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Abstract: Model understanding is critical in many domains, particularly those involved in high-
stakes decisions, e.g., medicine, criminal justice, and autonomous driving. Explainable AI (XAI)
methods are essential for working with black-box models such as convolutional neural networks.
This paper evaluates the traffic sign classifier of the Deep Neural Network (DNN) from the Pro-
grammable Systems for Intelligence in Automobiles (PRYSTINE) project for explainability. The results
of explanations were further used for the CNN PRYSTINE classifier vague kernels’ compression.
Then, the precision of the classifier was evaluated in different pruning scenarios. The proposed
classifier performance methodology was realised by creating an original traffic sign and traffic light
classification and explanation code. First, the status of the kernels of the network was evaluated for
explainability. For this task, the post-hoc, local, meaningful perturbation-based forward explainable
method was integrated into the model to evaluate each kernel status of the network. This method
enabled distinguishing high- and low-impact kernels in the CNN. Second, the vague kernels of the
classifier of the last layer before the fully connected layer were excluded by withdrawing them from
the network. Third, the network’s precision was evaluated in different kernel compression levels. It is
shown that by using the XAI approach for network kernel compression, the pruning of 5% of kernels
leads to a 2% loss in traffic sign and traffic light classification precision. The proposed methodology
is crucial where execution time and processing capacity prevail.

Keywords: explainable AI; convolutional neural network; network compression

1. Introduction

Road traffic today is considered a complex and dynamic environment, where safety
depends on several interrelated factors. When these factors are not taken into account,
interactions occur that lead to road accidents [1]. The main reasons that lead to accidents are
the characteristics of the drivers, the vehicle itself, and the road conditions [2]. One of the
modern concepts related to road infrastructure is "self-explaining roads" [3]. The concept
aims to provide the driver or the visual system of a self-driving car with information about
the upcoming situation in a comprehensible, faithful, and trustworthy manner by using
various measures related to traffic signs and road markings. Consideration of features is an
integral part of the road control infrastructure and provides the driver with the necessary
information, warns of road regulations, and ensures the safety of pedestrians.

For autonomous driving, accurate and robust perception of traffic signs are essential
for motion planning and discrimination capability. However, traffic sign detection and
classification are still a challenge due to the following reasons: (1) traffic signs are easily
confused with other objects in road scenes; (2) weather conditions, time of day, refection,
and occlusions reduce classification performance; (3) size, shape, and colour of traffic signs;
(4) slight inter-class variance due to similar appearance of signs [4].
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As a result, traffic sign detection and classification are extensively studied in the
computer vision community. Recently, the availability of large annotated datasets [5,6] and
the improvement of computational performance with powerful GPU cards [7] have shown
good results using convolution neural networks (CNNs) [8,9]. In order to classify all specific
classes of traffic signs and lights, a classifier based on a CNN architecture from the Horizon
2020 ECSEL-JU project “Programmable Systems for Intelligence in Automobiles”(CNN
PRYSTINE) was used for our experiment [10]. Despite the success of this approach, the
existing CNN RRYSTINE classifier is still inadequate because it provides classification
output that does not tell us what information in the input causes it to make its decisions. It
is well known that CNNs consist of a highly complex internal structure and are therefore
very difficult to explain due to their black-box nature. It is challenging to understand what
exactly is going on in each layer. It is also known that during training, each layer gradually
extracts higher-level features of the image until the final layer essentially predicts what the
image shows. We have focused on using explainable AI (XAI) to identify novel higher-level
patterns and detections and develop more precise classification strategies to overcome
these limitations. In addition, the explanations ideally allow us to understand the model’s
reasoning behaviour and why the model predicted explicit decisions, such as classifying
the traffic sign in a specific manner or associating certain features with CNN performance.

Despite these advantages, CNN models require a significant amount of resources,
such as processing capacity, energy, bandwidth, and storage capacity. Therefore, various
CNN compression methods have been proposed in the existing literature to address these
shortcomings, such as network pruning, sparse representation, bits precision, knowledge
distillation, and miscellaneous [11]. The key reason to address this problem is to find a
suitable method for CNN compression using the XAI approach.

In this study, we investigate how model-level explainability can be used for network
pruning and how pruning affects prediction precision. We show that the perturbation-
based methods can be used to explain CNN decisions and can be used as a perspective tool
to compress CNNs with a minimal trade-off in precision.

The following section discusses the perturbation-based explanation methods that are
appropriate for evaluating network parameters. Section 3 gives an overview of the CNN
PRYSTINE network architecture used for traffic sign and traffic light classification. Section 4
describes the mathematical background for the proposed methodology. Section 5 shows the
results of the experiment. Finally, Section 6 presents the discussion and future directions as
well as conclusions.

2. Perturbation-Based Methods

For black-box models like CNNs, the prediction process for a given model must
be transparent, especially for decisions where the stakes are high, and explain why and
how such outcomes occur. Current studies on algorithmic explanations for predictive
models can be divided into three main approaches: attribution, distillation, and intrinsic.
Attribution focuses on measuring attribution or feature relevance scores. The distillation is
concerned with reducing the complexity of models by transforming them into simple, easily
understandable surrogate models. Finally, the intrinsic approach integrates the inner states
of the deep networks or modular algorithms to justify the model. First, the attribution
approach can be divided into three subcategories: perturbation-based, functional, and
structural explanations. The fundamental methods of the first subcategory are analysed
here, and the most appropriate one was selected to support our experimental methodology.

The idea of perturbation-based explanations is to compute the attribution of features
in a given model by simulating a lack of knowledge about the value of the feature or
features [12]. In other words, perturbation methods attempt to evaluate attributions or
feature relevance by testing the model’s response to feature removal, masking or altering
and measuring the corresponding feature relevance values. In computer vision, attributions
are visualized as heatmaps showing the influence on the features of the target output for
each input feature. Perturbation-based explanations are often used with arbitrary prediction
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models and support individual predictions (local explanation). In image processing, these
methods express an explanation by manipulating the input image and/or activations of a
CNN [13]. If a perturbation highlights image regions, it has an easily explainable meaning,
i.e., manipulating this region in the current input will significantly affect the prediction
of the model. They have the advantage of a straightforward explanation, as they directly
measure the marginal effect of some input features on output [14]. In this case, perturbation-
based methods only require the propagation of one forward and/or backward pass through
the CNN to generate a visualization of a heatmap. Understanding the visual perception
aspects captured in a deep model has become particularly important for explaining deep
networks. In our experiment, we used the saliency technique to highlight the marginal
effect of a feature on the output with respect to the same input where that feature was
removed to understand CNN inference.

The Occlusion Sensitivity method of Zeiler and Fergus [15] is based on dividing the
input into segments called patches, masking them, and measuring the input impact of each
defined patch on the classification results. For example, an image can be split into a grid of
regular non-overlapping patches, and a mask can be slid over the image to cover the patches.
The authors occluded different segments of an input image with a grey patch and visualised
the change in the activations of the later layers. The output prediction performance drops
significantly when the patch covers the critical area. A similar approach was proposed
by Zhou et al. [16], where small grey squares were used to occlude image patches (in a
dense grid) to explain scene classification. The visualisation shows the saliency regions
of an image for its classification label. The Meaningful Perturbation method proposed by
Fong and Vedaldi [17] uses the output value of the DNN, which changes when the input
is penalised by deleting certain regions. Attribution aims to identify the regions of an
image that are used to produce the output value. The idea is not to iterate over all possible
perturbations but to search locally for the best perturbation mask, i.e., the smallest deletion
mask. The authors considered three types of perturbations for creating a perturbation
mask: replacing the input region with a constant value, injecting noise, or blurring the
image. Extremal perturbations are regions of an input image that maximally affect the
activation of a particular neuron in a DNN. The Extremal Perturbations method [18]
optimises the perturbations by choosing smooth perturbations masks to maximise the
confidence score of the classifier. Randomised Input Sampling for Explanation (RISE) [19]
explains DNN black-box models by estimating pixel saliency importance (importance
map) of input image regions. The importance of pixels is estimated by blurring them in
random combinations, reducing their intensities to zero, and weighting their changes in the
output by occlusion patterns. The authors [20] developed a fast pixel importance detection
(saliency detection) method, the Universal Adversarial Perturbations method, for image
classifiers by manipulating the results of the classifiers by masking salient parts of the
input image.

Of the above, the perturbation-based methods attempt to evaluate the importance of
input segments, regions or pixels on the classifier’s decisions and determine how the deep
network reacts to changes in the input. For example, if a certain part of the input is masked,
how does it affect classification prediction. Thus, attribution evaluates the strength of the
connection between the pixel or group of pixels and the specific network output. From
this point, we can assume that certain regions of an image are not involved in the decision
making of the classifier. This leads to an assumption that there might be parameters in the
network that, when excluded from the deep network, keep the predictive precision of the
classifier at the same level.

In our experiment, we used the meaningful perturbation method to black out the
region of a traffic sign in the feature map of the last fourth layer before a fully connected
layer of a classification model of CNN PRYSTINE to distinguish the high- and low-impact
influence parts of the CNN. Using the perturbation, we could have explained the influ-
ence of the fourth layer kernels on the classifier prediction. Thus, this approach allowed
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us to identify the vague kernels not involved in traffic sign and light classification and
compressed them.

3. Implementation of Traffic Sign and Traffic Light Classifier

In this study, the authors used a convolutional network architecture developed specifi-
cally for the PRYSTINE project, see Figure 1. The project aims to realize Fail-operational
Urban Surround network perception (FUSION) based on robust Radar and LiDAR sensors
fusion and control functions to enable safe automated driving in urban and rural environ-
ments. The architecture of CNN PRYSTINE consists of five layers and is trained and tested
with combined traffic sign and traffic light datasets [21].
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Figure 1. The architecture of the used 5-layer CNN road sign and light classification from the
PRYSTINE project.

Each layer of the network consists of convolution filtering, batch normalization, sig-
moid activation, and downsampling by max pooling. The last, fifth layer, consists of a
linear classifier with a softmax that produces the output of the network with 45 classes. The
detailed definition and description with a code of CNN PRISTYNE can be found online at
GitLab [22].

The network was trained and tested using a multi-class, single-image German Traffic
Sign Recognition Benchmark (GTSRB) database [23]. The GTSRB contains more than 50,000
single images of traffic signs from 43 classes. The traffic signs were captured at different
sizes and rotations, and with different light conditions, resulting in a natural distribution
of road traffic signs. Next, the two classes of 2239 images from the LISA Traffic Light
Dataset [24] were added to the GTSRB database (adding red/yellow light and green light
classes). Finally, the CNN PRYSTINE model based on both the GTSRB and LISA datasets
was trained.

Classification with CNN from the PRYSTINE project yielded a precision of 94.73% for
traffic sign classification (tested only on the GTSRB test data) and 96.55% for traffic light
classification (tested only on LISA test data). The execution time for one image in both
classification categories was ~0.0187 s on Intel Xeon CPU. To test the explainability, a subset
of 1000 images was randomly selected from the GTSRB test set and is available along with
the developed code to test our experimental methodology.

4. CNN Layer Perturbation-Based Forward

The standard perturbation approach aims at finding out which regions of an input
image x0 are used by the black box CNN f (x) to produce the output value f (x0). Derived
from the meaningful perturbation method, given an input traffic sign image x0 our goal
was to define an explanation for traffic sign and traffic light classification in the output of



J. Imaging 2022, 8, 30 5 of 9

the last convolution layer (fourth layer) before max-pooling by masking the output region
R of the feature map with a constant black value; see Figure 2.
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Formally, let m : Λ→ [0.1] be a perturbation mask, associating each pixel u ∈ Λ
with a scalar value m(u). Then the perturbation operator for a constant value is defined
as [17]:

[Φ(x0; m)](u) = m(u)x0(u) + (1−m(u))µ0, (1)

where µ0 is an average colour. We use µ0 = 0, which yields, after normalisation, the
masking region R by substituting with black colour. Then output vector of the network’s
fourth pooling layer p4 are calculated as follows:

p4 = pool4(conv4(p3)), (2)

where conv4() is an output of the convolutional fourth layer from the previous layers. The
output vector of the network’s fourth pooling layer, including or excluding particular
regions of an image from CNN decision making, is calculated as follows:

p′4 = pool4(conv4(p3) ∗m)), (3)

where m is a perturbation mask. Then, a coefficient cr(n) showing n-th feature involvement
on CNN decision making of the r-th image (where r is an image number and in our
experiment r = 1000 of the test.py set), are calculated as follows:

cr(n) =
{

1, i f p4(n) = p4(n)
′

0, i f other
(4)

Based on the feature involvement coefficient, the original CNN PRYSTINE model
was compared with the model in which certain parts of the output of the final fourth
convolutional layer of the network were excluded from the CNN traffic sign and traffic
light prediction. In our experiment, the region of interest or mask R was a 3 × 3 region
on a 5 × 5 feature map. This approach resulted in explaining the whole prediction power
of the classification model. In our experiment, the perturbation mask filtered fourth layer
kernels according to their significance. After the statistical significance of the feature was
included in the decision making of the neural network, the kernels with the low impact
of the fourth layer were removed from CNN PRYSTINE, resulting in the compression of
the model. Thus, the model was compressed by pruning vague kernels accordingly to the
precision calculations. The results of the experiments are presented in the next section.

5. Experiments and Results

This section provides details on the implementation of our experimental methodology.
The code for all experiments, including a 500 image set for pruning and 500 images for
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testing the final result, is available online at GitLab. The code was developed using
the Python programming language and the TensorFlow 1.12 machine learning package.
Examples of input traffic sign images from the used dataset are given in Figure 3.
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Figure 3. Examples of input images from the test dataset, where (a), (b), (c), traffic signs without
occlusion, (d) occluded traffic sign.

We also included covered traffic signs to test the prediction quality of the CNN
PRYSTINE classifier. The first three images in a row (Figure 3a–c) are real traffic signs and
are correctly classified. In the false case, the (Figure 3d) image, the traffic sign was occluded
(covered); as a result, the network did not predict it as a traffic sign. Thus, after the first
step, based on how well our CNN PRYSTINE model classifies, we recognised that our
network can provide correct predictions. Next, we wanted to check out explainability by
using the meaningful perturbation method and find out how it behaves when the classifier
kernels of the fourth layer of CNN PRYSTINE are pruned.

The region of a 3 × 3 perturbation mask was applied onto the fourth layer feature
map before max-pooling of a 1 × 1 × 1 × 256 array. Figure 4 depicts an example of the
CNN PRYSTINE four-layer output of a 5 × 5 feature map, where Figure 4a is a feature map
without a mask, but Figure 4b is a feature mask, where a mask replaces the centre of the
5 × 5 output with a constant pixel value of zeros (black colour).
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Figure 4. The output of the 4th layer feature map of CNN PRYSTINE before max pooling, (a) without
masking, (b) with masking of the central region of 3 × 3 around the centroid.

To summarise the effect of masking, to know the waveform of the signals to explain
the predictions of the CNN PRYSTINE classifier (correct or incorrect), and to know the
waveform of the signals that flow through the network model (the signals from the max-
pooling layer of 1 × 1 of the output of the fourth layer) the signal characteristics were
recorded; see Figure 5. It shows the characteristics of the signals for the case when the traffic
sign is occluded. DNN pool out shows the values of the fourth layer sigmoid activation
function for each of the 256 features. This means how much each feature is involved in an
input image.
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Figure 5. An example of the output signals of the DNN pool out from the 4th layer, representing
the basic features in the DNN and linear classifier: (a) the corresponding signal/weights class that
should have been correct, and (b) the most highly correlated signal/weights that were incorrectly
selected as the correct class.

Figure 5 below shows two options for the distribution of signals/weights. The first
(Figure 5a) shows two selected classes of the linear classifier (LC) with softmax activation
for the corresponding signal/weights of the correct decision. The second (Figure 5b) is the
signal from the LC weights of the selected class. Both signals characterise the classification
signals of the linear classifier that correlate most strongly with CNN PRYSTINE features.

The experiment of explainability has shown that the low impact kernels are in fourth
layer. When removing them, the processing and storage capacity improves the performance
of a CNN PRYSTINE model. Results of the quality of compression are shown in Table 1,
where the CNN compression rate α(M, M∗) of M∗ over M was calculated as follows:

α(M, M∗) =
a
a∗

, (5)

where a is the number of kernels in the original model (fourth layer, 256 kernels) and is
that of the compressed model a∗. For instance, if eight vague kernels are pruned out of 256,
the compression rate is 3.125%.

Table 1. Experimental results of compressing the CNN PRYSTINE 4th layer.

Compression Rate, % Precision (Training Set of 500 Images
on which Pruning is Made), %

Precision (Test Set
of 500 Images), %

Original PRYSTINE CNN
network 94.4% 94.4%

3.125% 94.4% 93.0%
5.47% 93.4% 92.2%
17.58% 89.2% 88.0%

As shown in Table 1, using the meaningful perturbation method, the performance of
the CNN PRYSTINE network decreased by 1.4% when the compression rate was 3.125%,
i.e., eight low-impact kernels were found and removed from the fourth layer. When the
compression rate was 5.47% (14 kernels), the network performance slightly declined by 2.2%
compared with the original CNN PRYSTINE classifier precision. When the compression
rate of the fourth layer was 17.58% (45 kernels were pruned), the loss in precision rate
was 6% compared to the original CNN PRYSTINE model. The proposed methodology is
especially crucial when execution time and processing capacity are the main concerns.
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6. Discussion

Every model fails now and then, and when it does, we want to explain why it does. In
the case of traffic sign and traffic light classification, where human lives are at stake, we
face the problem of studying the inner workings of CNNs in addition to the classification.
In this study we proposed a new methodology based on the XAI approach that “whitens”
the black-box network. The results of our experimental methodology show that our traffic
sign and traffic light image classification model, in which the vague kernels of the fourth
layer were slightly compressed, can achieve the same precision as the state-of-the-art CNN
models to some extent. Pruning 5% of network parameters results in a loss of only 2% in
the precision of traffic sign and traffic light classification, which would be acceptable if
one wants to achieve better performance in terms of processing capacity or execution time.
However, in many cases, especially in Deep Learning, replacing an existing model with the
pruned network elements leads to a trade-off in precision. This could be a self-defining
goal if the model focuses on precision or needs to process faster. Another challenge is
integrating explanations into an automated driving system to reduce its complexity and
improve the model’s performance.

7. Conclusions

Many studies have been conducted to explain the decision-making process of CNNs
for classification applications in computer vision. This work shows and experimentally
proves that the CNN PRYSTINE model can be compressed using the meaningful per-
turbations mask. Using the proposed methodology, we achieved a 17% performance
improvement with a precision loss of only 6%. However, compressing about 50% of the
fourth convolution layer kernels would result in low precision of the network and thus lead
to the low prediction power of traffic sign and traffic light classification. The classification
precision could be tested and analyzed by using different perturbation methods on larger
datasets and different DNN models. In addition, the classification precision could be ad-
justed by analysing the CNN kernels and comparing correct and error leading data subsets.
Compression of the parameters of the different network layers will also prove useful.

We aim to incorporate gradient-based explainability methods in our future works
to identify and understand vague kernels for CNN prediction models. In addition, it
is worth investigating whether kernel or parameter pruning is appropriate for network
compression. Finally, we also aim to develop more sophisticated, robust and reliable
explanatory algorithms to improve the prediction performance of classification models.
Such algorithms could pave the way between the prediction structures of AI models and
humans’ ground-truth knowledge.
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