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Abstract: This paper presents two techniques in the matching and re-identification of multiple aerial
target detections from multiple electro-optical devices: 2-dimensional and 3-dimensional kinematics-
based matching. The main advantage of these methods over traditional image-based methods is that
no prior image-based training is required; instead, relatively simpler graph matching algorithms are
used. The first 2-dimensional method relies solely on the kinematic and geometric projections of the
detected targets onto the images captured by the various cameras. Matching and re-identification
across frames were performed using a series of correlation-based methods. This method is suitable
for all targets with distinct motion observed by the camera. The second 3-dimensional method relies
on the change in the size of detected targets to estimate motion in the focal axis by constructing
an instantaneous direction vector in 3D space that is independent of camera pose. Matching and
re-identification were achieved by directly comparing these vectors across frames under a global
coordinate system. Such a method is suitable for targets in near to medium range where changes in
detection sizes may be observed. While no overlapping field of view requirements were explicitly
imposed, it is necessary for the aerial target to be detected in both cameras before matching can be
carried out. Preliminary flight tests were conducted using 2–3 drones at varying ranges, and the
effectiveness of these techniques was tested and compared. Using these proposed techniques, an
MOTA score of more than 80% was achieved.

Keywords: kinematics-based matching; multi-camera multi-target tracking (MCMTT); target
re-identification; graph matching; drone detection and tracking; instantaneous velocity vector

1. Introduction

The detection of small objects through an electro-optical device is useful in augmenting
manual surveillance techniques. The human eye is impervious to small and distant objects,
which calls for the use of high-resolution cameras spread out across a wide area to detect
such objects. With a network of cameras spanning a large surveillance space, it is important
for cameras to identify common targets as they pass through each frame in order to maintain
information about the objects from previous states. However, since each camera is limited
to its own field of vision, matching algorithms must be employed to estimate the likelihood
that two observed targets are the same physical object.

This paper formulates an inexact graph matching problem with the goal of maximizing
the likelihood across the set of all possible pairwise matches, conditional on the positional
and velocity data of all objects from the camera frames. Specifically, we aimed to find:

argmin
I

∑
i∈SA

∑
j∈SB

Iij × l(i, j|Xij, Vij) (1)
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where I is a vector with elements equal to one if i and j are selected for matching and l is
the likelihood or probability that the match is correct, given the positional and velocity data
X and V.

Here, two distinct methods—two-dimensional and three-dimensional matching—are
proposed. Both methods were applied to a specific case of using multiple electro-optical
devices (cameras) to accurately track, locate, and re-identify the aerial targets entering the
observation area, as shown in Figures 1 and 2.

Figure 1. Schematic diagram of multiple cameras observing multiple targets for detection, tracking,
and localization (2 cameras and 2 drones are shown). The multi-camera re-identification algorithm’s
objective is to match the aerial targets that appear in different observing cameras and label them with
the same IDs.

Figure 2. Example of matching two aerial targets that appear in 2 different observing cameras and
labeling them with the same IDs of ID2 and ID3. Their trajectories are also shown, of which the blue
color is the oldest and the red color is the latest.

2. Literature Review

The Multi-Camera Multi-Target (MCMT) problem has been of significant interest in
recent years, with prominent literature established by Ristani et al. [1,2]. One of the chal-
lenges in the MCMT problem involves target identification and re-identification, which is
defined as the ability of an electro-optical device to detect an object, track its physical move-
ment in a given region, and assign these tracks across cameras as the same target. Several
applications in target re-identification include human motion analysis, robot navigation,
event detection, anomaly detection, video conferencing, traffic analysis, and security. How-
ever, there remains a limited literature in the sub-domain of MCMT for aerial objects and
drones. Moreover, existing research primarily focuses on on appearance- and image-based
visual detection methods. Some examples include [3–9].

In 2011, Yang et al. [10] provided an in-depth study on the state-of-the-art progress of
visual tracking methods. They explained the difficulties of visual tracking due to abrupt
object trajectories, appearance pattern changes, non-rigid object structures, occlusions, and
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camera motion. Subsequently, Kulchandani [11] provided another review on moving object
detection in 2015. Although both papers were methodologically detailed, there were no
discussions on object matching or identification across camera platforms. Recently, Wang
et al. (2017) [12] and Zhang et al. (2019) [13] presented refined methodologies to track and
localize multiple targets from a single aerial camera mounted on a drone. Both separately
provided comprehensive methods to correct visual constraints and for the motion of the
viewing platform. However, their work was still based on a single camera and did not
address target assignment across multiple cameras. Likewise, in 2020, Chapel and Boumans
[14] provided a comprehensive paper on moving object detection, but with only a single
moving camera and without extension to multiple cameras.

Prior to target re-identification, any relevant detection method may be used to generate
targets. Specifically, motion-based target detection was adopted, using blob detection with
target tracking through Kalman Filter-Discriminative Correlation Filter (KF-DCF) state-
estimation, as delineated in Srigrarom et al. (2021) [15].

Advantages of Kinematics-Based Techniques

This paper proposes and discusses in-depth the kinematics and motion-based tech-
niques in performing target matching and re-identification. While there are several effective
image-based target re-identification techniques [2,16,17], the major advantages of using
motion-based over image-based techniques are:

1. There is no need to carry out image data training for target recognition in motion-
based techniques;

2. There is no limitation to the camera pose as the algorithms are pose-independent;
3. These techniques are device invariant, with the possibility to integrate cameras oper-

ating at different frequency spectrums (e.g., normal vs. infrared cameras);
4. There is no ambiguity in repeated or similar targets, as long as the targets do not

overlap or fuse together;
5. As long as the targets’ motions are traceable, re-identification can be performed. This

creates an allowance for a certain level of noise in the obtained data (e.g., due to
blurring, clutter, overlapping objects, shade, or occlusion).

3. Target Detection and Tracking

Before re-identification, a sufficiently robust detection method must be adopted. The
aerial targets are captured in the monitored scene from multiple cameras. Image processing
techniques are applied to remove background noise, by distinguishing between foreground
and background sections. Morphological operations such as dilation and erosion are
applied to remove noise and enhance signals. Next, thresholding and binarization of the
frames are carried out to obtained masked frames. Finally, blob detection techniques are
used to detect the targets.

The detected targets are further tracked by the combination of the Extended Kalman
Filter (EKF) and Discriminative Correlation Filter (DCF) state estimation techniques. The
EKF is used to initialize the detection, whereas the DCF is used for subsequent continuous
tracking. The detections used for this paper were generated by a Discriminative Correlation
Filter with Channel and Spatial Reliability (DCF-CSR), which is a novel approach to DCF
tracking proposed by Lukežič et al. (2018) [18]. The detailed studies and selections were
presented in a previous study (Seah et al., 2021) [19].

The Hungarian/Munkres algorithm is used to match detections to tracks. The match-
ing algorithm is based on a two-dimensional cost matrix of tracks and detections, computed
by comparing each detection’s Euclidean distance with the target state predictions from the
DCF and KF state-estimation filters, as presented in Srigrarom et al., 2021 [15].

After the tracks are established in a multiple camera setup, it is possible to calculate the 3D
position of each target by means of triangulation, as described in Srigrarom, et al., 2020 [20].
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4. Two-Dimensional-Kinematics-Based Matching

This section proposes target re-identification using a 2-dimensional-kinematics-based
matching method, based on several correlation forms of the targets’ motions extracted from
the camera images.

Electro-optical devices such as cameras capture IR3 objects as IR2 projections. Due to
this loss of dimensionality and the lack of positional and rotational information about the
cameras, points of singularity may occur when trying to infer three-dimensional kinematic
characteristics from two-dimensional information.

However, near-parallel optical cameras can be used to establish a matching algorithm
between targets across frames, by relying on the geometric similarity between projected
appearances to compute a confidence score between each pair of identified targets. To max-
imize the likelihood of target matches, the confidence scores rely on a total of three distinct
geometric methods, which utilize both the IR2 projected displacements and velocities of the
identified targets.

4.1. Cross-Correlation of Normalized Velocity Vectors

While the projected velocity of the same target in two different cameras positioned at
two different orientations will differ, it is likely that two cameras of near-parallel orientation
will receive similar signals from the same target. Therefore, it is expected that the time
series of velocity magnitudes will be strongly correlated across near-parallel projections of
the same target.

For each target with a minimum history of N frames, we estimated the velocity of
each target by computing the apparent change in position between consecutive frames.
This vector of N velocities was then normalized to a mean zero and standard deviation one,
and a discrete signals cross-correlation operation was performed, as in Equation (2).

S1(i, j) = ∑
m

Vi[m]Vj[m + n] (2)

4.2. Relative Position Matching

The relative position of identified targets in an IR2 projection space is likely to be
similar with minor aberration from the relative tilt of each camera. Hence, there is a high
likelihood of a positive match if close neighbors of one target are geometrically similar to
the close neighbors of another target in a different camera.

For each target, the relative Cartesian coordinates of each identified neighbor within a
pre-defined radius d are calculated with respect to the target of interest. Then, a nearest-
neighbors approach is used to pair each neighbor with its geometrically closest estimate.
The resultant distance is compounded, and this total distance error is used as a loss metric
with an inverse correspondence with the likelihood of matching.

k
S2(i, j)

= ∑
a∈SA\i

min
b∈SB\j

|Xa − Xb| (3)

This method ultimately relies on the veracity of the other neighboring targets, which
may not be perfectly or completely identified, and such must be used with the other two
complementary methods for robust performance.

4.3. Directional Path History Matching

Lastly, we expected the projected turning angles of the same target in near-parallel
cameras to be identical. Therefore, for each target with a minimum history of N frames, we
constructed the perceived turning angle of each target as captured by each camera.

Between two sets of consecutive frame differences, the percentage change in heading
with respect to one revolution is calculated and stored in an N-length vector and is adjusted
such that the first velocity vector is pointing in a common direction across all cameras.
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A likelihood score is then computed using the average deviation of heading across all
N observations.

S3(i, j) = 1− 1
N

N

∑
t=1
|θi,t − θj,t| (4)

4.4. Aggregate Likelihood Score

Based on the three likelihood scores created, we selected an appropriate set of weights
w1, w2, w3 to compute the overall likelihood score, l(i, j).

l(i, j) =
3

∑
k=1

wkSk (5)

To solve the inexact graph matching problem, we therefore set up a complete bipartite
graph with nodes representing the identified targets within each camera and weighted
edges representing the likelihood l of a match between two targets i and j.

L =


l(1, 1) l(1, 2) l(1, 3) ... l(1, n)
l(2, 1) l(2, 2) l(2, 3) ... l(2, n)
l(3, 1) l(3, 2) l(3, 3) ... l(3, n)

... ... ... ... ...
l(m, 1) l(m, 2) l(m, 3) ... l(m, n)

 (6)

The bipartite graph can be conceived of in the form of an adjacency matrix with
individual elements of row i and column j corresponding to l(i, j). A recursive method
such as the Hungarian or Munkres algorithm can be used to recursively identify global
maxima subject to the criteria of l(i, j) > l0 to prevent matches that are unlikely. The
resultant set of matches form an estimate of the solution of the inexact graph matching
problem.

4.5. Assumptions and Constraints

The effectiveness of this technique relies on the following assumptions and
geometric constraints:

• The aerial targets must be observed and tracked by both cameras. The angle that
subtends both focal axes is also restricted such that the small angle approximation is
valid (i.e., near-parallel setup);

• The proposed re-identification techniques are based on the target motion and position.
The data are also normalized to a range between 1 and −1. Therefore, the intrinsic
and extrinsic parameters of the camera are not required;

• The cameras must be able to track the targets continuously. Although this method
does not require image-based pattern recognition, the targets must be reasonably
visible and not diminished by sub-pixel disappearances.

These assumption and constraints also apply to the 3D-kinematics-based matching,
which is described in Section 5.

4.6. Field Tests

Two field tests were conducted to evaluate the performance of the 2D-kinematics-
based matching algorithm. The setting and conditions were varied to ensure that the
algorithm was location agnostic.

4.6.1. First Field Test, Two Drones

Two small drones were manually flown in an open field independent of each other. The
test flight was about 2 min long and may be reviewed at https://youtu.be/xiTd7On33Ds
(accessed on 26 May 2021). Two cameras were set at a resolution of 1280 × 720 pixels,

https://youtu.be/xiTd7On33Ds
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with a target frame rate of 30 frames per second. The cameras were connected to a central
processing unit for to be fed into the algorithm.

Figure 3 shows the still images of the re-identification process. In the first set of
images in Figure 3, both drones were initially flown into the field of view of both cameras.
Subsequent images show successful re-identification, with an identification assignment
(ID0) and (ID1 or ID2). It should be noted that one target may have multiple identification
numbers across time due to intermittent detection by both cameras after a specified time
period (more than 10 frames), as these targets are re-assigned as ID2 upon re-detection and
re-identification.

Figure 3. Still images from two ground cameras, with detected aerial targets (drones)
successfully matched.

Overall, the re-identification algorithm achieved an Multi Object Tracking Accuracy
(MOTA) of 90% averaged over each frame obtained in this field test, illustrating the effec-
tiveness of the matching and re-identification capabilities across two cameras through the
proposed 2D-kinematics-based matching algorithm. Further analysis of this result largely
attributed the error to misdetections, which we can mitigate by using improved video
resolutions. However, this requires hardware improvements to process larger image sizes
to maintain a fixed frame rate.

4.6.2. Second Field Test, Three Drones

A second test was performed using a higher number of aerial targets and with the
same cameras and computer hardware as the first field test. The drones were similarly
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flown independently of one another in an open field. The test flight was approximately
2 min and may be reviewed at https://youtu.be/eAe-W3juIXw (accessed on 26 May 2021).

Likewise, Figure 4 demonstrates the successful re-identification with identification
(ID0), (ID1), and (ID2). Overall, this algorithm achieved an MOTA of 80% for this field test.

Figure 4. Still images from two ground cameras, with detected aerial targets (drones)
successfully matched.

4.7. Discussion

The proposed multi-layer, two-dimensional kinematics-based matching algorithm
ensures that mismatching between targets across two cameras can be minimized. Each layer
is able to complement the strengths and weaknesses of other layers. For example, while
drone formation flight scenarios might pose problems with only velocity- and turning-
angle-based analysis (since all targets have a similar velocity vector and turning angles), the
inclusion of relative positioning in the algorithm will assist in ensuring that each individual
drone is matched to its correct counterpart across cameras.

The presence of unique noise tracks within frames may also cause inaccurate geometric
shapes to be formed within each frame. While this may cause the second layer to be less
accurate, the presence of velocity correlation and comparisons of the history of turning
angles will remove noisy tracks, since these tracks by definition are stochastic in nature
and do not converge to a predictable pattern. It is therefore important to include as many
features as possible to identify corresponding tracks between both frames.

It is important to note however that the parameters set for this instance of the im-
plementation were tuned or experimentally derived from test data. The efficiency of a
successful match between two drone tracks is somewhat arbitrarily defined by the number
of frames taken to achieve a successful match, and it is worthwhile to note that the algo-
rithm is yet to be optimized such that the matching efficiency is maximized. A numerical

https://youtu.be/eAe-W3juIXw
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analysis either by hand or by means of a learned model may be implemented in the future
to achieve a higher matching efficiency with a sufficiently low false positive/negative rate.

Nevertheless, these results show that the system of multiple cameras can be a good
low-cost position estimator for the tracking of drones in monitored 3D spaces. At present,
the re-identification between the two cameras for aerial targets can achieve a high MOTA
of >80% by frame count, as shown in the two flight tests. Furthermore, the current model
is capable of re-identification of a lost track if the alternate camera still has a signature of
the track.

However, when the drone track leaves both cameras’ frames completely and is out of
the monitored space, a new track identification number is assigned to it if the same aerial
track re-enters. The model is at present still unable to re-identify the same drone if it is lost
from both cameras due to its trajectory-based matching system, which is independent of
the target image.

5. Three-Dimensional-Kinematics-Based Matching

This section proposes target re-identification using a 3-dimensional-kinematics-based
matching method. It involves a direct matching of targets based on a reconstructed instan-
taneous direction vector, which is in contrast to the previous method that uses multiple
correlations instead of direct matching.

The central idea involves the reconstruction of a three-dimensional orientation vector
in the global frame using changes in the pixel coordinate and target size to be used for
matching across independently oriented cameras. As the information available from an IR2

projection is insufficient to reconstruct a point in IR3, we can estimate the third dimension
of depth by using changes in the size of the target in the 2D projection. When the object is
sufficiently near, the classical lens equation may be applied.

1
d
+

1
i
=

1
f

(7)

where d is the physical object distance in the third dimension (depth) from the lens, i is the
image distance in the third dimension from the lens, and f is the focal length of the lens.
The linear magnification is:

M =
−i
d

=
h
H

(8)

where M is the magnification. h is the image size, and H is the object size, which is position
invariant. If the same camera is used, M and f are fixed. If the object moves across time,
the difference in the image size, i.e., h1, h2, can be measured to derive the relationship of
object distances, d1, d2:

d1 − d2 = f H{ 1
h1
− 1

h2
} (9)

With d1, d2, the objects’ velocity can be estimated in the third dimension (depth).
The area ratio r, object displacement ∆x and ∆y, is introduced as follows:

r =

√
At

At−k
(10)

where k is the number of frames delayed. To attain noticeable differences in motion
to compute the area ratio, r, frames of at least 0.5 seconds apart are compared. This
corresponds to a comparison of the images at frames t and (t − 15) for a 30 FPS video with
k = 15. The use of delayed frames over consecutive frames assists in minimizing noise
arising due to detection capabilities.

We further show that the object displacement ∆x and ∆y and the subsequent velocity
direction vector are independent of depth d. Let the plane S be normal to the camera lens
and containing the velocity vector v. The field of view angle is FOVx. The total number of
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pixels in the x and y directions is Px and Py, respectively. Let r be the area ratio such that
if the initial depth is d, the corresponding final depth is d/r. The corresponding object’s
movement in the z direction (depth) is:

d/r− d = d(1/r− 1) (11)

d1 − d2 = f H{ 1
h1
− 1

h2
} (12)

A plan view of the plane S is simulated in Figures 5 and 6.

Figure 5. Three-dimensional view of the camera setup.

Figure 6. Two-dimensional schematic diagram.

For the objects in the camera frame, we can measure:

1. Pixel distance (O′x −Ox, O′y −Oy), as shown in Figure 7;
2. Blob area ratio (r) between frame;
3. Field of view FOV in the x and y directions.

Figure 7. Object in the camera frame.

We observe the centroid of the target, O = (Ox, Oy) and O′ = (O′x, O′y).

∆x =
(O′x −Ox)

Px
× 2d tan

(
FOVx

2

)
(13)
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∆x, depth =
d
(

1
r − 1

)
tan θx

(14)

∆x, total =
(O′x −Ox)

Px
× 2d tan

(
FOVx

2

)
+

d
(

1
r − 1

)
tan θx

(15)

∆z = d
(

1
r
− 1
)

(16)

where θx = π
2 − {O′x −

Px
2 }

FOVx
Px

. We define the displacement in the y-axis similarly so that:

∆y, total =

(
O′y −Oy

)
Py

× 2d tan
(

FOVy

2

)
+

d
(

1
r − 1

)
tan θy

(17)

where: θx = π
2 − {O′x −

Px
2 }

FOVx
Px

Then, from (7)–(9), we have:

 ∆x
∆y
∆z

 = d


(O′x−Ox)

Px
× 2 tan

(
FOVx

2

)
+

( 1
r−1)

tan θx

(O′y−Oy)
Py

× 2 tan
(

FOVy
2

)
+

( 1
r−1)

tan θy(
1
r − 1

)
 (18)

which proves that the instantaneous velocity vector is independent of depth d.
It is also observed that with the addition of focal length f and the object size H, through (3)

and (8) such that ∆z = d1 − d2, the absolute depth d may be separately calculated.
The ∆x, ∆y, and ∆z calculated may be used for matching across cameras if the poses

of these cameras are known, such that a series of coordinate transformations using Euler
angles and rotation matrices may be performed from the local frame to the global frame
of reference. The vector was normalized to one for comparison and matching among
observing cameras. As the calculated vector from each camera is independent of pose, a
direct matching using correlation can be performed. V̂x

V̂y
V̂z

 =

 Vx
Vy
Vz

/
√

V2
x + V2

y + V2
z (19)

5.1. Field Tests

Similar to the previous method, field tests were conducted using multiple drones
flown manually and independently in an open field. The test results may be reviewed at
https://youtu.be/JoinccrL7b8 (accessed on 14 November 2021). Still images of the test are
shown in Figure 8. An overall MOTA of 77% was obtained for this test.

https://youtu.be/JoinccrL7b8


J. Imaging 2022, 8, 26 11 of 15

Figure 8. Still images from the two ground cameras, showing a snapshot of the drones flying in an
open field.

Figure 9 shows a plot of the direction vectors for each target over time. In this sample
result, ID 1977 from the left camera matches with ID 2355 from the right camera and is
re-identified successfully as (ID1). Likewise, ID 3129 from the left camera matches with
ID 2451 from the right camera. The algorithm is also able to match both of them (ID 3129
and ID 2451) and re-identify them as (ID0), as shown in Figure 10.

Figure 9. Loci of the velocity of the tracked drones from both the left and right cameras. ID 1977 from
the left camera matches with ID 2355 from the right camera and is assigned (ID1). Likewise, ID 3129
from the left camera matches with ID 2451 from the right camera and is assigned (ID0).

To have a better idea of the measurement errors in the matching process, the interpo-
lated cosine similarities of the matched velocity vectors from Figure 9 are plotted. The more
identical two vectors are, the higher their cosine similarity score (perfectly identical vectors
have a score of one) [21]. As the individual points of the matched tracks in Figure 9 do
not always correspond to the same timestamps, a point-by-point comparison of the cosine
similarities was not possible. Instead, interpolation of the matched tracks was carried out
and used to approximate the similarities of the matched tracks over time. The results are
shown in Figure 11.
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Figure 10. Images from the two ground cameras, showing a snapshot of the drones detected, tracked,
and labeled with IDs with their 3D positions (x, y, z). The connecting lines show positive matching
between identified targets.

Figure 11. Interpolated cosine similarity scores of matched velocity vectors with IDs 1977 and 2355
(left) and IDs 3129 and 2451 (right). A higher cosine similarity score means that the vectors are more
identical to each other.

We can observe that the average cosine similarities of both pairs of matched tracks are
high, but do not converge to one. This shows that the 3D-kinematics-based method does
not necessarily require the generated velocity vectors to be perfectly identical to each other
for matching to take place and, instead, can operate on an inexact matching principle.

An annotated recording of the test with comparative matching scores may be viewed
at https://youtu.be/QoZwQgUjZxU (accessed on 15 November 2021) and is also shown
in Figure 12. The first and second scores correspond to the 2D- and 3D-kinematics-based
methods, respectively.

5.2. Discussion

The key advantages for the three-dimensional-kinematics-based matching are as
follows:

1. This method is able to estimate a three-dimensional motion vector from
two-dimensional information;

2. As the 3D velocity vector is created and tracked, any fluctuations or noise in 1D or 2D
are significantly minimized;

3. This technique is suitable for objects in the near to medium range where the object
size is noticeable. This can also be improved by increasing the number of pixels, such
as with the use of Ultra-High-Density (UHD) cameras.

https://youtu.be/QoZwQgUjZxU
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Figure 12. Images from the two ground cameras, showing a snapshot of the drones detected, tracked,
and labeled with IDs with their 3D positions (x,y,z). The connecting lines show positive matching
between identified targets. The first and second scores correspond to the 2D- and 3D-kinematics-based
methods respectively.

The flight test results demonstrated that both re-identification techniques are suffi-
ciently robust as long as continuous detection and tracking of the targets can be maintained.
The 2D technique appears to provide better matching scores for targets that are far away as
compared to the 3D technique. However, when changes in target sizes are significant, the
3D-kinematics-based method provides better matching scores. This implies that the targets
must sufficiently near to the camera lens for the 3D technique to be effective, whereas
the 2D technique can be applied to variable ranges as long as the targets’ motions can be
observed. A combination of both 2D and 3D techniques will ensure effective matching and
re-identification by integrating the strengths of both methods.

While there are still interruptions in re-identification, these can be attributed to the
limitations of the detection algorithms rather than the re-identification techniques. Exam-
ples of interruptions include occlusion when targets cross behind obstacles, or overlapping
when two targets cross paths. In the flight test scenarios where the aerial targets are flown
in a clear sky with minimal occlusion or overlap, continuous detection and tracking of the
targets can be maintained, which allows the re-identification techniques to work effectively.

6. Conclusions and Future Work

This paper presents the re-identification of multiple aerial tracked targets from mul-
tiple cameras through two proposed kinematics-based methods: two-dimensional and
three-dimensional kinematics-based matching. The main advantages of these methods over
traditional image-based methods are: (1) no prior image recognition training is required;
instead, graph matching algorithms, which are relatively simple to deploy, are used; (2) one
can use various types of cameras for more operational flexibility; (3) the targets can be
similar and/or repeated; (4) there is an allowance for errors such as blurred, overlapped,
occluded, or shaded conditions, as long as the moving targets can be tracked.

The 2D-kinematics-based technique is based on multiple-layer correlations of targets’
motions and can be used for multi-range (near to far) scenarios as long as the targets can be
detected and tracked. The 3D-kinematics-based technique uses the estimation of the depth
motion and the construction of the 3D instantaneous velocity vector for direct matching.
The 3D technique provides better matching scores when the targets are near to medium
range where changes in target sizes are observable. When used together, both techniques
provide robust matching of targets from near to far range by complementing the strengths
and weaknesses of each other.

Initial proof-of-concept outdoor field tests were conducted and showed that both
techniques were able to re-identify all drones correctly as long as the targets are detected
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and tracked. On average, an MOTA score of approximately 80% across cameras for both
techniques was achieved. Any interruptions or mismatches appeared to be issues arising
from the limitations of the detection algorithms.

The next step of our research will be to expand the algorithm to account for more
diverse scenarios, such as having to detect targets in the presence of increased noise
and occlusion (e.g., targets flying along the treeline instead of in the sky) or increasing
the quantity of tracked targets while taking into account limited processing time and
computing resources.
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