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Abstract: Transfer learning from natural images is used in deep neural networks (DNNs) for medical
image classification to achieve a computer-aided clinical diagnosis. Although the adversarial vul-
nerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial
attacks are expected to be limited because training datasets (medical images), which are often re-
quired for adversarial attacks, are generally unavailable in terms of security and privacy preservation.
Nevertheless, in this study, we demonstrated that adversarial attacks are also possible using natural
images for medical DNN models with transfer learning, even if such medical images are unavailable;
in particular, we showed that universal adversarial perturbations (UAPs) can also be generated from
natural images. UAPs from natural images are useful for both non-targeted and targeted attacks. The
performance of UAPs from natural images was significantly higher than that of random controls. The
use of transfer learning causes a security hole, which decreases the reliability and safety of computer-
based disease diagnosis. Model training from random initialization reduced the performance of UAPs
from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability
of UAPs to natural images is expected to become a significant security threat.

Keywords: deep neural networks; transfer learning; medical imaging; adversarial attacks;
security; privacy

1. Introduction

Transfer learning from natural image datasets (e.g., the ImageNet dataset [1]) is a
widely used technique in deep neural networks (DNNs) for image classification and
has been applied well to medical imaging in particular [2]. Although the amount of
medical image data is often limited, transfer learning enables the acquisition of highly
accurate DNNs from such limited image data by fine-tuning existing model architectures
(e.g., Inception V3 [3] and ResNet50 [4]) pretrained on the ImageNet dataset. Transfer
learning techniques have been used for medical image classification (e.g., skin cancer
classification using photographic images [5], retinal disease classification using optical
coherence tomography (OCT) images [6], and pneumonia classification based on chest
X-ray images [6]). The high diagnostic performance of these DNNs is equivalent to that
of healthcare professionals [7]. Thus, DNNs with transfer learning are being used for
medical image diagnosis to achieve faster and more reliable decision-making in clinical
environments [2].

However, the practical application of DNNs to disease diagnosis may still be debatable
owing to the existence of adversarial examples [8–10], which are input images contam-
inated with small specific perturbations that cause misclassifications by DNNs. Given
that diagnosing disease involves making high-stake decisions, the existence of adversarial
examples is a security concern [11]. Adversarial examples likely cause a misdiagnosis and
various social disturbances [12] and limit deep learning applications under both safety- and
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security-critical environments [13]. Therefore, it is also important to evaluate the reliability
and safety of DNNs against adversarial attacks in medical imaging.

Many previous studies demonstrated that DNN models are vulnerable to input-
dependent adversarial attacks, in which an individual adversarial perturbation is used to
generate adversarial examples against each input image in skin cancer [12] and pneumonia
classifications [14]. More importantly, a previous study [15] showed that a small single
perturbation called universal adversarial perturbation (UAP) [16,17] can cause the failure
of most DNN-based image classification tasks to become a security threat when applying a
DNN-based medical image classification. UAP-based attacks are more realistic because
they are image agnostic. Adversaries can more easily implement adversarial attacks in
real-world environments with lower computational costs [16].

A simple way to avoid an adversarial attack is to render training data and any other
similar publicly unavailable domain-specific data (e.g., medical images in the case of medi-
cal image classification) because various methods of adversarial attacks [8–10] (from attack
methods that assume access to DNN model weights to those that do not) generally assume
the use of such data to generate adversarial perturbations. Given that the data availability
of medical images is generally limited in terms of security and privacy preservation [11],
adversarial attacks on DNN-based medical image classifications are limited. However, we
doubt this prediction owing to the properties of transfer learning for medical imaging [18].
Specifically, transfer learning considers that model weights pretrained with the ImageNet
dataset (natural images) are fine-tuned with medical images; however, fine-tuned DNN
models for medical imaging are known to be similar to the original pretrained DNN models,
despite the fine-tuning process. In addition, larger DNN models do not change through
training. It seems that DNN models obtained by fine-tuning well-used model architectures
(e.g., Inception V3 and ResNet50) with medical images show similar reactions to both
medical and natural images.

Thus, we developed and tested the hypothesis that adversarial perturbations against
fine-tuned DNN models (Section 2) are generatable using not only training data (med-
ical images) but also natural images (e.g., the ImageNet dataset) (Sections 3.1 and 3.2).
Following our previous study [15], we considered representative medical image classi-
fications (skin cancer classification [5], retinal disease classification [6], and pneumonia
classification [6]) and investigated the vulnerability of fine-tuned DNN models with several
architectures to adversarial perturbations generated using natural images. In this study,
we focus on universal adversarial attacks [16,17] rather than input-dependent adversarial
attacks. This is because the input-dependent adversarial attacks are less effective; in partic-
ular, it is costly to determine the medical images that result in a misclassification from an
adversarial perturbation generated using a natural image. By contrast, UAPs (generated
using natural images) can be used for any medical image because they are image agnostic.
To evaluate the effects of transfer learning on vulnerability to UAPs, we also considered
the DNN model architecture training from random initialization (Section 3.3).

2. Materials and Methods
2.1. Medical Image Datasets and Models

We used the medical image datasets and DNN models previously described in [15]
(see also github.com/hkthirano/MedicalAI-UAP). A brief description is provided below.

For skin cancer classification, we used skin lesion images consisting of 7000 training
images and 3015 test images that were classified into seven classes: melanoma (MEL),
melanocytic nevus (NV), basal cell carcinoma, actinic keratosis/Bowens disease (intraep-
ithelial carcinoma), benign keratosis (solar lentigo/seborrheic keratosis/lichen planus-like
keratosis; BKL), dermatofibroma, and vascular lesions. For retinal disease classification, we
used OCT images consisting of 7840 training and 3360 test images classified into four differ-
ent classes, i.e., choroidal neovascularization with a neovascular membrane and associated
subretinal fluid (CNV), diabetic macular edema with retinal-thickening-associated intrareti-
nal fluid, multiple drusen found in early age-related macular degeneration (DRUSEN), and
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in a normal retina with preserved foveal contour and lack of retinal fluid/edema (NM).
For pneumonia classification, we used chest X-ray images consisting of 1800 training and
540 test images classified into binary classes of no pneumonia (NORMAL) or viral or bacte-
rial pneumonia (PNEUMONIA). Please note that the OCT and chest X-ray image datasets
were class-balanced, whereas the skin lesion image dataset was not (see [15] for details).

Following previous studies, the Inception V3 architecture [3] was mainly consid-
ered [5,6]. To evaluate how the model architecture affects the vulnerability to UAPs, we
also used the VGG16 [19] and ResNet50 [4] architectures. These DNN model architectures
pretrained using the ImageNet dataset were fine-tuned with the training images in a medi-
cal image dataset, using the learning rate schedule and data augmentation (see [15] for the
test accuracies of these models). To evaluate the effects of transfer learning on the vulner-
ability to UAPs from natural images, we also obtained the Inception V3 models trained
by applying the training images in each medical image dataset from random initialization,
and the training conditions in this case (e.g., the learning rate schedule and condition of
data augmentation) were identical to those in the case of transfer learning, except for the
number of epochs and random initialization. Given that transfer learning contributes to
a faster convergence [18], more epochs may be required when training the models from
random initialization. Thus, we here set the number of epochs to 300 (six times as large as
that for transfer learning).

2.2. Universal Adversarial Perturbations and Natural Images

Following our previous study [15], we used simple iterative algorithms [16,17] to
generate the UAPs. We considered both non-targeted attacks, which cause a misclassifica-
tion (i.e., a task failure resulting in an input image being assigned an incorrect class), and
targeted attacks, which cause a DNN to classify an input image into a specific class. For
the non-targeted UAPs, the Adversarial Robustness 360 Toolbox (ART) [20] (version 1.0;
github.com/Trusted-AI/adversarial-robustness-toolbox, accessed on 18 November 2021)
was used. For the targeted UAPs, we used our proposed method [17] (see also github.com/
hkthirano/targeted_UAP_CIFAR10, accessed on 18 November 2021), which is a modified
version of the non-targeted UAP algorithm [16].

The algorithms apply a classifier and generate UPAs ρ from a set of input images
X, under the constraint in which the Lp norm of the perturbation ‖ρ‖p ≤ ξ for a small
ξ value. The algorithms begin with ρ = 0 (no perturbation) and iteratively update ρ by
additively obtaining an adversarial perturbation for an input image x, selected randomly
from X without replacement through the fast gradient sign method [8] with the attack
strength parameter ε. These iterative updates continue until the number of iterations reach
the maximum imax.

Using these algorithms, UAPs against medical DNN models were generated using
natural images. The algorithms originally assume that X corresponds to the training
dataset (e.g., medical images) to generate the UAPs; however, in this study, we used
natural images instead of medical images. Specifically, we used the training images in the
ImageNet dataset because the DNN models were pretrained using the ImageNet dataset.
The ImageNet training set was downloaded from www.image-net.org/download.php
(accessed on 17 June 2020). Moreover, we also considered the Open Images dataset (V6), a
different dataset of natural images, to evaluate the dataset dependency in the performance
of the UAPs. The dataset was downloaded from storage.googleapis.com/openimages/
web/download.html (accessed on 22 November 2020). For each dataset, 100,000 randomly
selected images were used to generate the UAPs. The images were gray-transformed
when generating UAPs against the DNN models for referable diabetic retinopathy and
pneumonia classifications.

For both skin lesion and chest X-ray image classifications, the parameters ε and p were
set to 0.0005 and 2, respectively. For the OCT image classification, ε and p were set to 0.0013
and ∞, respectively. However, a different ε was considered for the Inception V3 models
trained from random initialization. When generating UAPs using training images, ε was

github.com/Trusted-AI/adversarial-robustness-toolbox
github.com/hkthirano/targeted_UAP_CIFAR10
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0.0044, 0.0036, and 0.0066 for the skin lesion, OCT, and chest X-ray image classifications,
respectively. When generating UAPs using natural images, ε was 0.0050, 0.0020, and 0.0026
for the skin lesion, OCT, and chest X-ray image classifications, respectively. The parameters
ε and p were selected using a grid search to maximize the performance of the UAPs (see
below) for the input images. The parameter imax was set to 1. The parameter ξ was set
based on the ratio ζ of the Lp norm of the UAP to the average Lp norm of an image in the
dataset (see [15] for the actual values of the average Lp norms).

To compare the performance of the UAPs between the training and natural images, we
also obtained the UAPs generated using the training datasets (medical images) from our
previous study [15]. Random vectors (random UAPs) sampled uniformly from a sphere
of a specified radius were used to compare the performance of the generated UAPs with
those of the random controls [16].

2.3. Evaluating the Performance of UAPs

The performance evaluation the of UAPs was based on the procedures established
in our previous study [15]. Both the fooling rate R f and targeted attack success rate Rs
were used to evaluate the performance of a non-targeted UAP (ρnt) and targeted UAP
(ρt). R f = |X|−1 ∑x∈X I(C(x) 6= C(x + ρnt)), where C(x) is the output (class or label) of a
classifier (DNN) for an input image x in an image set X. Function I(A) takes a value of
1 if condition A is true, and 0 otherwise. Here, R f indicates the fraction of adversarial
images from which the labels predicted are inconsistent with the labels predicted from clean
images to all images in the set. In addition, Rs = |X|−1 ∑x∈X I(C(x + ρt) = y), indicating
the proportion of adversarial images classified into target class y to all images in set X. As
mentioned in our previous study [15], Rs has a baseline Rs observed without UAPs. The Rs
baselines of UAPs targeted to a specified class were ~25% and ~50%, respectively, for the
OCT and chest X-ray image datasets. For the skin lesion dataset, the Rs baselines of UAPs
targeted to MEL and NV were ~10% and ~65%, respectively. In addition, R f and Rs were
computed using test images from the medical image dataset. The confusion matrixes on
test images from the medical image dataset were also obtained for evaluating the transition
in prediction owing to the UAPs for each class. The row-normalized confusion matrixes
were obtained to account for imbalanced datasets.

3. Results
3.1. Natural Images Allow Non-Targeted Universal Adversarial Attacks on Medical
Image Classification

We first consider the Inception V3 models as they were used in previous studies on
DNN-based medical imaging [5,6] and evaluated whether non-targeted UAPs against the
medical DNN models are generatable using natural images (Figure 1). The performance
of the UAPs generated using the natural images was less effective than that of the UAPs
generated in the training datasets (medical images); specifically, the UAPs from the training
images achieved a higher fooling rate R f , with a smaller perturbation magnitude ζ, in
comparison to the UAPs from the natural images. However, R f of the UAPs generated
using the natural images was significantly higher than that of random UAPs; moreover,
they also increased rapidly with ζ and reached a high R f , despite a low ζ. Specifically, R f
~80% and ~50% were achieved at ζ = 4% for the skin lesion (Figure 1a) and chest X-ray
image classifications (Figure 1c), respectively. In addition, R f was 40–60% at ζ = 8% for
the OCT image classification (Figure 1b). These UAPs were almost imperceptible. As a
representative example, clean images and their adversarial examples owing to the UAPs
from the ImageNet dataset are shown in Figure 2. The adversarial examples owing to the
UAPs from the training and open image datasets are shown in Figures S1–S3 in File S1.
These results indicate that small UAPs from natural images also cause a misclassification of
DNN-based medical image classifications. We also found that the performance of UAPs
from natural images has no strong dataset dependency because R f values of the UAPs
from the Open Images dataset were almost similar to those of the UAPs generated using
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the ImageNet dataset, although small differences in R f were observed, i.e., ~40% and ~60%
for the Open Images and ImageNet datasets, respectively.
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Figure 1. Vulnerability to non-targeted UAPs generated using training (medical image), ImageNet,
and Open Images datasets. Line plots of the fooling rate R f (%) against Inception V3 model versus
perturbation magnitude ζ (%) for the skin lesion (a), OCT (b), and chest X-ray (c) image classifications.
The legend label denotes the set of input images used to generate the UAPs, except for “Random”,
which indicates random UAPs.
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Figure 2. Clean images and their adversarial examples generated using non-targeted UAPs from
the ImageNet dataset, against the Inception V3 model for the skin lesion (a), OCT (b), and chest
X-ray (c) image classifications. ζ = 4% in (a,c) and ζ = 8% in (b). Labels next to the images are the
predicted classes. The clean (original) images are correctly classified into their actual labels.

For the ResNet50 and VGG16 models, R f of the UAPs from the natural images was
also significantly higher than that of the random control (Figure 3), although it was less
than that of the UAPs from the training images. However, R f at the same ζ was different
between the model architectures, except for the chest X-ray image classification. For the
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skin lesion image classification (Figure 3a), R f of the UAPs with ζ = 4% was approximately
80% for the Inception V3 model, whereas it was lower for the ResNet50 and VGG16 models.
Specifically, R f against the ResNet50 and VGG models was approximately 70% and 30–50%,
respectively. For the OCT image classification (Figure 3b), a slightly higher R f (60–70%)
of the UAPs against the ResNet50 and VGG16 models with ζ = 8% was observed, in
comparison to the Inception V3 model (40–60%). For the chest X-ray image classification
(Figure 3c), R f of the UAPs with ζ = 4% from the natural images was ~50%, independent
of the model architecture.
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skin lesions (a), OCT (b), and chest X-ray (c) image classifications. ζ = 4% in (a,c) and ζ = 8% in (b).
Dashed lines indicate R f (%) of random UAPs (random controls).

As expected from the observed difference in R f between the UAPs from the training
images and those generated from natural images, those from the natural images were visu-
ally different from those from the training images for the same ζ. Figure 4 shows the UAPs
generated using the training, ImageNet, and Open Images datasets against the Inception V3
models. Moreover, Figure 5 also shows a different tendency of misclassification of the DNN
models (Inception V3 models) owing to the different UAPs between those from the natural
images and those from the training images, although the confusion matrix patterns are
similar in that dominant classes are observed (i.e., most images are classified into a small
number of specific classes owing to the UAPs). For the skin lesion image classification,
the dominant classes were MEL and BKL when using the UAPs from the training images;
however, the dominant class was only MEL when using the UAPs from the natural images
(both the ImageNet and Open Images datasets). For the OCT image classification, the
dominant class was CNV in the case of the UAPs from the training images; however, it
was DRUSEN and NM in the case of the UAPs from the ImageNet dataset and in the case
of the UAPs from the Open Images dataset. For classification of chest X-ray images, the
DNN model almost perfectly misclassified the test images because of the UAPs from the
training images; however, it classified most of the images into NORMAL because of the
UAPs from the natural images (both the ImageNet and Open Images datasets), indicating
that R f saturated at ~50% (Figure 1c).

The dominant classes might differ based on the model architecture and natural image
datasets, except for the chest X-ray image classification. For the skin lesion classification, the
dominant class was BKL for the UAPs from both the ImageNet and Open Images datasets
against the VGG16 model and for the UAP from the Open Images dataset against ResNet50,
whereas it was MEL for the UAPs from the ImageNet dataset against the ResNet50 model
(Figure S4 in File S1). For the OCT image classification, the dominant classes of the UAPs
from both the ImageNet and Open Images datasets were DRUSEN for ResNet50; however,
they were CNVs for the VGG16 model (Figure S5 in File S1). For the chest X-ray image
classification, the dominant classes were NORMAL, independent of the model architectures
and natural image datasets (Figure S6 in File S1).
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(>90%) of the UAPs from both the ImageNet and Open Images datasets were significantly
higher than those of the random UAPs, and were mostly similar to those of the UAPs
from the training datasets (medical images). This tendency is independent of the model
architecture. However, a low Rs was observed in a small number of cases. The values of Rs
of the UAPs from the ImageNet and Open Images targeted to MEL were ~10%, which were
mostly similar to the random control for the ResNet50 model, whereas they were ~95% for
the Inception V3 and ResNet50 models. The values of Rs of the UAPs from the ImageNet
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and Open Images targeted to CNV were 35–50%, which were higher than random controls
for the ResNet50 model, whereas they were ~100% for Inception V3 and VGG16 models.
Finally, the values of Rs of the UAPs from the ImageNet and Open Images targeted to
PNEUMONIA were 60–80%, which was higher than that of the random controls, whereas
that of the UAPs from the training images was ~100%.
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As representative examples, Figure 6 shows the UAPs generated using several image
datasets for targeted attacks on MEL, CNV, and NORMAL against the Inception V3 models.
These UAPs showed an Rs value of ~100%; however, the UAPs from natural images were
visually different from those from the training images for each medical image dataset.
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Table 1. Targeted attack success rates Rs (%) of targeted UAPs against Inception V3, ResNet50, and
VGG16 models for each target class. ζ = 4% for the skin lesions and chest X-ray image classifications,
and ζ = 8% for the OCT image classification. The column “UAP” indicates which input image set
was used to generate the UAP, except for “Random”, which indicates the use of random UAPs.

Medical
Images Target Class UAP

Model Architecture

Inception V3 ResNet50 VGG16

Skin lesion

NV

Training 97.9 99.2 98.7
ImageNet 98.8 96.2 86.6

Open Images 99.1 94.5 86.9
Random 64.1 70.2 73.3

MEL

Training 97.1 97.7 97.6
ImageNet 97.1 96.0 10.5

Open Images 96.6 94.5 10.4
Random 14.5 11.8 8.8

OCT

NM

Training 98.2 99.4 98.6
ImageNet 98.2 99.7 92.3

Open Images 99.4 99.8 94.0
Random 27.6 29.3 26.5

CNV

Training 99.3 99.7 99.9
ImageNet 99.2 35.5 98.3

Open Images 99.3 48.3 96.2
Random 26.5 26.1 25.4

Chest X-ray

NORMAL

Training 99.3 99.3 99.6
ImageNet 97.6 100 95.7

Open Images 97.0 99.8 94.3
Random 55.7 54.4 54.8

PNEUMONIA

Training 97.8 99.1 99.8
ImageNet 60.0 75.3 72.3

Open Images 62.8 79.8 68.0
Random 45.0 46.1 44.1

3.3. Effect of Transfer Learning on Vulnerability of the UAPs from Natural Images

It is predicted that transfer learning from natural images (the ImageNet dataset, in
particular) causes the observed vulnerability of the UAPs from natural images to DNN-
based medical image classification. To test this more deeply, we considered the Inception
V3 models, which are widely used in medical image classification [5,6], which were trained
with the training images in each medical image dataset from a random initialization. For
the datasets of skin lesion, OCT, and chest X-ray images, the test accuracies of the models
were 79.2%, 95.3%, and 97.8%, respectively. The accuracies of the models trained from
a random initialization were mostly similar to those (95.5% and 97.6%, respectively [15])
of the models trained from transfer learning for the OCT and chest X-ray image datasets;
however, the accuracy from random initialization was slightly lower than that (87.7% [15])
from transfer learning for the datasets on skin lesion images.

We evaluated the vulnerability of non-targeted UAPs against these Inception V3
models (Table 2) and found that the UAPs from natural images were less effective for fooling
the DNN-based medical image classifications. For the skin lesion image classification, the
R f value of the UAP from the ImageNet dataset was only ~50%, despite a larger ζ (ζ = 8%,
i.e., twice larger than the case shown in Figure 3a), whereas R f of the UAP from the
training images was ~90%. For the chest X-ray image classification, R f of the UAP from
the ImageNet dataset was only ~20% despite a larger ζ (ζ = 8%, i.e., twice larger than the
case shown in Figure 3c), whereas R f of the UAP from the training images was ~45%. The
results indicate that model training from random initialization reduces the performance
of the UAPs from natural images. However, the vulnerability of the UAPs from natural
images is not completely avoided because of random initialization. The value of R f of
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the UAPs from the ImageNet dataset was still larger than that of the random UPAs, and
was mostly similar between the UAPs from the ImageNet dataset and the UAPs from the
training images for the OCT image classification, although ζ = 16% (i.e., twice larger than
the case shown in Figure 3b).

J. Imaging 2022, 8, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. Visualization of targeted UAPs generated using training (medical image), ImageNet, and 
Open Images datasets against Inception V3 models for skin lesion, OCT, and chest X-ray image 
classifications. UAPs are visually emphasized for clarity; in particular, each UAP is scaled by a max-
imum of 1 and minimum of zero. 

3.3. Effect of Transfer Learning on Vulnerability of the UAPs from Natural Images 
It is predicted that transfer learning from natural images (the ImageNet dataset, in 

particular) causes the observed vulnerability of the UAPs from natural images to DNN-
based medical image classification. To test this more deeply, we considered the Inception 
V3 models, which are widely used in medical image classification [5,6], which were 
trained with the training images in each medical image dataset from a random initializa-
tion. For the datasets of skin lesion, OCT, and chest X-ray images, the test accuracies of 
the models were 79.2%, 95.3%, and 97.8%, respectively. The accuracies of the models 
trained from a random initialization were mostly similar to those (95.5% and 97.6%, re-
spectively [15]) of the models trained from transfer learning for the OCT and chest X-ray 
image datasets; however, the accuracy from random initialization was slightly lower than 
that (87.7% [15]) from transfer learning for the datasets on skin lesion images. 

We evaluated the vulnerability of non-targeted UAPs against these Inception V3 
models (Table 2) and found that the UAPs from natural images were less effective for 
fooling the DNN-based medical image classifications. For the skin lesion image classifica-
tion, the 𝑅௙ value of the UAP from the ImageNet dataset was only ~50%, despite a larger 𝜁 (𝜁 = 8%, i.e., twice larger than the case shown in Figure 3a), whereas 𝑅௙ of the UAP 
from the training images was ~90%. For the chest X-ray image classification, 𝑅௙ of the 
UAP from the ImageNet dataset was only ~20% despite a larger 𝜁 (𝜁 = 8%, i.e., twice 
larger than the case shown in Figure 3c), whereas 𝑅௙ of the UAP from the training images 

Figure 6. Visualization of targeted UAPs generated using training (medical image), ImageNet, and
Open Images datasets against Inception V3 models for skin lesion, OCT, and chest X-ray image
classifications. UAPs are visually emphasized for clarity; in particular, each UAP is scaled by a
maximum of 1 and minimum of zero.

Table 2. Fooling rates R f (%) of nontargeted UAPs against Inception V3 models trained from random
initialization. ζ = 8% for the skin lesions and chest X-ray image classifications, and ζ = 16% for the
OCT image classification. The column “UAP” indicates which input image set was used to generate
the UAP, except for “Random”, which indicates random UAPs.

UAP/Medical Images Skin Lesion OCT Chest X-ray

Training 92.7 74.5 45.9
ImageNet 50.0 75.3 22.2
Random 7.3 9.9 0.4

4. Discussion

We hypothesized that the UAPs against DNN models with transfer learning are gener-
atable using not only training datasets (medical images) but also natural images because
pretrained models do not change significantly after fine-tuning. We further demonstrate
that fine-tuned models for medical image classification are vulnerable to both non-targeted



J. Imaging 2022, 8, 38 11 of 15

and targeted UAPs from natural images (Figure 1 and Table 1). Vulnerability was confirmed
in several of the model architectures and thus might be a universal aspect of a DNN. Given
the fact that the medical DNN models with transfer learning from the ImageNet dataset
are vulnerable to not only UAPs from the ImageNet dataset but also to UAPs from the
Open Images datasets, this vulnerability to the UAPs may be independent of the natural
image datasets, indicating that the UAPs against the DNN models with transfer learning
are generatable using any publicly available natural images. This may be a novel security
threat to a DNN-based medical image diagnosis, in particular, it indicates that mostly
imperceptible UAPs are generatable without trained medical data or any other similar
medical data (regardless of how much such data are kept a secret). Unlike the prediction
that adversarial attacks on DNN-based medical image classifications are difficult because
the data availability of medical images is generally limited in terms of security and privacy
preservation, the results show that medical DNN models are easier to fool. Adversaries can
disrupt medical image diagnoses based on DNN models, even if they never access such
medical data.

The UAPs from natural images seem to differ with those from the training (medical)
images (Figures 4 and 6), and the characteristics (e.g., R f , dominant classes, and Rs) of
the UAPs from natural images were partly different from those of the UAPs from the
training images. This may be because of the difference in the composition of the predicted
labels between the training and natural images (Tables S1–S3 in File S1). For chest X-ray
image classification, for example, ~80% of both the ImageNet and Open Images datasets
were classified as PNEUMONIA regardless of the model architecture (Table S3 in File S1),
whereas the training images were mostly class-balanced. Because the non-targeted attack
algorithm [16] considers maximizing R f , a large R f is achieved when images with such
an abundant label are misclassified. In contrast, misclassifying images with less-abundant
labels has little advantage for maximizing R f . The performance of non-targeted UAPs is
less effective (images with less-abundant labels are difficult to fool), and less-abundant
labels tend to correspond to dominant classes when the predicted labels of natural images
are imbalanced. For the chest X-ray image classification, the dominant class of the UAPs
from natural images was NORMAL (Figure 5); as a result, R f was saturated at ~50%
(Figure 1c). The tendency of the dominant classes to correspond to the less-abundant
predicted labels (see Tables S1 and S2) was also observed for the skin lesion and OCT
image classification (Figure 5). The imbalanced predicted labels of the natural images also
affect the performance of the targeted UAPs. Because the targeted attack algorithm [17]
considers maximizing Rs, a large Rs will have already been achieved for targeted attacks to
an abundant label in a dataset. Thus, UAPs are rarely updated in the iterative algorithm; as
a result, Rs rarely increases. The targeted attacks on NM and PNEUMONIA, which are the
abundant labels in the dataset (Tables S2 and S3 in File S1), were less effective respectively
for the OCT and chest X-ray image classifications (Table 2). The performance of the UAPs
from natural images may increase by controlling the composition of the predicted labels of
the natural images (e.g., using data augmentation).

However, more careful examinations are required to reveal what happens inside the
DNN models due to UAPs and how the effects of UAPs from natural images on the DNN
models are different compared to UAPs from medical images. In this context, it might be
useful for investigating how explainability [21] in DNN models alters due to UAPs, given
that their techniques are typically used in medical imaging applications [22]. Explainability
methods, e.g., Gradient class activation mapping (Grad-CAM) [23], provide saliency maps
that indicate the importance of each pixel in the input images for the model outputs. The
differences in the saliency maps might be helpful for evaluating the effects of UAPs on
DNN models.

This study showed that the UAPs were generatable without training data. In this
context, UAPs from natural images are regarded as black-box attacks. However, UAPs
are not complete black-box attacks because they assume a white-box condition, i.e., the
model parameters (e.g., the gradient of the loss function) are accessible. This is because
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the well-used UAP algorithms [16,17], which we also used, are limited to the white-box
condition. However, this limitation poses a few problems for adversaries. As represented
by COVID-Net [24], a DNN model for COVID-19 detection from chest X-ray images,
DNN models are often developed as open-source projects by expecting that many people,
including researchers and citizens data scientists, will accelerate the development of high-
performance DNN-based systems. Moreover, collaboration among multiple institutions is
required to develop DNN models with a high diagnostic performance and the distribution
of deep learning models has been proposed as an effective alternative to the sharing of
patient data [25]. Even if model parameters (e.g., weights and the loss gradient) are not
accessible, they may be estimated [26] because DNN-based medical imaging is frequently
developed through a fine-tuning of the existing pretrained models, such as Inception,
ResNet, and VGG, as considered in this study. Because DNNs are aimed at real-world
usage (e.g., automated support for clinical diagnosis), the assumption that adversaries
cannot access DNN models may be unrealistic.

Nevertheless, our findings may also be useful for developing black-box attack methods
that generate adversarial perturbations based on only the model outputs (e.g., confidence
scores). Several methods for black-box attacks have been proposed [27–30]. Although they
are limited to input-dependent adversarial attacks, universal adversarial attacks may be
possible under the black-box condition because CNNs are sensitive to the directions of the
Fourier basis functions [31]. However, these methods assume the use of domain-specific
data (e.g., medical images in the case of medical image classification) that are not included
in the training data. Our study indicates that this assumption was not required. Adversaries
may be able to apply black-box attacks more easily than previously thought, simply using
natural images instead of domain-specific images.

A simple solution for avoiding the vulnerability of UAPs from natural images is
to train DNN models from random initialization (i.e., without pretrained weights). The
performance of UAPs from natural images was overall lower in the DNN model trained
with random initialization (Table 2), compared to the DNN models with transfer learning.
This might be because the model weights differ from the pretrained weights from the
natural images. However, training from random initialization does not completely prevent
the vulnerability of UAPs from natural images. As shown in Table 2, the performance of
the UAPs was still higher than that of random controls; moreover, it was almost similar to
that of the UAPs from training images in certain cases (e.g., OCT image classification). In
addition, trade-offs with the prediction performance must be considered. Because transfer
learning contributes to a faster convergence [18], the prediction performance may decrease
when training DNN models from random initialization, in comparison to transfer learning,
when considering the same number of training steps (epochs); thus, this solution may be
unrealistic in terms of the practical desire to achieve a high prediction performance with a
lower computational cost.

Given the vulnerability resulting from the discrepancy in learned features between
the natural (e.g., the ImageNet dataset) and medical images, another solution to avoid a
vulnerability may be to use a transfer learning approach in which a DNN model pretrained
using a large number of unlabeled medical images is used to train the DNN model on a
relatively small number of labeled medical images [32] (i.e., transfer learning using self-
supervised models [33]). Although this study did not evaluate this type of transfer learning
because the amount of medical image data is limited, it would be interesting to investigate
the extent to which vulnerability is avoided through the use of self-supervised models.

Adversarial defenses [34] also need to be considered to reduce vulnerability to UAPs.
Although recent developments in adversarial defenses [35–38] have been remarkable, com-
prehensive comparative evaluations [39,40] showed that promising defense methods are
less effective than reported. Explainability (e.g., saliency maps from Grad-CAM) might be
a useful indicator for determining adversarial attacks. The saliency maps of adversarial
images are expected to differ from those of clean images [41,42]. However, explainability-
based defenses might be limited since Grad-CAM could be easily deceived [43]; specifically,
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adversaries could adjust DNN models to allow Grad-CAM to yield their desired saliency
maps. Defending against adversarial attacks becomes a type of cat-and-mouse game [12],
indicating the need for continued development of adversarial defense methods. Further in-
vestigation is needed to evaluate how much novel methods (e.g., adversarial querying [44],
for producing adversarially robust meta-learners) reduce vulnerability to UAPs.

5. Conclusions

Our study showed that natural images allow universal adversarial attacks on medical
image classification using deep neural networks with transfer learning. It was expected
that adversarial attacks are limited because medical images used for training are generally
unavailable; however, existing algorithms can generate UAPs using natural images instead
of training datasets (medical images). Transfer learning from natural images is widely used
for medical imaging because the amount of medical image data is often limited. However,
the use of transfer learning causes a security hole, therefore reducing the reliability and
safety of computer-based disease diagnosis. Our findings demonstrate a novel vulnerability
of DNNs to adversarial attacks and can assist in an increase in the security of such networks.
They are particularly useful for designing operation strategies for medical DNNs.
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