilenet_ssd_v2_coco_quant_postprocess tflite Model converted from Tensorflow format to
tflite using a Tensorflow script

2 mobilenet_ssd_v2_coco_quant_postprocess rtm The model above converted to DeepViewRT
using eIQTolkit

3 mobilenet_ssd_v1_1.00_trimmed_quant_anchors rtm A proprietary model distributed with eIQTolkit

4 mobilenet_ssd_v2 rtm
A model provided by Au-Zone obtained from
available Model Zoo 1 model and converted
to .rtm

5 modelpack_people_320 × 320 rtm
A model provided by Au-Zone obtained from
available Model Zoo 2 model and converted
to .rtm

In addition, already trained models provided by eIQTolkit and Au-Zone were con-
sidered, models (3–5). These models are specifically generated to be used in I.MX8M Plus
processor with DeepViewRT inference engine.

The two embedded run times, TensorFlow Lite library and DeepviewRT have a
Python and C++ API that allows the integration of deep learning models into embedded
applications. This API is also responsible for converting and deploying the highly parallel
tensor calculus into NPU to optimize both performance and processing time. DeepViewRT
was developed by a NXP partner Au-Zone. In [79], there is a detailed description of the
run time specifications. For each model architecture and model format, a slightly different
inference Python script was developed.

2.3. Video Analytics Edge Computing (VAEC) System

The Video Analytics Edge Computing (VAEC) system developed by ICCS is docu-
mented in detail in [68]. The VAEC system is integrated with the DECIoT in order to provide
enhanced situation awareness for person detection through a video streaming feed on an
embedded edge device with GPU processing (via a NVIDIA Jetson RTX2) and a lightweight
object detection deep learning scheme. In this study, additional experiments and a new
training process for several altitudes and perspective views in terms of real-world scenes
are conducted though VAEC system.

The VAEC system adopts a lightweight deep learning model with a CNN archi-
tecture for object detection, that is the pre-trained YOLOv5s [80], with high inference
speed (70 ms) [68]. In the literature, YOLO in several versions has been considered as
one of the most robust and efficient published deep learning based object detection
frameworks [81–84]. The last version, YOLOv5, seems to have a great potential for object de-
tection tasks in several applications with various challenges, such as complexity of the scene,
light conditions, viewing perspective of the objects, etc. [85–87]. The YOLOv5s is trained
by the well-known COCO dataset that contains 80 classes and more than 2,000,000 labeled
images [88].

In [68], the performance of VAEC system was evaluated through several real-time
experiments for person detection in the following terms: (i) in several light conditions,
and (ii) using several types of camera sensors. However, the aforementioned experiments
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considered only the pre-trained YOLOv5s in: (i) outdoor cases, (ii) low-altitude camera
views, and (iii) with one person presented in the scene. In this paper, we expand the
evaluation of VAEC system to:

• Indoor cases associated with real-world applications (arson and burglary/space viola-
tion) from a free available dataset using the pre-trained YOLOv5s (see Section 3.2.1).

• Outdoor cases utilizing representative images from free available datasets: (i) of a
variety of viewing perspectives, (ii) from high-altitude and unmanned aerial vehicle
(UAV) camera views, and (iii) with complex city background. As mentioned above,
the pre-trained YOLOv5s model has been trained mainly with terrestrial/low-altitude
camera view RGB imagery from the COCO dataset. Thus, to cover cases of high-
altitude and UAV camera views and the associated viewing perspectives, a custom
deep learning model is created (see Section 3.2.2).

The Python programming language (version 3.6) and the libraries TensorFlow [89] and
OpenCV [90] were mainly used for the object detection processes and the re-training process.

For the quantitative assessment of the person detection process, four objective criteria
were adopted according to the International Society for Photogrammetry and Remote
Sensing (ISPRS) guidelines [91,92], namely completeness (CM), correctness (CR), quality
(Q), and F1 score measures per object (person), given as:

CM =
‖TP‖

‖TP‖+ ‖FN‖ , CR =
‖TP‖

‖TP‖+ ‖FP‖ , Q =
‖TP‖

‖TP‖+ ‖FP‖+ ‖FN‖ , F1 = 2× CR ×CM

CR + CM
(1)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively.
The TP entries are the persons that exist in the scene and were, thus, correctly detected. The
FP entries are the persons that do not exist in the scene and were, thus incorrectly detected
(assigned as false detected persons). The FN entries are the persons that exist in the scene
but were not detected (assigned as missed persons).

3. Results

In this section, the results obtained from the custom AI embedded platform and
the VAEC system via extended experiments are presented. Concerning the custom AI
embedded system, the combination of hardware specific neuronal network and image
processing tools and the multi-threading approach has resulted in a reduction of the whole
processing time, allowing a theoretical rate of 60 FPS or around 15 ms of total computing
time. Concerning the VAEC system, the achieved results for both the pre-trained and
custom YOLOv5s are considered to be satisfactory, proving their suitability and efficiency
for real-word applications in smart cities. More details concerning the experiments and the
relevant results are provided in the following sub-sections.

3.1. Custom AI Embedded Platform Experiments

Low-cost embedded devices are restricted by the processing capabilities endowed
on it. It is, therefore, essential to make use of its resources in the most effective form.
In previous work [93], the custom AI Embedded Platform developed by Tekniker in the
context S4allCities project was presented. This platform has been developed to provide
low cost and low consumption edge deep learning capabilities. The novelty in this case
is set on the hardware specific tools available to accelerate the application runtime rather
than on evaluating a specific model performance. This work evaluates the execution time
reduction obtained by Tensorflow Lite and the DeepViewRT inference tools provided by
eIQ Framework, as well as by the VisionPack to perform image acquisition operations.

The implemented application consists of monitoring a human restricted area and
sending alerts to the SmartCity middleware with the number of people in the image and
video streaming in case of human presence. This information is transmitted via MQTT to the
DECIoT and from there resent via Apache Kafka where the high-level smart city operators
evaluate if the people on the image have authorization or not. For testing purposes, a
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restricted area has been simulated at Tekniker facilities. The result of the detection inference
is shown in Figure 7 below.
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The subtasks that need to be performed are image acquisition, preprocessing and
scaling, detection inference and results publications. The results consist of a JSON message
containing an event with the number of people in the restricted area and an image video
streaming directly to the smart city through the RTP protocol. The software status in
previous work [93] required long processing times for image acquisition and inference of
a simple deep learning model. The obtained times at this stage were 4 ms for scaling the
image to be suitable for the DL model, 15 ms for the inference of an image and, finally,
0.5 ms for both publishing the event as JSON message and streaming the image. The script
uses a highly optimized thread architecture to parallelize as much as possible the various
tasks defined above leading to an image processing rate of 20 FPS. Those preliminary
experiments used the model numbered as 1 in Table 2.

Table 2. Brief explanation of the Python scripts used for testing purposes.

# Script Name Description

1 video_stream_tflite.py Python script executing a .tflite model.

2 video_stream_rtm.py Python script executing a .rtm model with
DeepViewRT engine.

3 video_
stream_rtm_VisionPack.py

Python script executing a .rtm model with
DeepViewRT engine and additional
VAAL library.

In order to enhance the efficiency and reduce the processing time of this and future
deep learning vision applications, some experiments were carried out using optimized
libraries for model quantization and model deployment. In particular, Au-Zone Vision-
Pack for improved image preprocessing and buffering operations and DeepViewRT along
with eIQ Toolkit in the host for model inference optimization were used.

Due to the different model formats and libraires used in the experiments, it was
necessary to implement some application scripts in addition to the original one. A brief
description of each one is shown in Table 2.

The experiments carried out are summarized in Table 3. As shown, the experiments
use a mixed combination of script, model and processor, leading to a quite heterogeneous
time results.

The first conclusion derived from Table 3 is that there is a huge improvement when the
NPU is used compared with the CPU. The NPU is around 16 times faster than CPU. In ad-
dition, the use of the NPU frees the CPU to be used for another tasks, so the inference of the
model can be paralleled with the camera image acquisition to achieve higher performances.
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Table 3. Experiments results Summary. All times are in milliseconds.

# Model Used Script Used Inference
Processor FPS (1) Image-Scaling

(ms)
Inference

(ms)
Publish

Results (ms)

1 1 1 CPU 30 4 254 0.5
2 1 1 NPU 30 4 15 0.5
3 2–3 2 CPU 30 4 280 0.5
4 2–3 2 NPU 30 4 33 0.5
5 4 3 NPU 30 0.89 8–9 0.5
6 5 3 NPU 30 0.89 7 0.5

(1): The frame rate (FPS) is defined by the camera driver configuration. The OV5640 camera used has a maximum
rate of 30 FPS.

Image preprocessing has also been highly improved, reducing the image scaling time
by a factor of 4.5 in the last experiments. This has been achieved with the use of the Vision-
Pack library resources. The main difference is that the first experiments use a OpenCV
function executed by CPU, while the last experiments use an optimized video pipeline with
internal GPU image processing and DMA memory operations. Again, the CPU is freed
and is, therefore, available to attend other tasks.

Finally, the inference time was also improved. The experiments performed with the highly
optimized models (4–5) provided by Au-Zone and the execution using the VAAL library, leads
to a factor of 2 reduction in the inference time compared with the original model (1).

3.2. Video Analytics Edge Computing (VAEC) System Experiments
3.2.1. Experiments with the Pre-Trained YOLOv5s

This study is focused on the person detection; thus, only the class “person” of the
pre-trained YOLOv5s weights was activated. The experiments were conducted by utilizing
some representative videos from the public dataset of UCF-Crime [94] associated with arson
and burglary/space violation activities. The probability percentage threshold associated
with the detected person was selected as 20%.

Table 4 depicts representative consecutive video frames for five selected videos (V1 to
V5) of the UCF-Crime dataset associated with the person detection results (red bounding
boxes and the relevant detection probability percentages superimposed to the video frames).
The quantitative assessment results for the person detection process for videos V1 to V5
are provided in Table 5. The achieved results of the pre-trained YOLOv5s (average values)
were CM = 81.2%, CR = 90.2%, Q = 74.9%, and F1 = 85.3%.

Table 4. Qualitative person detection results per selected video via the pre-trained YOLOv5s.

Dataset Video ID

V1
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V5 85.7 100.0 85.7 92.3 

Average 81.2 90.2 74.9 85.3 

3.2.2. Experiments with the Custom YOLOv5s 
The YOLOv5s is retrained applying a transfer learning scheme [95] utilizing only one 

class (“Person”) and exploiting the available pre-trained YOLOv5s weights. To this end, 
several free available video/image datasets were selected, in which the whole human body 
pose (and not parts of persons or occluded persons) of moving or standing persons is de-
picted and annotated from high-altitude and UAV camera views. The selected datasets 
were (i) OKUTAMA [96], (ii) VisDrone2019 [97], (iii) P-DESTRE [98], (iv) AU-AIR [99], (v) 
IRICRA [100] and (vi) OTCBVS-THERMAL [101]. 

Table 6 depicts sample views from each dataset, the type of the used camera sensor 
(i.e., RGB or thermal), as well as the corresponding number of images and the number of 
the samples of the class “Person”. The total count of the samples indicates an adequate 
training and validation set depicting a variety of scenes captured from several spectral sen-
sors and perspectives, and with variable pixel resolution. Thus, a robust custom deep learn-
ing model is able to be extracted with high generalization properties in videos and images 
from the training set. Each dataset is split into a training set and validation set. The corre-
sponding percentages of the total images of each dataset are 80% for the training set and 
20% for the validation set. In addition, the corresponding annotation files are created both 
for the training and validation set. Concerning the training process: (i) the batch size was 
selected to be equal to 120, (ii) the learning rate was selected to be equal to 0.01, and (iii) a 
GPU NVIDIA GeForce RTX 3090 was utilized. The total number of the training epochs 
was 80, while the total computational time of the training process was 3 d 19 h. 
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3.2.2. Experiments with the Custom YOLOv5s

The YOLOv5s is retrained applying a transfer learning scheme [95] utilizing only one
class (“Person”) and exploiting the available pre-trained YOLOv5s weights. To this end,
several free available video/image datasets were selected, in which the whole human body
pose (and not parts of persons or occluded persons) of moving or standing persons is
depicted and annotated from high-altitude and UAV camera views. The selected datasets
were (i) OKUTAMA [96], (ii) VisDrone2019 [97], (iii) P-DESTRE [98], (iv) AU-AIR [99],
(v) IRICRA [100] and (vi) OTCBVS-THERMAL [101].

Table 6 depicts sample views from each dataset, the type of the used camera sensor
(i.e., RGB or thermal), as well as the corresponding number of images and the number of
the samples of the class “Person”. The total count of the samples indicates an adequate
training and validation set depicting a variety of scenes captured from several spectral
sensors and perspectives, and with variable pixel resolution. Thus, a robust custom deep
learning model is able to be extracted with high generalization properties in videos and
images from the training set. Each dataset is split into a training set and validation set. The
corresponding percentages of the total images of each dataset are 80% for the training set
and 20% for the validation set. In addition, the corresponding annotation files are created
both for the training and validation set. Concerning the training process: (i) the batch
size was selected to be equal to 120, (ii) the learning rate was selected to be equal to 0.01,
and (iii) a GPU NVIDIA GeForce RTX 3090 was utilized. The total number of the training
epochs was 80, while the total computational time of the training process was 3 d 19 h.

Table 6. Views from each selected dataset for the training process.

Dataset Type of
Sensor View Number of Images Number of Samples

of the Class “Person”

OKUTAMA RGB
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Table 6. Cont.

Dataset Type of
Sensor View Number of Images Number of Samples

of the Class “Person”
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In Figure 8, some details of the total dataset are provided. The top left indicates that
the dataset has only one class, i.e., “Person”. Top right shows the shapes of the bounding
boxes, as well as their orientation. The bottom left depicts the location of the center of
each bounding box in the total dataset images, in which darker pixels imply that more
bounding boxes exist in these areas. Finally, bottom right shows the width and height of
the bounding boxes; since the custom model is trained from videos/images captured from
high-altitude and UAV camera views, the bounding boxes of the depicted persons in them
are quite small.
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imply that more bounding boxes in these areas exist. Bottom right shows the width and height of
the bounding boxes.
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The progress of the training process during the 80 epochs is shown in Figures 9–11. The
basic training metrics of the custom model are the following. (i) “Box loss” that represents
how well the algorithm can locate the center of an object and how well the predicted
bounding box covers an object. (ii) “Obj loss” that measures the difference of the predicted
“objectness” with the ground truth “objectness”; “objectness” is essentially a measure of
the probability that an object exists in a proposed region of interest. If the objectivity is
high, this means that the image window is likely to contain an object. (iii) “Cls loss” or
(“Class loss”) that measures how well the algorithm can predict the correct class of a given
object (if class loss is absolute zero, it means the model is trained to detect the objects only
and not classify them). (iv) “Precision” that measures how accurate (percentage) are the
model’s predictions. (v) “Recall” that measures how good the model finds all the positives;
for example, the model can find 69% of the possible positive cases in top-k predictions.
(vi) The mean average precision (mAP).
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In Figure 9, during the first 25 epochs, all metrics converged on a constant value.
What can be derived from the precision and recall graphs is that false positive and false
negative detections did not decrease and oscillated around 81% and 69%, respectively,
after the 25th epoch. Furthermore, both mAPs implied the same conclusion, as well as
that the overall performance did not improve. It is noted that after the 20th epoch, there
was no significant progress to the model’s performance. The training losses decreased
with progressive epochs; however, what matters is the validation losses and most of all
the mAPs.

In Figure 10, in the training losses, class loss was zero since no object classification
was applied. The progress of the training “objectness” loss showed that the model detected
objects from the start of training, reached a peak for the first epochs, and converged at
the 80th epoch. The training box loss progression implies that as more epochs passed,
the model performed well on the training dataset. In the validation losses (Figure 11),
class loss was zero as well. In contrast with the training “objectness” loss, the validation
“objectness” loss fell very quickly during the first few epochs. However, there was no major
improvement during the next epochs. The same applied for the validation box loss.

To evaluate the custom model in real world scenes, additional datasets were utilized
that were not used in the training and validation processes. Such datasets are (i) MINI-
DRONE [102], (ii) CROWD HUMAN [103], (iii) FDST [104] and NWPU [105]. The probabil-
ity percentage threshold associated with the detected person was selected as 50%. Table 7
depicts representative video frames and images of the aforementioned additional dataset
associated with the person detection results (red bounding boxes and the relevant detection
probability percentages superimposed to the video frames and images). The relevant
quantitative assessment results are provided in Table 8. The achieved results (average
values) of the custom YOLOv5s were CM = 85.3%, CR = 96.4%, Q = 82.7%, and F1 = 90.4%.

Additionally, a comparison between the custom YOLOv5s with other studies that
adopt YOLOv5 or other detectors was carried out, focused on in person detection from
high-altitude and UAV camera views (Table 9). According to this comparison, all the
metrics of the custom YOLOv5s are high, indicating its efficiency.
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Table 7. Qualitative person detection results per selected videos/images via the custom YOLOv5s.
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Table 7. Cont.
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Dataset CM (%) CR (%) Q (%) F1

MINI-DRONE 85.3 85.5 74.5 85.4
CROWD
HUMAN 92.3 100.0 92.3 96.0

FDST 84.1 100.0 84.1 91.4
NWPU 79.7 100.0 79.7 88.7
Average 85.3 96.4 82.7 90.4

Table 9. Comparison between the custom YOLOv5s with other studies that adopt YOLOv5 or other
detectors focused in person detection from high-altitude and UAV camera views.

Method Dataset CM (%) CR (%) Q (%) F1

Yolov5 [106] VisDrone2022 [107] 83.7 79.8 69.1 81.7
Yolov5 + SGB [108] OKUTAMA 75.4 67.4 55.3 71.0
SSD + CNN [109] OKUTAMA 28.3 - - -

Improved Yolov5 [110] VisDrone2022 [107] 97.1 84.3 82.2 90.2

custom YOLOv5s

MINI-DRONE
CROWD HUMAN

FDST
NWPU

85.3 96.4 82.7 90.4
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4. Discussion and Conclusions

The objective of this work is to highlight the utility and functionality of the two
proposed different schemes with edge computing capabilities in smart city applications
focused on person detection: (i) the custom AI Embedded Platform based on the I.MX8
PLUS NXP processor, and (ii) the VAEC system that adopts a pre-trained and a custom
YOLOv5s deep learning model.

The experiments on the custom AI Embedded Platform have demonstrated the com-
petence of the device for a person detection use case and the improvements obtained by
the use of NXP specific tools. The improvements obtained are as follows. (i) Inference
reduction through quantization of the network, conversion to .rtm format and deployment
on the NPU. However, the conversion cannot start from TFLite directly as the box decoding
portion of the model, when quantized, cannot be embedded into the DeepViewRT model
due to some missing parameters. When converting from the full SavedModel, the Deep-
View converter is able to retrieve all required parameters to generate a fully quantized
model [111]. The obtained improvements go from 15 ms to 7 ms. (ii) Additionally, the
image scale processing time has been remarkably reduced by a factor of 4.5 from 4 ms to
0.89 ms. The VAAL library manages the vision pipeline through the use of GPU and Direct
Memory Access buffers.

In the case of the VAEC system, the achieved results of the pre-trained YOLOv5s
are considered to be satisfactory and are quite similar to those of [68]. This indicates a
homogeneous and stable performance of the pre-trained YOLOv5s both in indoor and
outdoor environments. The observed FN entries were mainly due to partial/total occlusions
or to a local failure of the YOLOv5s (i.e., persons that were unrecognizable by the algorithm).
Such FN entries led to missed persons and, therefore, to the reduction of the CM rate. On
the other hand, the observed FP entries were mainly due to: (i) artificial objects’ patterns
that were similar with those of persons, and (ii) similar spectral values between objects
in the background scene and the persons. Such FP entries led to the reduction in the
CR rate. Figure 12 shows representative examples of FP and FN entries by applying the
pre-trained YOLOv5s.
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On the other hand, considering the complexity of the background scene, as well as the
person’s size variation and perspective view from high-altitude and UAV camera positions,
the results of the custom YOLOv5s are satisfactory. The observed FP entries were mainly
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due to artificial objects’ patterns that were similar with those of persons. Since the person’s
size in the annotated videos/images used for the training process is quite small, it is quite
possible for the algorithm to fail in such cases, especially in very complex scenes. However,
according to Table 8, a high average CR rate (larger than 95%) was achieved, indicating few
FP entries. On the other hand, the average CM rate was smaller than the average CR rate due
to most observed FN entries. Such FN entries led to missed persons due to: (i) partial/total
occlusions of persons (between them in crowed areas or by other objects); (ii) the human
body pose of the persons was not similar with the one considered in the training process,
e.g., seated persons were not detected since only moving or standing persons were mainly
annotated according to the available datasets; and (iii) similar spectral values between
objects in the background scene and the persons, e.g., in shadowed areas. Figure 13 shows
representative examples of FP and FN entries by applying the custom YOLOv5s.
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Several open-source edge computing frameworks have gained significant attention in
the last years due to their open use, efficiency and flexibility. According to this research,
the EdgeX Foundry was considered as the most suitable edge computing framework for
this study. Thus, the designed and developed Distributed Edge Computing IoT Platform
(DECIoT) was based on the EdgeX Foundry. The DECIoT platform addresses, among
others, the problem of gathering, filtering and aggregating data, allows the interoperability
between devices, interacts with the IoT devices, provides security and system management,
provides alerts and notifications, executes commands, stores data temporarily for local
persistence, transforms/process data and, in the end, exports the data in formats and
structures that meet the needs of other platforms. The approach described in this paper
demonstrates the suitability of edge computing systems for machine vision applications
for safety and security in smart cities. These devices can be widely spread to monitor the
city, detect anomalies or different human behaviors, and automatically generate events that
are evaluated in higher contexts by human operators. This approach was demonstrated
through two different edge computing systems developed within the framework of the
S4AllCities EU funded project. The aim of this work was not to compare both systems but
to focus on different metrics, as highlighted below.

On the one hand, a low-cost edge inspection vision system was developed based on
the i.MX8M and its Neural Co-Processing Unit (NPU). This platform makes use of novel
hardware specific tools from NXP, such as the DeepViewRT model inferencing framework
and the Image Signal Processing (ISP), to reduce the processing time of a person detector
application presented in [93]. The actions taken to optimize the application are as follows.
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(i) Accelerating the deployment of the model and its inference by a factor of 16. This is
achieved by the use of DeepView converted models and execution of those through the
VAAL library. (ii) The VAAL library was also used to reduce the time of resizing an image
by a factor of 4.5. (iii) The entire people detection task was divided into smaller tasks and
processed in individual threads. The combination of hardware specific neuronal network
and image processing tools and the multi-threading approach resulted in a reduction of
the whole processing time, allowing a theoretical rate of 60 FPS or around 15 ms of total
computing time.

On the other hand, a commercial NVIDIA Jetson RTX2 was used to evaluate a pre-
trained and a custom YOLOv5s deep learning model. The achieved results of both the
pre-trained and custom YOLOv5s adopted from the Video Analytics Edge Computing
(VAEC) system are considered to be satisfactory, proving their suitability and efficiency
for real-word applications in smart cities. The average Q and F1 metrics of the custom
YOLOv5s (Q = 82.7% and F1 = 90.4%) are better than the ones of the pre-trained YOLOv5s
(Q = 74.9% and F1 = 85.3%). Additionally, both in the pre-trained and custom YOLOv5s,
the average CR is larger than the CM rate by about 10%. This means that both models are
precise and few FP entries are observed during their utilization. Although the average CM
rate of both models is larger than 80%, several FN entries were observed. The observed
FN and FP entries were observed mainly due to: (i) partial/total occlusions of persons
(between them in crowed areas or by other objects), (ii) local failure of the algorithm,
(iii) artificial objects’ patterns that were similar with those of persons, (iv) similar spectral
values between objects in the background scene and the persons (e.g., in shadowed areas),
and (v) the human body pose of the persons was not similar with the one considered in
the training process (e.g., in the custom model, some seated persons were not detected
since only moving or standing persons were mainly annotated according to the available
datasets). However, the custom YOLOv5s focused on high-altitude views while the pre-
trained YOLOv5s focused on low-altitude views. Thus, it can be considered that they can
be complementary, depending on the use case in a smart city application, e.g., the custom
model can be exploited under a UAV on-board processing, while the pre-trained can be
exploited under terrestrial processing. In any case, both models achieved an effective and
stable performance in indoor and outdoor environments.
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