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Abstract: Shape-from-Shading represents the problem of computing the three-dimensional shape
of a surface given a single gray-value image of it as input. In a recent paper, we showed that the
introduction of an attenuation factor in the brightness equations related to various perspective
Shape-from-Shading models allows us to ensure the well-posedness of the corresponding differential
problems. Here, we propose a unified convergence result of a numerical scheme for several non-
Lambertian reflectance models. This result is interesting since it can be easily extended to other

non-Lambertian models in a unified and, therefore, powerful framework.

Keywords: Shape-from-Shading; perspective projection; convergence result; non-Lambertian models;
stationary Hamilton-Jacobi equations

1. Introduction

The Shape-from-Shading (SfS) problem consists of computing the three-dimensional
shape of an object starting from a single gray-level image of it. This problem aroused the
interest of some opticians in the 1950s-1960s [1,2], and then the problem was formulated
by B.K.P. Horn and his collaborators of MIT as a first-order non-linear partial differential
equation (PDE) in the 1970s-1980s [3-5]. The goal was to enable the 3D surface represented
in the input image to solve a Hamilton—Jacobi (H]J) equation or a variational problem. This
problem gave rise to an expansion in the field of mathematics, and some researchers tried
to prove the well-posedness of it in the framework of weak solutions. The first works of
Lions, Rouy and Tourin in the early 1990s [6,7] inserted the SfS problem into the context of
the viscosity solutions frameworks, hence in a much more theoretical area.

In general, the SfS problem is described by the following image irradiance equation [8]:

I(x) = R(N(x)). )

In this equation, the gray-level intensity I(x) of the given input image at the point
x := (x,y) is put in relation to the reflectance function R(N(x)), which represents the value
of the light reflection on the surface as a function of its orientation, i.e., of the unit normal
N(x). Different expressions of the function R produce different reflectance models.

There are three main ingredients for formulating the SfS problem: how we model
the light, the camera and the reflectance. The most common setup found in the literature
considers the Lambertian reflectance model (for which the intensity I(x) depends only
on the incident angle between the direction of the light source w and the direction of the
normal unit vector, without considering the viewer), under an orthographic projection (no
perspective deformations are considered) with a single light source located far from the
object to be reconstructed (located at infinity in the direction of the light versor w). In this
case, the irradiance Equation (1) can be written as the following HJ equation:

w- (—Vu(x),1)

I(x) = (st SOk )
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where u is the unknown surface height and -yp is the diffuse albedo, which indicates the
reflective power of a diffuse surface.

In general, non-linear PDEs such as (2) do not admit smooth solutions. Hence, we
need to look for a proper notion of a weak solution, for example, in the context of the
viscosity ones (see [9-11]). Unfortunately, under orthographic projection, there is no
uniqueness of solution, not only in the classical sense but also in the weak sense, due to the
well-known concave/convex ambiguity related to singular points, i.e., points where the
intensity of the image is at the maximum and the light direction is parallel to the surface
normal, generating countless viscosity solutions to Equation (2). In order to overcome
this ambiguity, several attempts have been made by the scientific community in different
research directions. Considering a priori information on the object shape model and/or
an integrability condition of the height field in order to constrain the ambiguities could
be a possibility. From the mathematical point of view, adding information considering
more than one input image, taken from the same point of view but with different light
sources (photometric-stereo technique [12,13]) or under the same light source but with
different viewpoints (stereovision; see [14]), allows us to achieve well-posedness. In order
to stay within the scope of a single input image, a perspective Lambertian model was
proposed in [15-17], with a light source located far from the surface to reconstruct, i.e.,
located at infinity. In [16], and then in the extended journal version [17] by the same
authors, it was observed that the perspective projection is a more realistic projection than
the orthographic one, and it improves the performance with respect to considering the
orthographic projection, regardless of the specific numerical algorithm employed (in [17],
a comparison with [15] and three orthographic SfS methods is also reported, in order to
show the better performance of the perspective models). In [18,19], a different setup for the
perspective model was proposed, with a pinhole camera and light source located at the
optical center. All these works are limited to the assumption of a Lambertian reflectance
model, which is known to be not always suitable for describing real-world surfaces. Models
for non-Lambertian surfaces (e.g., [20-22]) have been proposed in chronologically later
works [23-26]. All these models, when formulated in terms of a differential equation, do
not resolve the concave/convex ambiguity (see [27] for an analysis of them). In order to
achieve the uniqueness of solution starting from a single input image, in [18,28], the authors
introduced an attenuation factor in the Lambertian brightness equation under perspective
projection. This factor takes into account the distance between the surface and the light
source and, thanks to this attenuation term, the associated HJ equation admits a unique
viscosity solution. Starting from the idea in [18] related to the Lambertian model, in [29],
the authors showed the well-posedness of several non-Lambertian models in a unified
formulation, by validating the assumptions of the Maximum Principle for discontinuous
viscosity solutions (see [9]). Many works have focused on the approximation of the different
brightness equations derived from the various models considered for solving the SfS
problem (the reader can refer to the surveys [30,31] for more details), but only very few
of them treat the convergence of the corresponding methods, and the results are often of
experimental type. In this paper, we show the convergence of a numerical scheme for the
perspective SfS problem associated with different non-Lambertian models, based on the
method proposed in [32] and the theoretical results contained in [29]. To the best of our
knowledge, this is the first paper in which a theoretical convergent result of a numerical
scheme related to different non-Lambertian models in a unified framework is provided.

The paper is organized as follows: in Section 2, we introduce the setup and the notation
adopted, briefly recalling the reflectance models we considered and how it is possible to
write them in a unified formulation. Then, we recall the definition and basic properties of
viscosity solutions and the theoretical results shown in [29]. Section 3 represents the core
of this work, in which we state and prove the convergence result. In Section 4, numerical
experiments confirm the effectiveness of the proposed scheme. The paper ends with final
comments and conclusions reported in Section 5.
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2. Preliminary Materials and Models

In this section, we introduce the notation and the setup we adopted, before recalling
the four reflectance models considered. Finally, we introduce the definition of viscosity
solutions and their basic properties.

2.1. Setup and Notation

For all four models, for the setup, we used the perspective camera projection with
one light source located at the optical center of the camera and an attenuation term of the
illumination due to the distance between the surface and the light source.

Let QO C R? be open and bounded, which represents the image domain. As performed
in [18,23,25,28], the scene can be represented by a surface S : O — R3 defined as the
following function:

S(x) = %( X, —f) 3

where 1(x) is the unknown height of the surface and f > 0 is the focal length of the camera.
The unit vector in the direction of the light source is defined as follows:

w(S(x) = % @
The unit normal vector at the point x of § is defined as N(x) = ), where
n(x) = S x 8 = (£ Vu(x) - ‘J;‘( ;2 %, Vit(x) - x + |xf§‘ii[2 £ 5)
and
\/f2|V”(X)|2+(V”(X)'X)2+”(X)2fz- (6)
(f2+[x[?)

2.2. Reflectance Models

We now briefly recall the reflectance models and their corresponding HJ equations,
describing them in a unified formulation (see [29] for more details).

2.2.1. Lambertian Model

The Lambertian model (L-model) is the most common and simple reflectance
model ([4,5,18,19]), which does not consider the viewer position. The brightness equa-
tion for this model, considering an attenuation term, is as follows:

1) = 700 ) )
where I(x) denotes the intensity of the image, yp(x) is the diffuse albedo, 6; is the incident
angle, i.e., the angle between the light source direction w(S(x)) and the unit normal to
the surface N(x), and 1/7? is the attenuation term of the illumination due to the distance
between the surface and the light source [23]. Under the setup introduced in Section 2.1,
supposing yp(x) = 1, i.e., all incident light is reflected, and considering the attenuation

term 1/7?, with r = fu(x), the following HJ equation can be associated with (7):

oo — 1 1()Q(x)
P VGO + (Vilx) X2 + u(xPQ(x)?

®)

where

Q) = ——— ©)
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By defining
Wix,p) i= LIREE () EZ(P X (10)
we can rewrite Equation (8) as follows:
1 u(x)
Fu(x)? /W (x, Vu(x)) + u(x)?

I(x) =

Supposing that the surface S is in front of the optical center, i.e., it is visible, then u is
a strictly positive function. Hence, we can consider the change of variable v(x) = Inu(x),
arriving at the following HJ equation in the new variable v (cf. [18,28])

— e 20 4 [(x) 2 \/W(x, Vo(x)) +1=0, (11)

to which we associate the Hamiltonian

H(x,5,p) = —e % + I(x)f*\/W(x,p) + 1. (12)

2.2.2. Oren—-Nayar Model

Considering real-world surfaces, e.g., plaster, sand, or concrete, the Lambertian model
is an inadequate approximation of the diffuse component, mainly because it does not take
into account the roughness of the surface. In the 1990s, Michael Oren and Shree K. Nayar
proposed a different diffuse model, suitable for rough surfaces, which are modelled as
a set of facets with different slopes, each of them Lambertian in reflectance [22,33]. This
model takes into account complex physical phenomena, such as masking, shadowing and
interreflections between points on the surface facets, and can be viewed as a generalization
of the Lambertian one. The brightness equation for the Oren—-Nayar model (ON-model) is
as follows:

I(x) = cos(6;)(A + Bsin(a) tan(B) max{0,cos(¢; — ¢;)}), (13)

where 0; indicates the incident angle, 6, denotes the angle between the observer V and
the normal N directions, « and B are defined as « = max{6;,6,} and B = min{6;,6,},
respectively. ¢; and ¢, are, respectively, the angles between the projection of the light
source direction w, or the projection of the viewer direction V, and the x axis onto the (x, y)-
plane. The constants A and B are non-negative quantities and depend on the roughness
parameter ¢ as follows:

A=1-050*(c*+4033)""
B = 0.450%(0* +0.09) .
As a consequence of the chosen setup illustrated in Section 2.1, ; = 6, =« = 5, and

we can simply call it . Hence, adding the attenuation factor 1/7? as proposed in [23], the
Oren—Nayar brightness equation is as follows:

I(x) = Acos(8) ;i—zBsinz(B)' (14)

Note that when ¢ = 0, then A = 1 and B = 0, so the ON-model goes back to
the L-model. Since r = fu(x), and cos(8) = N(x) - w(S(x)), from which sin?(§) =
1 — (N(x) - w(S(x)))?, then the brightness Equation (14) becomes:

Rl Au(x)Q(x)
I(x) f2u(x) VAVul2 4+ (Vu - x)2 + u(x)2Q(x)2 (15)
+B(1- 49700 )
PIVuP+ (Vi )2+ u(x?Q(x)2/’
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where Q(x) is defined as in (9). By using the function W defined in (10), and the change of
variable v(x) = Inu(x) (which is possible since u(x) > 0Vx € Q)), we obtain the following
HJ equation in v:

(W(x,Vo(x)) +1)
Av/W(x,Vo(x)) + 1+ BW(x, Vo(x))

—e M) 4 I(x) =0, (16)

and we associate with it the following corresponding Hamiltonian

(W(xp) +1)

AVW(x,p)+1+BW(x,p) |

Note that the function W(x, p), defined in (10), is the same function used in the
L-model, which is a useful tool for the unified approach of different reflectance models.

HON(x,s,p) := —e 2 4+ I(x) f? (17)

2.2.3. Phong Model

The Phong model (PH-model) [20] belongs to the category of specular reflectance
models. The law of specular reflection states that the angle of reflection of a ray equals the
angle of incidence, and that the incident direction, the surface normal and the reflected
direction are coplanar. The PH-model considers a specular term in the definition of the
function I(x):

I(x) = kala(x) +kpyp(x)(cos ;) + ksys(x)(cosbs)", (18)

where [4(x) is the ambient light component and k4 the percentages of this component,
the diffuse component is defined as in the L-model, with kp indicating the percentages of
this component, and the third addend represents the specular light component, with kg
indicating the percentages of it. This last term is described as a power of the cosine of the
angle 65 between the unit vectors V and R(x), with R indicating the reflection of the light
w on the surface; ys(x) denotes the specular albedo, and « represents the characteristics
of specular reflection of a material. We assume k4 + k; + ks = 1, and that « is an integer
greater or equal to 1 (in [20], Phong assumes « € [1,10]). Under the chosen setup, the
direction of the light source and that of the viewer are the same; therefore, 6; = 26; (see [25]).
By setting the diffuse and specular albedo to 1 and adding the light attenuation term, we
can arrive at the following non-linear PDE associated with the brightness Equation (18):

I(x) = kAIA(X) +

Uu(x X Mz X 2
e (o g @ g 1) (9)

where Q(x) is defined as in (9), |n(x)| as in (6), cosf; = N(x) - w(S(x)) and cosf; =
c0s20; = 2(cos6;)? — 1 = 2(N(x) - w(S(x)))? — 1. By the same change of variable v(x) =
In u(x), using the function W(x, Vo(x)) defined in (10), we can obtain the following HJ
equation in v:

—e—20(x)

\/W(x, Vo(x))+1
_ X x
kp + ks\/W(X/ Vo(x)) +1 (%)

(20)

+(I(x) —kala(x))f? =0.

»

A different equation was derived in [25], defining an alternative function W, which,
however, is not useful for our purpose of a unified formulation.
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1-W(x,p)

As stated in [25], since the term (W

) represents the cosine of the specular term,

1-W(xp)
1+W(x,p)

in the PH-model, this cosine is replaced by zero if cos s = ( ) < 0. Hence, we can

associate to (20) the following Hamiltonian:
HPH(x,s,p) :=

—e (I(X) — kAIA(X))fZM

kp
ifW(x,p) >1,
W(x,p)+1 (21)

— X «
kp + kg\/W <}+mxg§>

if0 < W(x,p) < 1.

—e™5 4 (I(x) —kala(x))f?

Note that the Phong model reduces to the Lambertian one (up to a constant) if kg = 0,
i.e., the specular component vanishes.

2.2.4. Blinn-Phong Model

In 1977, Blinn [21] proposed a modification of the Phong model by introducing an
intermediate vector H, which bisects the angle between the unit vectors V and w. If the
surface is a perfect mirror, the light reaches the viewer only if the surface normal N is
pointed halfway between the viewer direction V and the light source direction w. The
direction of maximum highlight is denoted by H = ‘ziy/‘ . For less than perfect mirrors, the
specular component falls off slowly as the normal direction moves away from the specular
direction. The cosine of the angle between H and N is used as a measure of the distance
of a particular surface from the maximum specular direction. The degree of sharpness of
the highlights is adjusted by taking this cosine to some power (in [21], it is stated that this
power is typically 50 or 60).

For the Blinn-Phong model (BP-model), the brightness equation is as follows:

I(x) = kala(x) +kpyp(x)(cos ;) + ksys(x)(cos )", (22)

where 4 is the angle between H and the unit normal N, and ¢ measures the shininess of the
surface (we assume ¢ > 1). Using the setup introduced in Section 2.1, the directions of the
light source and the viewer are the same. As already carried out for the PH-model, we set
7p(x) = 7s(x) = 1 and we add the light attenuation term as performed for the previous
models. In this way, Equation (22) becomes the following:

I(x) = kala(x) + %kD(N(X) w0 (S(x)) +ks(N(x) - w(S(x)))*,

since cos §; = N(x) - w(S(x)) and cos é = N(x) - w(S(x)) due to the chosen setup. Using
the definition of the unit normal N(x), thanks to (5) and (6), the function W(x, Vo(x)) as
defined in (10), Q(x) as defined in (9), and the same change in variable adopted before,
ie., v(x) = Inu(x), we obtain the following HJ equation in the new variable v (see [29] for
more details):

(W(x, Vo(x)) 4 1)</2

— e 20 4 (I(x) —kala(x))f> - =0, (23)
kp(W(x, Vo(x)) + 1) + ks
with which we associate the Hamiltonian
c/2
HE(x,5,p) 1= —e2 -+ (1(x) — kala(x)) i VO RLEDTE oy
kD(W<X, P) + 1)T + ks
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Remark 1. As already observed for the PH-model, if ks = 0, the BP-model also reduces to the
Lambertian one, up to a constant.

2.3. Reflectance Models in a Unified Formulation

The four different reflectance models presented in Section 2.2 lead to a HJ equation of

the following form:
H(x,v(x),Vou(x)) =0, Vxe€Q, (25)

where v(x) is related to the original unknown u(x), which represents the surface height,
thanks to the change of variable v(x) = Inu(x). The Hamiltonian H has a peculiar explicit
formulation for each of the four models, given by (12), (17), (21) and (24), respectively.
Nevertheless, looking at the four Hamiltonians, we can note that (25) can be rewritten
separating a term depending only on v(x) and a Hamiltonian which depends only on
(x, Vo(x)) as follows:

—e 2 4+ HM(x, Vo(x)) =0 (26)

where M indicates the acronym of the four models (M = L, ON, PH, BP). Since the function
W (x, p) adopted is the same for all four cases, then HM (x, p) corresponds for each one to
the following:

Lambertian model

HE (x,p) == 1(x) f*FL(W(x,p)), (27)
where
Fi(s) =vVs+1. (28)
Oren—Nayar model
HON (x,p) = 1(x) f2Fon (W (x, p)), (29)
where
o s+1
Fon(s) = =5+ (30)
Phong model
HM (x, p) = (I(x) = kala(x)) f*Fpe(W(x,p)), (31)
where
Fopr(s) = 4 Ko . (32)
o (s + 1)1 if0<s<1.

kp(s+1)* +ks(s +1)1/2(1 —s)*

Blinn—Phong model

HEP (x,p) = (I(x) — kala(x))f*Fzp(W(x,p)), (33)
where
s c/
Fan(s) = —CH D (34)

kp(s+1)7 +kg
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In [29], some useful bounds on the function W were proved. In particular, the authors

showed the following: B
P < W(x,p) <Clpf

where the constant C is independent of (x,p) € Q x R?. These bounds help to prove
our convergence result. Some properties of the four functions Fy can also be proved (see
Lemma 4 in [29]).

2.4. Viscosity Solutions of Hamilton—Jacobi Equations

Let us recall in this section the definition and basic properties of viscosity solutions in
order to study the general Hamiltonian (25) in the case of our reflectance models (the reader
can refer to [9,11] for more details on this theory). As already stated in the introduction, a HJ
equation such as (25), in general, does not admit a classical solution, and we need to look for a
proper notion of a weak solution, for example, in the context of viscosity solutions. However,
if a classical solution to the HJ equation exists, it coincides with the viscosity one. Tipically,
viscosity solutions are Lipschitz continuous functions, which can be obtained via the method
of vanishing viscosity, i.e., as a limit of regular solutions to second-order problems.

We can now give the definition of a viscosity subsolution, supersolution and solution.

Definition 1. A viscosity supersolution of (25) on (O C R? is a lower semicontinuous (LSC)
function, v : QO — R, s.t. forany p € CH(Q), if xo € Q is a local minimum point of v — ¢, then

H(Xo, ZJ(X()), VI/J(X())) > 0.

A viscosity subsolution of (25) on QO C R? is a upper semicontinuous (USC) function,
v:Q — R, s.t. forany p € CHQ), if xo € Qis a local maximum point of v — ¢, then

H(xq,v(x), Vl/)(X())) <0.
Finally, v is a viscosity solution of (25) if it is both a viscosity super- and subsolution.

To prove the convergence of a numerical scheme using the Barles-Souganidis ap-
proach [32], we need the Maximum Principle for discontinuous viscosity solution, which
requires the formulation in a weak (viscosity) sense of the boundary conditions for the
PDE to be approximated. Of course, this requirement is in addition to the consistency,
monotonicity and stability properties of the numerical scheme. Hence, motivated by this
remark, we need to introduce the notion of boundary conditions in a weak (viscosity) sense,
which means we have to incorporate the boundary condition into the definition. To gain a
better understanding, instead of considering, for example, the Dirichlet boundary condition
in a pointwise sense associated with the HJ Equation (25), i.e., v(x) = g(x) Vx € 9Q), we
introduce the operator B : 9Q x R x R? — R, which represents the boundary condition,
and in the case of the Dirichlet boundary condition, it is chosen as B(x, s, p) = s — g(x).
Let us consider a more general boundary value problem of the following form:

{ H(x,v(x),Vo(x)) =0, ¥xeQ,
(35)
B(x,v(x), Vo(x)) =0, Vx€dQ,

with the operator B : 9Q2 x R x R? — R. We now introduce the notion of (discontinuous)
viscosity solution for (35).

Definition 2. A viscosity supersolution of (35) is a LSC function v in Q) s.t. for any € C1(Q),
if xg is a local minimum point of v — ¢, then

ifx € Q,

H(xo,v(x0), V(x0)) = 0,
), B(xo,v(x0), Vip(x0))] = 0, if x € 9Q)

max[H (xo, v(x0), Vi (xo
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A viscosity subsolution of (35) is a USC function v in Q) s.t. for any ¢ € C1(Q), if xp isa
local maximum point of v — ¢, then

H(xo,v(x0), V§p(x0)) <0, ifx € Q,
min[H (xo,v(x0), V§(x0)), B(x0,v(x0), V§(x0))] <0, if x € 0Q).

Finally, v is a viscosity solution of (35) if it is both a viscosity super- and subsolution.

We are now ready to state the Maximum Principle for discontinuous viscosity solutions.
We first consider the case of a Dirichlet boundary condition (see [9]).

Theorem 1. Let Q C R2 be bounded with 9Q) of class W>*, g : 9Q) — R a continuous function
and H : Q x R x R? — R satisfying the following two conditions:

(H1). For any R > 0, 3yg > O0such that H(x,v,p) — H(x,u,p) > yr(v — u)

36
foraller,—RgugngandpeRz, (36)
(H2). |H(x,v,p) — H(y,0o,p)| < mr(]x —y[(1+ [p])) forallx,y € O, @7

—R<v<Rpc R2 where mg(t) — 0 when t — 0.

Moreover, let us assume that there exists a neighborhood T of 9Q) in R?, such that
(H3). VR € (0, +00) 3 mg(t) — 0 when t — 0 such that 38)

|H(x,v,p) — H(x,v,q)| <mg(lp—q|)), ¥xe€T,ve[-RR], p,qeR?
(H4). VR € (0, +00) 3 Cg > 0 such that H(x,v,p + An(x)) <0 39)
= A < Cr(1+ |pl), V(x,0,p) €T x [-R,R] x R?,

(H5). VR, R, € R, H(x,v,p—An(x)) = +00 A — +0o, 0)

uniformly for (x,v,p) € I X [=Ry, Rz] x B(0,Ryp).

Let v be a USC function in Q, subsolution of (35) (u is a LSC function in Q, supersolution
of (35), respectively) with B(x,s,p) = s — g(x). Then, v < u in Q.

This theorem implies the uniqueness of the viscosity solution in Q,ie., ifvy, v € C(Q)
are two viscosity solutions of (35), then v1 = v, in (). If we want to consider different
boundary conditions and validate the Maximum Principle, it is sufficient to choose the
following:

- B(x,s,p) = N(x) - p — g(x) for the Neumann boundary condition, assuming H is

continuous and satisfying the hypothesis (H1)-(H3) reported in Equations (36)—(38).
- B(x,s,p) = s — g(x) with g(x) = —oo for the state constraints condition, assuming H

is continuous and satisfying the hypothesis (H1)-(H4) reported in Equations (36)—(39).

Defining

76 I(x) if H = HL, HON, )
X) 1=

I(x) —kala(x) if H= HPH, HPBP,
and assuming that 7 (x) is a Lipschitz continuous function in Q) and there exists a neighbor-
hood T of 9Q), such that J(x) > § > 0in T, in [29], the authors validated the assumptions
for the Maximum Principle related to the four Hamiltonians, H L HON HPH and HBP
defined in (12), (17), (21) and (24), respectively, arriving to prove the well-posedness of the

perspective SfS problems.
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Remark 2. Without the introduction of the attenuation term and/or under a different setup, e.g., in
the context of orthographic projection, the assumption (36) would not be satisfied; hence, uniqueness
would not be guaranteed.

3. Convergence Result

Following [32], we now establish necessary notions for the convergence of numerical
schemes in the viscosity sense: consistency, monotonicity and stability. Afterwards, we
bring in the convergence theorem [32], with which we can prove the convergence of
our scheme.

To approximate (25), we consider a scheme of the following form:

S(p,x, uf (x),uf) =0 in Q, (42)

where §: RT x O x R x B(Q)) = R is locally bounded, R = [0, ), p is a discretization

parameter and B(()) denotes the space of bounded functions defined on Q).

Definition 3 (Consistency). The scheme defined by (42) is assumed to be consistent, provided
that both the following conditions are satisfied:
Forallxg € Qand ¢ € C1(Q)

liminf, S@XPOTEPFE) 5 g (0 w(xg), Dp(xo) 43)
p—0,x—xp,{—0 Y
and S
Olim supé ; (o.x, lp(x)p+ Sy to) < H*(xo, ¥(x0), D¥(x0)), (44)
p—0,x—xq, E—

where H, and H* denote viscosity sub- and supersolution, respectively, defined in the previous
section.

Definition 4 (Monotonicity). The scheme S in (42) is assumed to be monotone, provided that the
following condition is fulfilled
S(p,x,t,u) < S(p,x,t,0) (45)

ifu>vforallp>0,x€Q,te€Randu,v € B(Q).
Definition 5 (Stability). The scheme S in (42) is called stable if for all p > 0, there exists a
solution uf € B(QY) of (42) with a bound that is independent of p.

Based on these definitions, the convergence theorem in the viscosity framework is

elaborated by the following fundamental result (cf. [32]):

Theorem 2 (Convergence). If an HJ equation such as (25) has a strong uniqueness property and
if the scheme S as in (42) is consistent, monotone and stable, then the solution uf of S converges
locally uniformly to the unique viscosity solution u of the original problem (25) as p — 0.

3.1. Numerical Discretization

For the sake of simplicity, we stick to the 1-D version of (26) since this suffices to
perceive the methodology. The 1-D model of (26) reads as follows:

—e P HM(x,0.(x)) =0 (46)

where M is the acronym of the models (M = L,ON, PH, BP). For each model, the corre-
sponding HM (x, v (x)) uses the 1D version of (9), (10) and the various functions Fy.
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Let Ax > 0 be the spatial step size, and we denote by N := N(Ax) the number of grid
points x;,i = 1,..., N. We further denote the approximate value of v at the i-th grid point
x; by w; and define ¢;(w) as the following;:

$i(w) := max(0, —~D"w, D" w), i=1,...,N, (47)

where w = (wy,...,wy), cf. [34]. In addition, for consistency, the approximate spatial
derivative is given by the following;:

Dtw = w <0 if —D%w is chosen
Ux(xi) ~ wx,i = l/]z(w) = W — %CU 1 (48)
Dw=-=- A > >0 if D-wis chosen.

In order to discretize (46), we introduce the method of artificial time, and we make
use of the Euler forward in time scheme in addition to (48), obtaining at each grid point the
following approximation scheme:

. W't — gt
—e 2wl 4 ZT’ + HM (x;, ;) =0, (49)

which we can rewrite to obtain the following update rule:
w?“ = ZU;1 + Ate 2 — At HM(JCZ', wx,i) =: G(x;,w;, wx,i) . (50)

For simplicity, here, we also assume that the iteration level used for the discrete

representations of vy is always the actual level n. This also holds for the source term, i.e.,
—2v —2w”
e ~ e Wi,

3.2. Proof of the Convergence Result
We now state the main result of this paper:

Theorem 3. Let us assume that the scheme given in (50) satisfies the assumptions of the Theorem 2
and the HJ equation in (46) admits a strong uniqueness property. Then, the solution of (50) converges
locally uniformly to the unique continuous viscosity solution of (46).

Proof. We have to validate the assumptions of strong uniqueness, consistency, monotonic-
ity and stability.

Regarding the strong uniqueness for (46), Propositions 9 and 11 in [29] already val-
idated the required conditions. In addition, the scheme (50) is consistent with the HJ
Equation (46) since this is directly followed by the construction. Moreover, by [35], the
stability holds when the scheme is monotone. Hence, the verification of the monotonicity
remains. To this end, by [35], it is sufficient to show that G in (50) is a non-decreasing
function, which holds if and only if:

. 0§ . 0G
> _— >
ow;_q1 — 0, (if) ow; — 0, (i) oWy 1

(1) > 0. (51)

Due to analogy between case (i) and (iii), we proceed in the following order: case
(i) — (iii) — (ii).
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Case (i).
In view of (47) and (48), there is a contribution to the following case (i) only when
the third argument in (47) is taken. Taking a partial derivative of (50) with respect to w;_;

yields the following:
dF on
G UM At(1f?) 5
sl = At = 1 (52)
wW;_1 wW;_1 —At(I _ Iaka)f2 aPH,BP
i—1

Note that —At(I1f?) or —At(I — ILk,) f? are both negative quantities. Therefore, in

. F
>0,itis necessary to have M

order to obtain
ow;_1 ow;_1

<0.
At this point, we need to distinguish the four cases. Note that for construction and
for Lemma 3 of [29], the function W(x,vy) > 0. In the following, we omit the variable

dependencies for brevity.

Lambertian case (FL.(W) = vW +1)

ofp 1 W 1 2(f* 4 2% (wi —wi1) (1) <0 3)
owi_1  2JW+1 owi_1 2yWH+1 Q?(Ax)?
Y :
Hence, ——— > 0 for the Lambertian case.
ow; 1
Oren—Nayar casg I(,\I;ON(W) = A\/V%%) ,
—(AVW+1+BW)—- (W+1)- (AVW +1+ BW)
dFon _ dw;i_ ow; 1 (54)
ow;_q (AVW +1+ BW)?2
Since the denominator is always positive, we focus only on the numerator:
IW 0
30 (AVW+1+BW)— (W+1)- 50 (AVW +1+ BW)
i—1 i—1
oW A ow ow
= AVW+1+BW)—- (W+1)- +B
ow; 1 ( )~ ) <2\/W +10w; 1 awi1>
S W—i—l(é)—B ©9)
N awi_l 2
——
<0
>0 if §>B
Hence, aFﬂ <0if é > B. As a consequence, J > 0 for the Oren—Nayar case,
Bwi_l 2 awi_1

A
under the assumption 5> B.

(W+1)C/2
—1
kp(W+1) T +kg

Blinn—Phong case (Fgp(W) = ,withe >1)

aFBp o
owi_q
(W + 1)°/2 e 2 Akp(W+1)T +ks)  (56)

(kp(W +1)7" +kg)?
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Since the denominator is always greater than zero, we continue focusing only on
the numerator.

c/2 B 1
SWEVT k(W +1)F + k) — (W 1)e/2. QDWW L = Fks)
8wi,1 awifl

c
-1 W e
S w+1)2 (kp(W+1)T +kg)
2 %,_/awi_l

>0

. 7
0 (57)
<0 N —

oW 1 1
= W12 |kpW+1) 2 (£-¢ S
oW 1) [D< +1) 2 (5-50) 4 ks
BW 1451 1 c_q C
= 2 T .- 5-1. %
Jwr kp(W+1) 2+(W+1) st <0
5 >0 >0
F
Hence, ai <0 g > 0 for the Blinn—Phong case.
ow;_1 ow;_1
V]l/—i_ 1 ifw>1
Phong case | Fpy (W) b

(W +1)*+1/2
kp(W+1)% + kg(W +1)1/2(1 — W)

ifo<W«<1

In the case of W > 1, we fall back on the Lambertian case, so it is already proven. In
thecase 0 < W < 1

ow; 1

1
= ((zx + %) -(W+ 1)1”57l . aaw kp(W + 1) + ks(W +1)V/2(1 — W)¥]
Wi—1

1 59)
~ w2 QWD +kasu(:i+ 1)V2(1 - wm)

1
koW H 1% + k(W + 1)1/2(1 — W)a]2

Since the denominator is always greater than zero, we continue focusing only on
the numerator.
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1
(@+5)-(W+1)" 2 e W+ 1) + ks (W +1)1/2(1 - W)*

ow; 1

1
at oW k ow
(W1 2. lkra(Wx1)2"1. ts -172_ 970 1w
W1)"72 frpaw 1)t B By 1288 )
IW
_k 1 1/2 1_ lX—l.
SOV +1)/2 (1 =Wyt 2

1
(a + %) SW+1)" 2. 82:\; : [kD(W F 1) + k(W +1)12(1 — W)“}
1
w12 {aiwl (kpa(W+1)*"1 + kz—s(w+ 1~ V2. 1 -w)®
—ks(W +1)"/2 - a(1 - W) )]
1
(a+ %) (W1 2. afrjl ko (W4 1) 4+ ks (W +1)1/2(1 = W)* (59)
1
w12 {aiwl ((w+ 1)% 1. (szx+ %5(1 —W)*(W +1)"(1/2)

—kg 06(1 _ W)a—l(w + 1)—04-&-3/2))}

1
oW 1 20—~ 1
. [kD (a+=)-(W+1) 2 +ks(a+z)- (W+1D)*(1— W)~
aw,-_l 2 2

1
2 —
—kpa(W+1) 2 - kzi(l — W)W 4+ 1)* + ks a(1 — W)* LW + 1)* 11

1
ow 20— = 1
dw+1n" 2 ) —
3w (;,L(kD(“z) kpa)
S——" >0 >0
<0 =

F (W 1) (1— W) (ksa+ki—ki)+ksa(1—W)“*1 (W +1)*+
—_— =~

~— 2 2
>0 >0 0 >0 >0 >0
oF 0
Hence, we conclude that P <0, so 7g > 0 also for the Phong case.
ow;_1 ow; 1

Case (iif).
For the case (iii), there is a contribution only when the second argument in (47) is
chosen. Taking partial derivative of (50) with respect to w;, 1 yields the following:

oF,
B 2y 9CLON
g omm ) AT )

ow; 11
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As for case (i), note that —At(I1f2) or —At(I — IL,k,) f? are both negative quantities.

Therefore, in order to obtain > 0, it is necessary to show that M <0.

aw1‘+1 Wit
We note that y
ow 2f° + x%) (wip1 —w;)(+1
ow; 41 Q*Ax
. . o . ow . .
Hence, the quantity is less than zero in this case, as it was in the case (7).
aw1‘+1 awi*l

As a consequence of this remark, the proof for this case (iii) is analogous to the previous

case (i) for all four functions F, resulting in > 0 for each model under the same

) w11
assumptions.
Case (ii).
Taking partial derivatives of (50) with respect to w; results in the following:
oG ow; de—2i oHM
= At — At
awi awi + awi awi
IHM
Bwi ’

(62)
= 1—2Ate Wi _ At

At this point, we need to distinguish the four models.

Lambertian case (HL = If°F (W) = (If2)VW + 1)

2(f24+x2) 'awx,l-)

oG Cow
=1 —2Ate %W — At[F? 0
- f (2\/W+1Q2 9w

S (63)

recalling that @, ; := max(0, —-D"w, D~ w).
By definition of @, ;, we note that it is always, in any case, a non-negative quantity and

0 if 0 is chosen
oM. : 1 . .
;:;ﬂ {35 < 0 if —D"wis chosen (64)
1
— >0 if D~ w is chosen .
Ax

Since a violation of case (ii) primarily occurs due to the quantity (f2 + x?)®@,; in the
last term of (63), we incorporate a worst case estimate as follows:

uA)X,i < max(|w9€,i’) = ’wlmaxf (65)

where the maximum is taken over all possible cases in (48). It follows

oG . o/ frA? N 0y
> o w; _J T z
T0; 2 1 — 2Ate AtIf <WQ2) D], 50,

. (66)

Ax

I 2
1—2Ate 2% — At\/ﬁ (f2 + xz) || ma - ‘
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Hence, we can formulate a sufficient condition for monotonicity on the time step size

as follows:
oG o I 2 1
— >0 1—2Ate 2 — Af——— (24 x%) |@ >
220 o 1280 = L (P 2) 0l | | 20
o 2Ate—ZWi+AtL(f2+x2)z|w| Loy (67)
NS maxXAx =
1
& A< _
Qe—2w; 4 I(fz +X2)2 . |w|max
W+1 Ax

As a consequence, for the Lambertian case, the scheme satisfies monotonicity and,
therefore, stability as long as (67) is valid.

Oren—Nayar case (HON = If*Fon(W) = (If?) )

ON AVWHI+BW
99 _oapezm— p 9%
awi awi
= 1—2Ate i
oW A oW oW
AVW+1+BW)—- (W+1)| ————— +B—
2 Bwi( vl )~ ){2\/W7—|—18wi ow;
—AHIf
(AVIV 1 11 BW)2
2, .2
= 1 2Ate 2% — AtIf? (th))wxl
JWFT > A AW oW (68)
N AVW+1+BW - (W+1) ———-— + B—
. awx/i ( ) (Zm ow; awl)
Jw; (AVW + 1+ BW)?
A
— 172Ate_2wi*At12(f2+x2)2d} ‘a"(f)x,i E\/W—B
“ow; | (AVW 1+ BW)?
>0if A/2>B
Recalling the definition @, ; := max(0, —D*w, D~ w) and the estimate (65) used in the
previous Lambertian model case, we arrive at the following condition:
W,
Jw; — M
& 1_2Ate—2wi_ZAtI<f2+x2)2|w| ‘1 E\/W—B
max [ Ax| | (AVIW 1+ BW)?
(69)
& A< % 1 .
@) AVWTI-B
2. Wlmax 2

e—Zwl‘ + I(fZ +x2)

Ax | (AYW +1+ BW)2

Hence, for the Oren—Nayar case, the scheme satisfies monotonicity and, therefore,
stability as long as (69) is valid.

Blinn-Phong case (HB = (I — I,k,) f>Fgp(W) = (I — Iakﬂ)fzw, with ¢ > 1)
kD(W+l)T+kS

c—1

a

Let us define DENgp := (kD(W+1) +k5).
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We start focusing on OFpp :
awi
c c1 OW o1 2-3 OW
aPBP 2(W+1)2 awi DENBp kpiz (W+1) 2 awi
ow; DENZ,
C <1 c—1 C cq c—1 2c—-3
dw; DEN3,
c c_q 203 c c—1 70
2 / , 2
Q ow; DENgp
c <1, ko 23
_ <2(f2+x2)2)%awx,i ks (W+1)270 + (W +1) 72
2 ’ , 2
f dw; DENZ,
>0
Since the last term is positive, recalling the estimate (65) where @,; := max

(0, —D"w, D~ w), we can finally write the following:

BP
G _ 1—2Ate 2wi — AtaH
aw,‘ awi

awi

= 1-2Ate 2% — At(I — Ik,) f?

2 2\2
= 1—2Ate 2% — AH(I — Lik,) f> (M)wm

f2
c c_1  kp 23
Wy, kWAL + 5 WHD 2
ow; DEN3,
(71)
> 1—2Ate 20 — AH(I — Ik,) (Z(f2 +x2)2) D[ max
Cc c k c—
1 ksE(W+1)Tl+7D(W+1)223
’Ax DEN3,
= 1-2AH(e 2 + (I = Lka) (f2 + 22)2[®] oy
Cc c k c—
1 ksE(W+1)T1+7D(W+1)¥
"Ax DEN3,
Hence,
oG
>
8wi z 0e
at < L ! (72)

1
Ax

2
(62wi + (I — nga) (fZ + x2)2|w|max ’

¢ c-1 kp 2c-3
ks§(W+1)2 +-P(W+1) 2
DEN3,

which guarantees monotonicity and, therefore, stability for the Blinn—Phong case.
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W+1
k
Phong case | Fpy(W) = D (W +1)8+1/2
kp(W +1)% + kg(W +1)1/2(1 — W)=

In the case of W > 1, we fall back on the Lambertian case, which we have already seen.

itWw>1

ifo<W<1

In the case (W+1)*+
ks(W +1)1/2(1 — W)* for brevity.
1 L1 W B «rl ODEN
oy (WA g DEN = (W17 =5
ow; DEN?2
B 1 1 a—1 ow aty
_ DENZ((oc—i—z)(W—i—l) G DEN — (W4 1)+
oWk oW
. a—1 s -172770 1 — x
(uckD(W+1) 8wi+ 2(W+1) awi(l W)
oW
1/2 -7V
ks (W +1)12a(1 — W)* E)wi( 1))>
B 1 oW 1 | . 20—1
= DENE 9u; (a+3)(W+1)""2 - DEN —akp(W +1)*"2
7%5(W +1)%(1— W)* + akg(W + 1) (1 — W)H)
1 oW 1 1
= DEZ\rZaw<(vc+2)(W+1)“ 2 kp(W+1)8 @3
1
+(oc+%)(WJr1)"‘*%ks(W+1)%(1—W)”‘—"‘le(VV“)Mj
- %S(w +1)%(1— W)* + aks(W +1)*T1(1 - W)"“1>
1 W _1
= zwaw(<w“>2“ (o )kp — k)
1

FOV 10— W)k (W + 101 W) (ks(a+ 5) ))

— DElNZ gZV(Z((kD)(WJrl)

+aks ((W + 1)1 —W)r T+ (W41)¥(1 — W)"‘))

Hence, we obtain

PH
G _ 1—2Ate 2w — AtaH
8wi awz

= 1—-2Ate 2 — At(I — Ik )f2

e (= Lka) o
= 1-2Ate M g

aFPH

(74)

=

D ) (W +1)273 4+ akg ((w S - W) (W 1) (1 — W)"‘)
2 —_—— =
VZ >0 >0

>0

o
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Since the last term is (...) > 0, recalling the definition of @, ; and the estimate (65),
we can obtain the following:

Y

8wi

—ow; , (L= Laka) 1
= 1—2At(€ w‘*‘w(f + 232D - Ax

>0

((kzD)(W—I—l)za 2 +0‘k5<(W+1)“+1(1_W)“1_|_(W+1)06(1_W)oc)>> >0 (75)
! 1
& At§2(2w+(1 Ihy) (2 4 22| x

((TD) (W +1)22 —|—Dék5TpH>)

max

with Tpy 1= ((W + 1) (1 — W) (W + 1)%(1 — W)"‘). Hence, the monotonicity and,
therefore, stability is also guaranteed for the Phong case. [

Remark 3. Note that the convergence result is mainly based on the signs of the common function
W(x, p) and the different functions Fy;, with M, indicating the acronym of the four models
(M = L,ON, PH, BP), with their related properties. Hence, the convergence of the numerical
scheme still holds in the case of possible imperfect knowledge of terms such as the percentage of the
ambient component k 4.

4. Numerical Simulations

In this section, we report some one-dimensional synthetic numerical experiments,
which confirm the convergence of the proposed scheme to a viscosity solution. All the
numerical tests were implemented in Matlab, by using a Notebook HP EliteBook 830 G6
Intel Core i5-8265U with a speed of 1.60 GHz and 16 GB of RAM.

Test 1.

The unknown function u we want to reconstruct is defined by the following equation:
u(x) =x*+3  x€[-05,05]. (76)

Since it is a synthetic case, the input image is different for each model, generated
by the proper brightness equation. This is clearly visible in Figure 1, where the true and
the approximated images for each model are reported. The approximated four image
functions I are computed a posteriori using the u computed by the scheme and central
finite difference to obtain the gradient of u.

In Figure 2, we can see the exact and the approximated scenes defined according to
Equation (3). For all the models, the approximation is really good.

Finally, in Figure 3, we report the plots of the exact and approximated heights of the
surfaces related to each of the four reflectance models. Qualitatively, in all four cases, the
solution computed by the scheme seems to be a good approximation of the surface height,
confirming that the numerical solution converges to the correct (and unique) viscosity
solution. In fact, looking at the pictures reported in Figure 3, it is difficult to distinguish the
exact solution from the approximate one, except for in the PH-model, where it differs going
towards the boundary. In order to also perform a quantitative analysis of these results, we
compute the Root Mean Square Errors (RMSEs) related to the solutions of the four cases for
each point, as shown in Figure 4 and defined as follows:

Error(i) = | — (v(x;) — w;)?, for i=1,...,N. (77)

Analyzing those figures, we can state that the RMSEs are of order 10~° for the L-model
and BP-model, whereas they are are of order 10~ for the ON-model and PH-model.



J. Imaging 2022, 8, 36 20 of 25

012 | (exact) vs | (approximate) 012 I (exact) vs | (appr
0.115 0.115
0.1 0.1
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0.095 0.095
0.09 0.09
0.085 0.085
0.08 0.08
-0.5 0 0.5 0.5 0 05
012 | (exact) vs | (approximate) 012 | (exact) vs | (appr

0.115
0.1

0.11
0.105 0.08

0.1
0.095 0.06

0.09
0.04

0.085
0.08 0.02

-0.5 0 0.5 -0.5 0 0.5

Figure 1. Test 1. Plots of the exact and approximated images related to the four reflectance models.
From top-left to bottom-right: images related to Lambertian model; ON-model with ¢ = 0.1; PH-
model with k4 = 0,kp = 0.8,kg = 0.2,& = 2; BP-model with k4 = 0,kp = 0.2,kg = 0.8,c = 50.

S (exact) vs S (approximate) S (exact) vs S (app

0 T

0 T
—— Sexact —— Sexact

-0.5 ——— Sapprox -0.5 ——— Sapprox

-1 -1
-1.5 -1.5

-2 -2
-2.5 -2.5

-3 - -3 -
-3.5 -3.5

1.5 -1 0.5 0 0.5 1 15 1.5 -1 0.5 0 0.5 1 1.5
0 S (exact) vs S (approximate) 0 S (exact) vs S (app
S exact S exact
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-1 -1
-15 -15

-2 -2
25 -2.5

B ——— N

-3 -3
-3.5 -3.5

-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5

Figure 2. Test 1. Plots of the exact and approximated scenes defined according to Equation (3) and
related to the four reflectance models. From top-left to bottom-right: images related to Lambertian
model; ON-model with ¢ = 0.1; PH-model with k4 = 0,kp = 0.8, kg = 0.2, &« = 2; BP-model with
kA = O,kD = O.Z,ks = 0.8,C = 50.
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225 u (exact) vs u (approximate) 325 u (exact) vs u (appr

u exact —u exact
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3.15 3.15
3.1 3.1
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-0.5 0 0.5 -0.5 0 0.5

Figure 3. Test 1. Plots of the exact and approximated heights of the surfaces related to the four
reflectance models. From top-left to bottom-right: images related to Lambertian model; ON-model
with ¢ = 0.1, PH-model with k4 = 0,kp = 0.8,kg = 0.2,& = 2; BP-model with k4 = 0,kp = 0.2,
ks =0.8,c =50.

12 %107 L-model: Root Mean Square Error on u 14 <107 ON-model: Root Mean Square Error on u
4 12
1
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08
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02 02
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9 %1074 PH-model: Root Mean Square Error on u 4 %107 BP-model: Root Mean Square Error on u
8 35
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15
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05 0 0.5 05 0 0.5

Figure 4. Test 1. Plots of the RMSEs in the four cases. From top-left to bottom-right: images related
to Lambertian model; ON-model with o = 0.1; PH-model with k4 = 0,kp = 0.8,kg = 0.2, = 2;
BP-model with k4 = 0,kp = 0.2,ks = 0.8,¢c = 50.
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Test 2.

For this second synthetic test, let us consider the following function:
u(x) =cos(5x) +5  x € [-0.8,0.1]. (78)

Looking at Figures 5 and 6, we can see that an ambiguity, which remembers a con-
cave/convex ambiguity typical of an orthographic setup, is present on the right side of the
scene, even if the image is perfectly reconstituted, as shown, for example, in Figure 7 for
the Phong and Blinn—Phong models. Looking at Figure 8, we can note that for both models
the error is close to zero, except on the right side of the pictures, in correspondence to the
ambiguity, where there is an error of about 0.01.

The ambiguity of this particular case is due to the model, not to the specific numerical
scheme chosen to solve the problem. The existence of different surfaces which share the
same image does not contradict the uniqueness result related to the viscosity solution, since
they can correspond to different boundary conditions, or to the same boundary conditions
imposed in a different domain of definition. This is just to stress that the uniqueness of
the viscosity solution does not completely solve the problem of model ambiguity, since
we could be interested in reconstructing a surface described by a weak solution, which is
different from the viscosity solution. We refer the reader to [36] for more details on the
ambiguities of the model. The mentioned paper refers only to the Lambertian case, but the
analysis performed, even if only on a single model, is enough to understand what happens.

S (exact) vs S (app! S (exact) vs S (approximate)

‘ -S ex‘act ‘ S ex‘act

-5 — Sapprox 5 —— S approx

10 10

15 15
-20 -20
-25 -25
-30 — -30 —
-35 -35

865 3 256 -2 15 -1 -0.5 0 0.5 1 835 -3 256 -2 15 -1 -0.5 0 0.5 1

Figure 5. Test 2. Plots of the exact and approximated scenes related to two reflectance models. From
left to right: scenes related to PH-model and BP-model, with the parametersk, = 0,kp = 0.8,kg = 0.2,
« = 10,c = 50. Focal length f = 5.

u (exact) vs u (approxi u (exact) vs u (approximate)

6.5 6.5
6 6
55 55
5 5
4.5 4.5
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-0.8 -0.6 -0.4 -0.2 0 0.2 -0.8 -0.6 -0.4 -0.2 0 0.2

Figure 6. Test 2. Plots of the exact and approximated heights of the surfaces related to two reflectance
models. From left to right: surface heights related to PH-model and BP-model, with the parameters
ks =0,kp = 0.8,ks = 0.2, « = 10, c = 50. Focal length f = 5.
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Figure 7. Test 2. Plots of the exact and approximated images related to two reflectance models. From
left to right: images related to PH-model and BP-model, with the parameters k; = 0,kp = 0.8,k = 0.2,
a =10, c = 50. Focal length f = 5.

PH-model: Root Mean Square Error on u BP-model: Root Mean Square Error on u

0.012

0.008
0.006
0.004 -

0.002

Figure 8. Test 2. Plots of the RMSEs related to the two cases reported in Figure 6. From left to
right: images related to PH-model and BP-model, with the parameters k; = 0,kp = 0.8,kg = 0.2,
« = 10,c = 50. Focal length f = 5.

5. Conclusions

In this paper, we have shown a convergence result for the recent unified formulation of
the perspective 5SS models proposed in [29], in which the authors considered an attenuation
term in order to achieve the well-posedness of the problem in the context of viscosity
solutions. Despite the peculiarities of the different reflectance models considered, by
formulating them in a unified framework described by a general Hamiltonian, which has
attractive properties, we proved that a monotone, consistent and stable explicit scheme
of upwind type converges to a viscosity solution, under uniqueness properties of the
Hamiltonian. This result is interesting and powerful since can be easily extended to
other non-Lambertian models in a unified framework. The numerical experiments shown
confirm the convergence of the proposed scheme. We believe that this work could help to
develop convergent numerical methods of refined SfS processes for real-world scenarios in
future research.
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