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Abstract: Six-dimensional object detection of rigid objects is a problem especially relevant for quality
control and robotic manipulation in industrial contexts. This work is a survey of the state of the
art of 6D object detection with these use cases in mind, specifically focusing on algorithms trained
only with 3D models or renderings thereof. Our first contribution is a listing of requirements
typically encountered in industrial applications. The second contribution is a collection of quantitative
evaluation results for several different 6D object detection methods trained with synthetic data and
the comparison and analysis thereof. We identify the top methods for individual requirements that
industrial applications have for object detectors, but find that a lack of comparable data prevents
large-scale comparison over multiple aspects.

Keywords: object detection; pose estimation; machine learning; neural networks; synthetic training;
RGBD

1. Introduction

The problem of 6D object detection comprises the detection of objects and the esti-
mation of the translation and rotation thereof. In a three-dimensional space, both of these
properties have three degrees of freedom, thus resulting in the 6D portion of the term. In
many cases, algorithms that solve this problem also give an estimate of the target object’s
class (in this work, the term object detection implies object classification). The most common
sensors used here to record scenes are cameras. In this work, we focus on approaches for
solving this problem with two specific properties:

• RGBD cameras (i.e., color and depth) are available for providing input to the algorithm;
• Only 3D object models (CAD or reconstructed) are required to set up the algorithm

(i.e., no recordings by real cameras).

Algorithms with these properties are especially well suited for industrial applications,
specifically automation tasks. On the one hand, RGBD images are easy to obtain in pro-
duction environments. We have mostly indoor scenes with controlled lighting, simplifying
the usage of active sensors. The larger form factor, compared to RGB cameras, is usually
no problem in static setups, and the pricing of high-quality RGBD sensors does not weigh
heavily on company-scale budgets. On the other hand, industrially manufactured products
are usually based on computer-aided design (CAD), which makes the 3D models of target
objects readily available. There are two major use cases in industrial environments that
require localizing real-world objects: robotic manipulation and quality control, examples of
these are shown in Figure 1.
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(a) (b)

Figure 1. Two examples for applying object detectors in industrial production processes. (a) Quality
control. (b) Bin picking (image from [1] published under CC BY 4.0).

In this work, we examine the current state of the art of 6D object detection for applica-
tion in industrial use cases. We put a strong focus on empirical data; to our knowledge,
we collected the most comprehensive comparison of evaluation scores for object detectors
with the aforementioned properties to date. Our core contributions are the following:

• A listing of requirements that typical industrial use cases have for object detectors.
• A comprehensive collection of empirical data from experiments with 6D object detec-

tors that meet the identified criteria.
• Empirical data on the performance of the object detector FFB6D [2], which has not

been evaluated with purely model-based training, yet.

In the remainder of this work, we first give an overview of related work. Then, we
present the background of our work by presenting a definition of the 6D object detection
task, establishing a rationale for our focus by identifying the requirements of typical indus-
trial applications and giving a short overview of model-based training (strictly speaking,
the term training refers to setting up learning-based algorithms. For better readability,
in this work, we also use it to refer to generating reference data for non-learning-based
algorithms) and synthetic data generation for this purpose. We then describe the method of
our analysis, including a categorization of examined algorithms and a description of used
datasets and metrics. Finally, the collected data are presented and discussed, followed by a
short conclusion.

2. Related Work

In this section, we give an overview of publications relevant to 6D object detection
for industrial applications, starting with listing reviews and benchmarks in this area, then
presenting individual object detectors, their specific contributions and finally the state of
the art of model-based training and the generation of synthetic data for the training of
object detectors.

2.1. Reviews and Benchmarks

Hodaň et al. [3] performed a large-scale benchmark of 6D object detectors in their BOP
Challenge 2020. They provided seven datasets known from the literature in a uniform format
and added synthetic images for each one, generated with BlenderProc [4], a set of scripts
allowing physically based renderings of procedurally generated scenes with Blender (https:
//www.blender.org/, accessed on 30 December 2021). They tested 26 different methods and
found that CosyPose [5] had the best overall score, as well as the best score for synthetically
trained object detectors, under their metric. In addition to their paper, they published
their evaluation results on the accompanying website (https://bop.felk.cvut.cz/home/,

https://www.blender.org/
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accessed on 30 December 2021), which is still extended with new evaluation data and new
datasets.

The most comprehensive review to date regarding 6D object detection was published
in 2020 by Sahin et al. [6]. They presented a categorization of respective methods based on
their mathematical models, compared empirical results thereof and identified challenges of
different datasets.

The specific use case of robotic manipulation was addressed in 2021 by Cong et al. [7]
and Du et al. [8]. Like Sahin et al. [6], they categorized different object detectors and
datasets. They also collected a large amount of quantitative data to compare methods.
However, unlike prior reviews, they also considered metrics and datasets specific to grasp
estimation.

We used the references above as a starting point for our research, but extended the
data discussed in these works with the evaluation results for algorithms not yet available
at the respective time of writing. We also put the data in a new context by putting the focus
of our research on the requirements of industrial use cases as defined in Section 3.2).

2.2. 6D Object Detectors and Pose Estimators

Here, we list different approaches to 6D pose estimation and the novelties presented
in their respective publications. Bold keywords mark methods that fit the requirement
profile that set the scope for this work and thus were considered in our analysis.

In 2010, Drost et al. [9] presented an approach for detecting objects with known 3D
models in point clouds (or depth images). They relied on calculating features based on
distances and normal angles between two object points, called point pair features (PPFs).
Hinterstoisser et al. [10] improved PPFs by introducing more robust sampling and voting
schemes, which were developed even further by Vidal et al. [11]. Their approach made first
place in the BOP Challenge 2018 [12].

In 2011, Hinterstoisser et al. [13] performed 6D object detection by matching templates
against input images, calling their method LineMOD. The matching is done in a feature
space describing RGB- and depth gradients. They improved their method by refining
the strategy to sample poses for training and by introducing a filtering strategy based
on object color [14]. LineMOD was further extended by Rios-Cabrera and Tuytelaars [15]
to DTT-OPT-3D by discriminatively learning templates with SVMs. In 2014 and 2018,
Tejani et al. integrated LineMOD-features into a patch-based regression forest, calling the
resulting algorithm latent-class Hough forest (LCHF) [16,17]. Another template-based
approach was presented by Hodan et al. [18] in 2015. Unlike LineMOD, theirs is based on
voting schemes.

In 2014, Brachmann et al. [19] presented an approach based on random forests, pre-
dicting 2D–3D correspondences, from which poses were estimated using RANSAC. This
work was extended to auto-context random forests in [20] and labeled uncertainty-driven
pose estimation. In 2016, Kehl et al. [21] published a regression- and voting-based method,
using a convolutional autoencoder (CAE) on RGBD images. The same authors presented
an extension of the single shot pose (SSD) algorithm to SSD6D in 2017 that works on RGB. In
2017, Buch et al. [22] presented an object detector based on subgroup voting and pose clus-
tering that uses constraints posed by oriented points of two models. Rambach et al. [23]
explicitly tackled the task of learning object poses from synthetic images in 2018. They
tried to bridge the domain gap by letting their network operate on edge-filtered images.
Tekin et al. [24] published YOLO6D in 2018, whose key contribution was letting a CNN
predict projections of the 3D bounding box corners of objects and using the gained 2D–3D
correspondences to solve for the pose using the PnP algorithm. In 2018, Sundermeyer
et al. [25] presented augmented autoencoders (AAEs), which build upon denoising au-
toencoders, and addressed the synthetic-to-real domain gap by training their autoencoder
in a way that makes it invariant to the gap. Park et al. [26] published Pix2Pose, predicting
the 3D coordinate of an object per pixel and reconstructing the pose using a RANSAC-based
PnP algorithm. Dense pose object detector (DPOD) by Zakharov et al. [27] works in a
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similar way, but also employs an RGB-based refinement. Thalhammer et al. [28] presented
SyDPose, which again explicitly addresses using only synthetic data for training. The
coordinate-based disentagled pose network (CDPN) by Li et al. [29] predicts translation
and rotation, separately. PointVoteNet by Hagelskjar and Buch [30], unlike most other
neural-network-based methods, estimates poses from unordered point clouds. CosyPose
by Labbé et al. [5] also supports multi-view pose estimation and was one of the top perform-
ers in the BOP Challenge 2020 [3]. EPOS by Hodaň et al. [31] represents objects as compact
surface fragments. SynPo-Net by Su et al. [32] converts training- and input images into
an edge-filtered representation before prediction to bridge the domain gap. PoseRBPF by
Deng et al. [33] considers rotation and translation separately, using a Rao–Blackwellized
particle filtering framework. He et al. [34] presented PVN3D, a network relying on keypoint
detection and Hough voting, building on the DenseFusion features by Wang et al. [35].
They expanded this work in 2020 with bidirectional fusion of RGB- and depth-features,
calling the resulting method FFB6D [2]. SurfEmb by Haugaard and Buch [36] introduces a
contrastive loss.

2.3. Model-Based Training and Image Synthesis

In this section, we present works that address the task of object detection when only a
3D model of the target object is available at the training time. A particular challenge here is
rendering (“synthesizing”) images that are suitable for training learning-based detectors.

Rudorfer et al. [37] found that rendering on random backgrounds outperforms ren-
dering in a realistic context via rigid body simulation with a static background. In 2019,
Denninger et al. [4] presented BlenderProc, a Blender-based rendering pipeline that creates
synthetic images based on physically based rendering (PBR). They provided realistic light-
ing and different modalities, such as normal maps and depth images. This was later used in
BOP Challenge 2020 to provide synthetic training images. Hodan et al. [38] compared phys-
ically based rendering with realistic lighting, surfaces, object placement and scene context
for rendering random photographs and found that physically based rendering outper-
forms the latter approach. This finding was confirmed by Hodaň et al. [3] in the context of
their BOP Challenge 2020. For the problem of 2D object detection, Hinterstoisser et al. [39]
showed that detectors based on synthetic training can outperform detectors trained with
real images under the right circumstances. They specifically focused on applying domain
randomization to the renderings and creating images with good viewpoint coverage. Rojt-
berg et al. [40] utilized GANs to learn the difference between real and synthetic images and
then transform synthetic images into the real domain based on these networks. They found
that this strategy cannot reach the performance of real images, but increases performance
compared to pure domain randomization. Eversberg and Lambrecht [41] investigated
the effect of different strategies for reducing the domain gap between real and synthetic
images, focusing on object detection only. They found that image-based lighting using
high dynamic range images and using random real images as backgrounds is beneficial
for synthetic training; they recommended using at least 5000 images. Rambach et al. [23]
and Su et al. [32] tackled the domain gap by first applying various augmentations and then
bringing both synthetic training images as well as real input images into a common pencil
filter domain. They found that this strategy increases the accuracy of synthetically trained
object detectors.

3. Background

This section provides background information on concepts referenced in this work
and sets the scope for our analysis. Specifically, we define the problem of 6D object detection,
describe requirements that industrial applications pose, describe what constitutes model-
based training and give an overview of the modalities we took into account in this work.
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3.1. Problem Definition: 6D Object Detection

Six-dimensional object detection comprises the detection of objects and an estimation
of their three-dimensional translation and their three-dimensional rotation. We define the
relationship of 6D object detection, object detection and 6D pose estimation as follows:

6D object detection = object detection + 6D pose estimation.

i.e., a 6D object detector detects object instances in a scene and outputs their locations as 6D
poses. For some detection methods, this is a single algorithmic step (often called single-
stage detectors, e.g., [9,26,34]), while others perform object detection and pose estimation as
distinct steps (two- or multi-stage detectors, e.g., [42–44]). The latter usually first employs an
object detector that outputs 2D bounding boxes for object instances found in an image and
then inputs these into a pose estimator.

Hodaň et al. [3] differentiated object detection and object localization in Appendix 1 of
their work. When detecting objects, one tries to find an unknown number of objects, while
localizing objects means that we know a priori that N objects are visible in the scene and we
need to find their locations. In our specific case, localizing an object means estimating its
6D pose. Thus, in this work, the term object localization is synonymous to 6D pose estimation
for N objects, which, according to the relationship given above, makes object localization a
sub-task of 6D object detection.

The common usage of object detection in the literature also implies the classification
of objects. In this work, we assume 3D models of objects as references to look for, i.e., we
look at object detectors that perform their task based on very specific geometric properties,
which is known as instance-level detection. This stands in contrast to category-level detection,
whose goal is to detect objects that fall into broader categories, for instance, “find all cars in
an image”.

Similar to Sahin et al. [6], we define 6D pose estimation formally as

T∗i = arg max
Ti

P(Ti|I, S, O), (1)

where T = (r1, r2, r3, t1, t2, t3) is the six-dimensional pose of object instance i, I is the input
image, S is a seen instance of an object, and O the reference for an object class. Pose
estimators try to maximize the probability function P. In practice, different pose estimators
mainly alternate in their formulation of P, e.g., some use neural networks [27,34,45], while
others use hand-crafted heuristics to determine the probability [9,14]. The output of P can
also be interpreted as the detection score.

Whether a use case is a detection or localization task has two important practical
implications:

• The parametrization of the algorithm is different. For localization, we can accept the
N best hypotheses that the object detector produced, while for detection, we need to
set a score threshold for P as an acceptance criterion for the hypotheses.

• The required metrics for evaluating the performance differ. For localization, deter-
mining a score that only regards the rate of positive detection is sufficient (e.g., recall).
As the detector outputs a maximum of N results, we know that every false positive
implies a false negative, e.g., the precision is always at least as good as the recall here.
For detection tasks, this is not true, and so we need to regard metrics that both take
true and false positives into account (e.g., recall and precision).

3.2. Industrial Applications

There is a great potential in object detectors when applied to problems that occur in
industrial environments. Particular tasks from the areas of quality control and robotic
manipulation require fast and accurate detection and pose estimation of target objects. To
deduce the requirements that industrial use cases have for object detectors, we identified
their chances and challenges regarding 6D object detection. Chances are aspects of these
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scenarios that potentially simplify 6D object detection, while challenges are those that make
it harder. Chances are as follows:

• CAD models are available, which means that generating reference data is cheap.
• High-end and RGBD cameras are available, as higher costs and a larger form factor

compared to RGB cameras are negligible in large-scale production environments.
• Scene setups are controlled. Production mostly happens indoors, and the placement

of lights and cameras can be controlled easily. Indoor setups also allow for a broader
range of possible RGBD cameras, as active cameras often do not work well in sunlight.

• The minimally required frame rate for many automation tasks is the production’s takt
time, which is usually lower than the required frame rate for interactive applications.

We conclude that the combination of RGBD cameras and 3D models as references
makes optimal use of these chances. RGBD allows for a higher robustness and accuracy
than RGB, and the availability of 3D models allows generating synthetical images, which
can be acquired much more simply and cheaply than annotated real-world recordings. On
the other hand, we find that industrial applications pose the following specific challenges
for 6D object detection:

1. Lots of industrially manufactured objects are textureless. Specifically, workpieces
that are at the beginning of production chains are often made of a single material with
flat and untextured surfaces.

2. A lot of man-made objects, especially those with simple geometry, are rotationally
symmetric, or at least appear so under certain perspectives. This makes their poses
ambiguous, which can be a difficult problem for algorithms relying on optimization.

3. A common task in the area of robotic manipulation is bin picking. Here, individual
objects can be highly occluded.

4. Additionally, especially in bin-picking tasks, we have an unknown number of in-
stances of the same object class. As described in Section 3.1, we refer to this task as
object detection in contrast to object localization, where the number of objects to detect
is known a priori. When attempting to detect an unknown number of instances, false
positives can be a major problem.

5. Object colors are often unspecified in the reference data. CAD models generally store
an object’s geometric and kinetic properties, but not its surface properties, defining
color and reflective behavior.

6. There are objects with difficult surface properties that hinder the recognition of
geometric properties based on optical recordings, i.e., objects made from materials
with high specular reflections, such as metals, or objects made from translucent or
transparent materials, such as glass.

Here, too, RGBD can alleviate the problems posed by these challenges. The geometric
information encoded in the depth channel can complement the color information and
lead to better accuracy when there is no discerning texture on the target object or no color
information in the reference. Especially in use cases that target a lot of object instances,
much can be gained by generating annotated synthetic scenes, showing heaps of objects, as
manual annotation is hardly feasible for those.

Of course, not necessarily all of these characteristics apply to every industrial use case.
However, based on our experience, we find that these properties are typical for production
environments and so they set the scope of this work. In the remainder, we analyze if and
how good published object detectors can fulfill the requirements posed by the presented
chances and challenges.

3.3. Model-Based Training

In this section, we give a definition of what constitutes model-based training and
give an overview of how synthetic images can be generated. For object detectors that only
regard the geometric properties of target objects, model-based training is straightforward.
This kind of algorithm can be trained directly with the reference model by generating
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features in a latent space, e.g., PPFs [9] fall in this category. Training object detectors that
work on surface properties and projections of model geometries (i.e., on images) is more
involved. This is especially true for learning-based algorithms, which generally work
better the more similar the data available at training time are to the input data during
inference. Generating “real images”, i.e., recordings of target objects for estimation and
annotating them with ground-truth poses, is a very involved and costly process. This is
especially true if the use case requires training images taken under a multitude of different
perspectives, lighting conditions or from different objects. Synthetic images, on the other
hand, which comprise simulated recordings, are cheap, and images taken under a great
number of different simulated conditions can be generated easily. To achieve this, a 3D
model of the target object has to be available, which is the case in industrial production
environments, as most products are usually modeled before they are manufactured. From
these models, one can derive rendered images that also take into account the properties
of the recording process. We found the following strategies of utilizing models of the real
world in order to train object detectors:

3D models: Here, we directly derive features in the latent space from the information
contained in a 3D model, i.e., a model’s vertices and normals, e.g., PPFs only require
a 3D model of an object at training time.

Augmented real images: In this strategy, real images are augmented to generate a higher
variety of training images. This can be done by simulating varied recording condi-
tions, e.g., changing an image’s size or aspect ratio, its brightness or sharpness, or
adding noise. A more involved mode of image augmentation is the “Render and
Paste” strategy in which an object is cropped from its original scene and pasted onto
a different background to simulate a varying background, or covered by another
cropping to simulate occlusion.

Renderings: Rendering is the process of simulating the full image recording pipeline
and thus generating 2D images from 3D models. There is a big variety in how this
simulation is implemented and how realistic the resulting output is. The simplest and
quickest method for rendering images is using a rasterization-based renderer, such
as OpenGL. This type of renderer usually produces plausible, but not necessarily
physically accurate renderings, in order to achieve real-time performance. A more
ambitious mode of generating realistic images is called physically based rendering (PBR),
which is not a strictly defined term, but usually entails more realistic simulation of
the behavior of light and surfaces than the commonly used Blinn–Phong model [46],
e.g., by employing ray tracing.

In this work, the term model-based trained object detectors refers to algorithms that are
trained either on 3D models only or renderings thereof (synthetic images), i.e., the training
of these algorithms does not include recording the physical target objects. Note, however,
that we do not exclude algorithms that use training images involving generic real-world
images as backgrounds, textures or distractors, as these images can be easily obtained
from 2D image datasets, such as ImageNet (https://www.image-net.org/, accessed on 23
December 2021).

We did not investigate the nature of each training set used to train the methods
referenced here. This means that it is likely that some methods could perform considerably
better by training them on images generated with more advanced strategies for synthetic
image generation. Therefore, the values presented should be regarded as the empirically
proven lower bound for each algorithm’s performance.

3.4. Modalities

As described in Section 3.2, we assume the availability of a RGBD camera for industrial
use cases and include 6D object detectors that take RGBD images as input. For a potential
user, the quality of the output of a method is much more relevant than which modality
it accepts, as long as it is compatible with available hardware. As RGB-based detectors

https://www.image-net.org/
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are fully compatible with RGBD images, we also include the former in our survey. Note
that RGB-based detection can easily be refined with depth information by employing a
geometry-based refinement algorithm, such as ICP [47].

There are two modalities that could fit the requirements of industrial use cases as
defined in Section 3.1 well, but they were not explicitly considered in this work: multi-view
images and point clouds. We found that algorithms using these modalities as input were
difficult to fit into the scope of this work, for the following reasons:

• Besides CosyPose [5], we did not find any multi-view approaches that fit the scope
given by our use case.

• Point-cloud-based object detectors are very popular in the area of autonomous driving.
Consequently, they are commonly evaluated on datasets and metrics tailored to this
use case (e.g., the KITTI dataset [48]), and the evaluation scores found in the literature
cannot be compared to those of most RGBD-based object detectors.

However, we also found that these modalities could potentially benefit the industrial
use case, particularly in these regards:

• Multi-view images as well as point clouds usually cover a larger portion of a scene
than single-view images. Thus, they could mitigate problems due to occlusion, pose
ambiguities and specular reflections.

• Point clouds are primarily geometrical representations of scenes, and thus, object
detection based on geometrical 3D models potentially requires less preprocessing of
training data, as input and training data are already in the same domain. In particular,
the involved generation of synthetic images can be skipped.

For these reasons, we decided to postpone evaluating object detectors based on these
modalities to future work; in particular, we plan to evaluate their performance with metrics
and datasets commonly used for RGBD-based detectors.

4. Materials and Methods
4.1. Methods

In this section, we categorize the methods for 6D object detection that we have ex-
amined and compared. As this work’s scope is use case specific, we focus on method
properties that put constraints on a method’s usage and regard aspects, such as the type
of CNN, that were used as implementation details. In the following, we describe method
properties that we found to be relevant in application scenarios and in which way they can
constrain potential usages. The property description should be regarded as a set of general
guidelines and not as strict rules, e.g., although depth-based detectors tend to give better
camera–object distance estimates than RGB-based detectors, this must not be true in all
circumstances. Table 1 shows our categorization of algorithms.

Modality describes which type of input a method accepts at training time and runtime.
RGB-based methods tend to have a larger error when estimating the distance of
objects to the camera. Depth-based methods are based on geometry only, so they
cannot use color cues or textures visible on objects. RGBD-based methods can use
the best of both worlds. We only regarded the modality of the core-method uses, i.e.,
no optional refinement steps. Of course, every RGB-based detector can be extended
to RGBD by, for example, post-processing the results with ICP [47], and every depth-
based detector can be extended to RGBD by employing some kind of 2D-edge-based
pose refinement.

Features states whether a method uses learned or hand-crafted features for object detec-
tion, i.e., whether the algorithm is data- or model-driven. As the name suggests,
data-driven methods tend to require large amounts of training data: in our case,
synthetic images. The generation of these data and the subsequent training can be
computationally very demanding, in some cases needing several days for a full setup.
Hand-crafted features usually do not require as much data, and the conversion of
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training data to features is straightforward, as no weight optimization takes place.
However, the latter tend to have more parameters that need to be fine-tuned for
optimal results.

Scope describes whether a feature in the object-detection step represents the full target
object (e.g., a “template”) or a single point of interest (e.g., a single pixel or an image
patch). Global features, representing the whole object, are usually more robust when
detecting multiple instances of a single object class that are close to or even occluding
each other. Local features tend to be more robust against general occlusion or difficult
lighting conditions.

Output gives the type of space that the output pose is in. Regression-based methods
predict continuous results, i.e., the poses they estimate are theoretically infinitely
accurate. Classification-based methods predict discrete results, i.e., their output is
one of a previously learned finite number of classes. Whether a discrete estimation is
good enough depends on the use-case requirements and whether there are enough
computational resources to perform a refinement step.

Table 1. Properties of 6D object detectors. Methods are sorted alphabetically. For detailed explana-
tions of properties, see Section 4.1. Alternating grey and white rows are visual aids.

Method By Year Modality Features Scope Output
AAE Sundermeyer et al. [43] 2020 RGB Learned Global Cont.
CAE Kehl et al. [21] 2016 RGBD Learned Local Cont.
CDPNv2 Li et al. [29] 2019 RGBD Learned Local Cont.
CosyPose Labbé et al. [5] 2020 RGB Learned Global Cont.
DPOD Zakharov et al. [27] 2019 RGB Learned Local Cont.
DTT-OPT-3D Rios-Cabrera and Tuytelaars [15] 2013 RGBD Learned Global Disc.
EPOS Hodaň et al. [3] 2020 RGB Learned Local Cont.
FFB6D He et al. [2] 2021 RGBD Learned Local Cont.
HybridPose König and Drost [42] 2020 RGBD Learned Global Cont.
LCHF Tejani et al. [16] 2014 RGBD Learned Local Cont.
LCHF Tejani et al. [17] 2018 RGBD Learned Local Cont.
LineMOD Hinterstoisser et al. [14] 2013 RGBD Hand-crafted Global Disc.
ObjPoseFromSyn Rambach et al. [23] 2018 RGB Learned Global Cont.
Pix2Pose Park et al. [26] 2019 RGB Learned Local Cont.
PointVoteNet Hagelskjar and Buch [30] 2020 D Learned Both Cont.
PoseCluster Buch et al. [22] 2017 D Learned Local Cont.
PoseRBPF Deng et al. [33] 2021 RGBD Learned Global Cont.
PPF Drost et al. [9] 2010 D Hand-crafted Local Cont.
PPF Hinterstoisser et al. [10] 2016 D Hand-crafted Local Cont.
PPF Vidal et al. [11] 2018 D Hand-crafted Local Cont.
PVNet Peng et al. [49] 2019 RGB Learned Local Cont.
RandomForest Brachmann et al. [19] 2014 RGB Learned Local Cont.
SSD6D Kehl et al. [44] 2017 RGB Learned Global Cont.
SurfEmb Haugaard and Buch [36] 2021 RGBD Learned Global Cont.
SyDPose Thalhammer et al. [28] 2019 D Learned Global Cont.
SynPo-Net Su et al. [32] 2021 RGB Learned Global Cont.
TemplateBased Hodan et al. [18] 2015 RGBD Hand-crafted Global Cont.
UncertaintyDriven Brachmann et al. [20] 2016 RGB Learned Local Cont.
YOLO6D Tekin et al. [24] 2018 RGB Learned Local Cont.

All methods referenced in this work have been tested with model-based training.
Note that the mode of generating synthetic data differs between methods, i.e., there can be
potential for better scores and thus presented scores are only lower bounds.

Remarks for Individual Methods

• The learning-based method FFB6D [2] was trained on synthetic images by ourselves.
To train FFB6D, we used the synthetical images generated with BlenderProc [4] for
BOP Challenge 2020 [3], using scene 2 as the validation set. We deactivated all
data augmentation and trained on the renderings as they are. The training ran for
366, 000 iterations at a batch size of 3.

• PoseRBPF [33] is a tracking and not an object-detection method. However, the al-
gorithm can actually be used for object detection (referred to as initialization in the
respective paper), and the pose estimation accuracy is improved over consecutive
frames. For this reason, we regarded it in this work, despite not fully fitting the
required profile.
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• PointVoteNet [30] supports both global and local features, as it is based on PointNet by
Qi et al. [50], which represents target objects as a cascade of global and local features.

• The depth-based methods PointVoteNet [30], PoseCluster [22] and all PPF-variants [9–11]
can be trained with point clouds only, i.e., no image synthesis is required here.

4.2. Datasets

In this work, we focus on datasets, which, on the one hand, pose challenges that map
to the requirements stated in Section 3.2 and for which a significant amount of quantitative
data are available in the literature. For all of the datasets used in this work, RGBD images
with annotations for ground truth poses and 3D models of the depicted objects are available.
Furthermore, synthetically generated RGBD training images are provided through BOP
(see https://bop.felk.cvut.cz/home/, accessed on 30 December 2021 or [3]). Sample images
of the datasets can be seen in Figure 2. These are regarded in this work:

LineMOD (LM) [14]: First presented by Hinterstoisser et al. to evaluate their algorithm
of the same name, the LM dataset provides 15 scenes. In each scene, 1 of 15 differ-
ent objects from an office environment is annotated and placed on a desktop with
severe clutter.

LineMOD occluded (LMO) [19]: This dataset includes scene number 2 of the original
LineMOD datasets, but with ground truth annotations for multiple objects from
different classes in a single frame. In addition to the background clutter, this poses
the challenge of a lot of occlusion between objects.

TLESS [51]: The T-LESS dataset comprises 20 scenes with annotations for 30 different
object classes. The depicted objects are all typical industrially manufactured objects,
made from textureless white plastic, many of which are rotationally symmetric. The
objects are all placed on a black background, so there is little background clutter. All
scenes show different combinations of objects with different placements, with cases
of multiple instances of one object in a scene and objects occluding each other.

(a) (b) (c)

Figure 2. Sample images from the three datasets considered in this work. Lighter renderings show
annotated poses. (a) LM, (b) LMO, (c) TLESS. Images used with permission from Hodaň et al. [3].

For a comprehensive overview of other datasets, typically used to evaluate 6D object
detection, we recommend reading the publication of Hodaň et al. [3]. Their work not only
gives details on the datasets and the specific challenges they pose, but the authors also
brought 12 widely used datasets in a common format and provided synthetic training
images for most of them, generated using BlenderProc [4].

4.3. Metrics

Object detectors are usually evaluated by regarding them as binary classifiers. Con-
sequently, metrics used to measure the performance of object detectors are calculated in
two stages:

1. The distances of detected instances and ground-truth annotations are calculated with
a geometric metric. Based on a metric-specific threshold, every detected instance and
ground truth annotation is classified as one of true positive (TP), false positive (FP), and
false negative (FN).

https://bop.felk.cvut.cz/home/
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2. The numbers of TPs, FPs and FNs are aggregated based on a metric for the evaluation
of binary classifiers, which then gives the final evaluation score.

There are several metrics commonly used in the literature to determine the perfor-
mance of object detectors. We only describe metrics in detail that are relevant in this work.
A metric is deemed relevant if it allows comparing multiple object detectors that fit the
industrial use-case profile. We note that a large majority of publications considering model-
based training use one of the metrics presented below. For an overview of the distribution
in the literature of these metrics, consult Table 2.

Table 2. Dataset–metric combinations we found empirical data for, the tasks (Section 3.1) and
challenges (Section 3.2) that they address, and the number of data points we found for each (i.e., the
number relevant methods evaluated). Alternating grey and white rows are visual aids.

Dataset Metric Task Challenges Data-Points
LM ADD(S)-Recall Localization Background-clutter 19
LM ADD(S)-F1 Detection Background-clutter 7
LM VSD-Recall Localization Background-clutter 11
LMO VSDBOP-Recall Localization Background-clutter, occlusion 17
TLESS VSD-Recall Localization Texturelessness, symmetry 11
TLESS VSDBOP-Recall Localization Texturelessness, symmetry 12

The following geometric metrics are most often used in the literature to evaluate the
performance of 6D object detectors that are trained on 3D models only:

Average distance (symmetric) (ADD(S)) [14]: This metric measures the average distance
of 3D points of an object’s model transformed with two different poses. ADD-S (also
ADI) is a variant, which takes into account that rotationally symmetric objects can
have multiple valid pose estimates. ADD(S) is used to denote that the symmetric
variant ADD-S is used for objects with rotational symmetries and ADD for non-
symmetric objects. The most commonly used threshold for classifying an estimate as
correct is t = 0.1 · d, where d is the target object’s diameter. Some publications use
t = 0.15, which are marked in the respective locations.

Visual surface discrepancy (VSD) [52]: As the name suggests, this metric measures the
difference of the visible surface of an object transformed with two different poses
relative to the camera, i.e., if an object looks exactly the same when transformed
with two poses, the VSD is 0. In particular, this handles rotational symmetries more
intuitively than ADD(S). This metric has two threshold parameters, determining
whether a pose is considered to be correct: τ is the maximum allowed difference in
the camera distance of overlapping pixels; θ is the minimally allowed percentage of
object pixels that need to be considered correct according to the τ condition for the
whole hypothesis to be considered correct. A widely used combination of thresholds
is τ = 20 mm and θ = 0.3. BOP Challenge 2020 [3] used a different approach by
increasing τ in the interval [0.05 · d, 0.5 · d] in steps of 0.05 · d and θ in [0.05, 0.5] in
steps of 0.05. They then determined the score for every τ–θ pair and took the average
as the total score. We refer to this configuration as VSDBOP.

For evaluating object detectors as binary classifiers, we found that the most widely
used metrics for methods fitting our requirements profile are recall and F1-score, where the
latter is the harmonic mean of recall and precision. They are calculated as follows:

recall =
TPs

TPs + FNs
, precision =

TPs
TPs + FPs

, (2)

F1 = 2 · precision · recall
precision + recall

. (3)

Recall is suitable for evaluating the object localization task, as defined in Section 3.1. In
this case, we know that there are N object instances in the scene, and we have a maximum
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of N result hypotheses. From this, it follows that FPs ≤ FNs and recall ≤ precision. This
makes calculating precision redundant for this task. For object detection, the number
of objects to find is unknown, so here, the F1-score is required, as it takes true and false
positives into account.

The geometric metrics that we did not take into account, due to their irrelevancy based
on the conditions given above, but which can be found in literature include 2D projection
error, intersection over union (IoU), translational and angular error, maximum symmetry-aware
surface distance (MSSD), maximum symmetry-aware projection distance (MSPD) and average
orientation similarity (AOS). The binary classification metrics that we did not regard include
average precision (AP), mean average precision (mAP) and area under curve (AUC). See Hodaň
et al. [3] or Sahin et al. [6] for more information on these metrics.

5. Evaluation

Benchmarks of object detectors are defined by three main aspects: the dataset used, the
metric used and the thresholds (tolerances) used to classify a detection result as a success
or failure. Searching for quantitative data on the performance of object detectors meeting
the requirements we posed, we found data for the dataset–metric combinations listed in
Table 2.

Although we focused on the object detection task in this work, we also examined the
results for object localization benchmarks. On the one hand, there are industrial use cases
for which object localization is sufficient, and on the other hand, as stated in Section 3.1,
object localization can be regarded as a sub-task of 6D object detection.

Note that the empirical data we found do not address the two challenges posed in
Section 3.2: unknown object color and difficult surfaces. For learning-based methods, the
properties of the synthetic images used for training play a major role in the robustness
against varying colors of objects, in particular, whether the renderings were generated
with known colors or using some randomization strategy. We could not gather enough
information on the mode of data generation for the training of all algorithms presented
herein, and thus the performance regarding this aspect remains inconclusive. The same is
true for reflective or translucent objects, which pose a very challenging case for all computer
vision tasks and for which, to our knowledge, no annotated dataset for 6D object detection
is available.

5.1. Discussion

In the following, we present the empirical evaluation results we found for several
object detectors. We first summarize our findings regarding benchmark scores, again
focusing on the requirements defined in Section 3.2, then we have a look at the runtimes
of different methods, and finally take a step backward and describe our findings on the
availability and comparability of empirical data in the literature.

5.1.1. Method Scores

The quantitative evaluation results we found for object detectors trained on purely
model-based data are reported in Table 3. From these numbers, we can draw the following
conclusions, regarding the requirements posed in Section 3.2:

Object localization: For LM-ADD(S), LM-VSD, LM-VSDBOP, TLESS-VSD and TLESS-
VSDBOP, the following respective methods perform best: LCHFs [17], PPFs by
Vidal et al. [11], SurfEmb [36], PoseRBPF [33] and and again SurfEmb [36]. LMO-
VSDBOP allows a direct comparison of PFFs and SurfEmb, from which we can
assume that the latter is the overall better method. We cannot compare the other top
runners because they were not evaluated on the same metric–dataset combination, so
the best overall object localizer remains inconclusive.

Object detection: For LMO-ADD(S)-F1, LCHFs [17] perform best. As they also perform
very well for object localization in LM-ADD(S), we conclude that this method can
outperform many other object detectors, albeit with some reservations.
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Occlusion: The LMO-VSDBOP-ranking is led by SurfEmb [36], followed by PointVoteNet [30]
and HybridPose [42] with some margin.

Workpiece-detection (textureless, rotationally symmetric): The top runners on TLESS-
VSD are PoseRBPF with SDF, followed by the same method without refinement [33],
and AAE refined with ICP [43] makes third place with a large margin. For TLESS-
VSDBOP, SurfEmb [36] again makes first place with a large margin, followed by
HybridPose [42] and CosyPose [5].

Table 3. Scores of model-based trained 6D object detectors for different datasets and metrics in
percentages. Methods are sorted alphabetically for easy cross referencing with Table 1. Methods
variants are given in brackets (e.g. refinements, like ICP). Unlike in Table 1, refinement steps are
considered in the modality-column. All except ADD(S)-F1 are recall-based scores. Darker green in
cell backgrounds denotes higher scores, column wise; alternating grey and white rows are visual aids.
The top three methods of a column are in bold. † denotes that a threshold of t = 0.15 · d was used
for ADD(S) instead of t = 0.1 · d. No citation is given for the values of FFB6D, as we evaluated them
ourselves.

LM LM LM LMO TLESS TLESS
Method Modality ADD(S) ADD(S)-F1 VSD VSDBOP VSD VSDBOP
AAE [43] (ICP) RGBD 71.58 [32] 69.53 [43]
AAE [43] RGB 32.63 [32] 20.53 [43]
CAE [21] (ICP) RGBD 58.2 [12] 24.6 [12]
CDPNv2 [29] (ICP) RGBD 46.9 [53] 36.8 [53]
CDPNv2 [29] RGBD 44.5 [53] 30.3 [53]
CosyPose [5] RGB 48 [53] 57.1 [53]
DPOD [27] RGB 10.1 [53] 4.8 [53]
DTT-OPT-3D [15] RGBD 96.5 [6]
EPOS [3] RGB 38.9 [53] 38 [53]
FFB6D [2] RGBD 54.08 55.5 37.7
HybridPose [42] (ICP) RGBD 51.7 [53] 58 [53]
LCHF [16] (co-tra) RGBD 78.6 [6] 82 [6]
LCHF [16] RGBD 12.1 [12]
LCHF [17] (Iterated) RGBD 81.7 † [17]
LCHF [17] RGBD 98.2 † [17] 78.8 † [17]
LineMOD [14] (ICP) RGBD 96.3 [6]
LineMOD [14] RGBD 96.6 [14] 63 [6]
ObjPoseFromSyn [23] RGB 10.22 [32]
Pix2Pose [26] RGB 11.32 [32] 15.6 [53]
PointVoteNet [30] (ICP) D 53.5 [53] 0.3 [53]
PoseCluster [22] (ICP, PPFH) D 56.6 [12]
PoseCluster [22] (ICP, SI) D 33.33 [12]
PoseRBPF [33] (SDF) RGBD 82.58 [33]
PoseRBPF [33] RGBD 80.52 [33]
PPF [9] (Edge) RGBD 42.5 [53] 67.5 [43] 46.9 [53]
PPF [9] (ICP) D 82 [12] 43.7 [53] 37.5 [53]
PPF [9] (ICP, Edge) RGBD 79.13 [12] 39.2 [53] 37 [53]
PPF [9] D 78.9 [6] 51.7 † [17] 56.81 [43]
PPF [10] D 96.4 [6]
PPF [11] (ICP) D 87.83 [12] 47.3 [53] 66.51 [43] 46.4 [53]
PPF [11] D 66.3 [33]
PVNet [49] (ICP) RGBD 50.2 [53]
PVNet [49] RGB 42.8 [53]
RandomForest [19] RGB 67.6 [12]
SSD6D [44] (ICP) RGBD 79 [32]
SSD6D [44] RGB 2.42 [32] 4.7 [53]
SurfEmb [36] RGBD 61.5 [53] 79.7 [53]
SyDPose [28] D 30.21 [28] 59.1 † [28]
SynPo-Net [32] (ICP) RGBD 72.29 [32]
SynPo-Net [32] RGB 44.13 [32]
TemplateBased [18] (PSO) RGBD 94.9 [6] 87.1 [12]
TemplateBased [18] RGBD 69.83 [12] 63.18 [43]
UncertaintyDriven [20] RGB 75.33 [12] 17.84 [43]
YOLO6D [24] RGB 21.43 [32]

Which is the overall best 6D pose estimator when RGBD images and only model-
based training data are available? From the quantitative data, we found that we cannot
answer this question. Most top performers were evaluated on different dataset–metric
combinations, and thus cannot be compared based on the available data. In particular,
most of the promising methods, LCHF [17], PPFs by Vidal et al. [11], SurfEmb [36] and
PoseRBPF [33], cannot be compared directly to each other.



J. Imaging 2022, 8, 53 14 of 18

It is of specific note that under certain circumstances, hand-crafted features can still
contend with learning-based methods, regardless of their age. In particular, for LM-ADD(S),
the ten-year-old LineMOD algorithm [14] and its variant by Rios-Cabrera [15] very nearly
reach the performance of LCHFs [17] and outperform a lot of other newer methods (e.g.,
SSD6D [44], SynPo-Net [32] and AAEs [43]). For LM-VSD, the PPF-based method by
Vidal et al. [11] still outperforms all other methods, and for TLESS-VSD, it makes second
place. However, the good performance in this ranking needs to be put under some reservations:

• A lot of newer methods in the literature are trained on real or a combination of real
and synthetic data, and for a lot of generally promising methods, there are currently
no or little empirical data available on the performance with purely model-based
training; if data are available, they are not comparable.

• LineMOD as well as PPFs have drawbacks compared to learning-based methods that
are not reflected in the scores, such as the need for manual parameter optimization
(both), fragility against occlusion (LineMOD) and slow runtimes (PPF).

• Both LineMOD and PPFs show mediocre performance for LM-F1, while being good at
generating high recalls. We assume this is because both methods are not discriminative
(i.e., they do not explicitly “know” what to exclude), and thus tend to have lower
precision than learning-based methods.

5.1.2. Runtime

In Table 4, we list the runtimes for the evaluated methods, if they were available.
The top two performers and the only ones that reach a frame rate for interactive real-time
applications are methods based on neural networks that work on RGB images without any
refinement [24,32], which comes as no surprise. The fastest RGBD-based method is the
LineMOD-variant DTT-OPT-3D [15]. The numbers show that ICP-refinement is a costly
operation. Methods relying on ICP generally perform worse and more specifically, we can
see a difference of 0.6s when we compare AAE, with and without refinement. The slowest
methods are those based on PPFs. It is of specific note that SurfEmb, the top-performer
regarding occlusion and workpiece detection, needs about 9 seconds per frame, which, for
many use cases, is not acceptable.

5.1.3. Availability and Comparability of Empirical Data

In Table 2, we list the amount of data we have for each dataset–metric combination.
We observe a focus on recall-based metrics in literature. Recall-based metrics have a total
of 70 rows of data, while the F1-score, which also considers precision, only has 7, i.e., many
publications only evaluate the performance of their algorithms regarding object localization,
ignoring false positives, which can be a significant problem in object detection scenarios.

Many methods cannot be compared due to being evaluated on different datasets or
metrics. We assume that one major reason for this is the effort required for processing
multiple datasets or implementing different metrics. It would be desirable to have a
benchmarking framework with a well-defined interface for datasets and pose-estimation
results, supporting multiple metrics and allowing simple extension thereof. This framework
should be accompanied by an online database that allows easy collection and analysis of
empirical data on object detection performance. BOP is a big step in this direction, especially
regarding the standardization of datasets. However, the evaluation metrics implemented
herein were novel at the time of publication, and so they are not comparable to older results.
Additionally, the BOP challenges do not regard precision in their benchmarks. In Appendix
A.1 of [3], the authors discussed their decision on excluding precision in their benchmark
and came to the conclusion that, for the purpose of their benchmark, recall-based scores
are appropriate for two reasons. First, these scores were not saturated at the time of writing
and second, only regarding the recall is less computationally complex for the evaluation
framework. We consider these valid arguments for a benchmark targeting the research
community, but argue that for the potential application of object detectors, more information
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is needed in order to determine its suitability when considering the requirements for a
specific use case.

Table 4. Runtimes of methods and their variants. Note that the comparability of the values listed here
is under great reservations, as they were generated by different persons with different parameters,
using different hardware over the course of 11 years. Nevertheless, they can at least give an impression
of the order of magnitude in which algorithms perform. Alternating grey and white row colors are
visual aids.

Method Variant Modality Runtime [s]
SynPo-Net [32] RGB 0.015
YOLO6D [24] RGB 0.02
DTT-OPT-3D [15] RGBD 0.055
PoseRBPF [33] RGBD 0.071
SSD6D [44] RGB 0.083
PoseRBPF [33] SDF RGBD 0.156
FFB6D [2] RGBD 0.196
AAE [43] RGB 0.2
DPOD [27] RGB 0.206
HybridPose [42] ICP RGBD 0.337
CosyPose [5] RGB RGB 0.47
CosyPose [5] RGB 0.493
AAE [43] ICP RGBD 0.8
CDPNv2 [29] RGB 0.98
PPF [9] ICP D 1.38
LCHF [16] RGBD 1.4
RandomForest [19] RGBD 1.4
CDPNv2 [29] ICP RGBD 1.49
CAE [21] ICP RGBD 1.8
EPOS [3] RGB 1.87
LCHF [17] RGBD 1.96
TemplateBased [18] PSO RGBD 2.1
PPF [9] D 2.3
PPF [11] ICP D 3.22
UncertaintyDriven [20] RGBD 4.4
SurfEmb [36] RGBD 9.227
TemplateBased [18] RGBD 12.3
PoseCluster [22] ICP, PPFH D 14.2
PoseCluster [22] ICP, SI D 15.9
PPF [9] Edge RGBD 21.5
PPF [9] ICP, Edge D 21.5
PPF [9] ICP RGBD 87.57

6. Conclusions and Future Work

In this work, we surveyed the state of the art of 6D object detection with a focus
on industrial applications for which we identified model-based training and support for
RGBD images as being especially important. We presented a collection of qualitative and
quantitative information on object detectors from the literature and new data for the object
detector FFB6D [2]. These data were discussed, and promising candidates for taking on
specific challenges of industrial applications were identified.

Furthermore, we had a look on the availability of data that provide information on the
suitability of algorithms for the use case we analyzed. We found that, for many methods,
there are not enough empirical data available in the literature to determine how well they
are suited to tackle specific challenges or to compare them to competing methods. In
particular, many methods in the literature were only tested on real data, and many methods
were only evaluated on recall-based metrics.

Based on these findings, we believe that the following future research topics would
benefit the application of 6D object detection in industrial contexts:
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• Train established and promising object detectors with model-based data and evalu-
ate them.

• Evaluate established and promising object detectors with metrics that take precision
into consideration.

• Take methods based on point clouds and multi-view images into consideration.
• Allow researchers to produce meaningful and comparable data by providing tools and

frameworks that offer uniform formats and interfaces for evaluating object detectors
on a multitude of different datasets and metrics. Additionally, provide an online
database that simplifies collecting, categorizing and analyzing evaluation results. We
consider BOP to be a good start in this direction, but in order to be a general-purpose
framework for evaluating object detection, it should be extended with more metrics
and simpler interfaces.
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