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Abstract: Photo Response Non-Uniformity (PRNU) is reputed the most successful trace to identify
the source of a digital video. However, its effectiveness is mainly limited by compression and the
effect of recently introduced electronic image stabilization on several devices. In the last decade,
several approaches were proposed to overcome both these issues, mainly by selecting those video
frames which are considered more informative. However, the two problems were always treated
separately, and the combined effect of compression and digital stabilization was never considered.
This separated analysis makes it hard to understand if achieved conclusions still stand for digitally
stabilized videos and if those choices represent a general optimum strategy to perform video source
attribution. In this paper, we explore whether an optimum strategy exists in selecting frames based
on their type and their positions within the groups of pictures. We, therefore, systematically analyze
the PRNU contribute provided by all frames belonging to either digitally stabilized or not stabilized
videos. Results on the VISION dataset come up with some insights into optimizing video source
attribution in different use cases.

Keywords: video forensics; video source attribution; sensor noise; digital stabilization

1. Introduction

Video source attribution is commonly addressed by extracting the traces left into the
content by the Photo Response Non-Uniformity (PRNU), originated by manufacturing
processes in the form of slight imperfections in light response of pixels, and by comparing
them to a reference trace characterizing the device. This methodology, firstly applied for
image source attribution [1,2], provided outstanding results in several contexts, even when
the source or questioned device is not available [3,4], as well as in large-scale scenarios [5],
or when an image is exchanged through social media platforms [6,7].

Few years later, the same technology was extended to digital videos [8,9]. The first
video source attribution schemes consisted of estimating and comparing two PRNU from
a reference and a query video, respectively. However, commonly-used devices, such as
smartphones, usually provide strongly compressed videos with limited resolutions. This
fact makes PRNU estimation less reliable, even in the presence of long video recordings.
The main reason behind this is that most frames, being strongly compressed, slightly
contribute to the estimate of the noise pattern.

Several solutions have been proposed to cope with video compression: in [10], the
authors proposed a confidence weighting scheme to manage videos where high-frequency
contents (e.g., edges) persist at a given image location. In [11] proposed a block-based
approach to build a more reliable PRNU pattern. In [12] the authors noticed that intra-
coded (I) frames are more reliable than predicted (P) frames, and they assign different
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weights to the two kinds of frames to achieve higher accuracy with fewer frames. The
efficiency of a method based only on I frame is also shown in [13], where the authors also
highlight that recent cameras can automatically rotate a video 180 degrees while recording
with rolling 180 degrees and thus introducing another complexity in the attribution process.
In [14] the authors propose an approach that exploits only those frame blocks with at
least one non-null DCT-AC coefficient. In the latest years, Altinisik et al. [15] proposed to
mitigate the disruptive effects of video compression on PRNU estimation by intervening
in the decoding process. The aim was to eliminate any filtering procedure applied at the
decoder, in order to reduce the blockiness. In this work, they also noticed that the prediction
error that will be subject to quantization could be of lesser strength for P and Bidirectional
predicted (B) frames. Therefore, P and B frames can contain relevant PRNU information at
the same compression level of I frames.

However, all the mentioned works do not consider devices equipped with electronic
image stabilization (EIS), which aimes at compensating for camera shake. The technical
specifics of this compensation are generally based on proprietary software, and their
implementation details usually vary among brands. In few cases, some differences among
the existing EIS implementations have been studied in controlled environments and pointed
out [16]. However, from a technical point of view, we can consider all these techniques as
image registration approaches [17] mainly comparable to linear transformations, such as
rigid or affine. The parameters of such transformations can be estimated via brute-force
or through some registration techniques [18]. In [19], a computer vision perspective is
proposed, by exploiting deep learning based registration techniques, to determine scaling
and rotation transformations.

Note that when EIS is applied, PRNU is transformed accordingly, being solid with
respect to the transformation, and this issue has to be considered during PRNU comparison.
Starting from this consideration, in [20], the authors intuitively assume that I frames are
still the best to be used with stabilized videos. Furthermore, Taspinar et al. emulate in-
camera stabilization with third-party software, thus making their results still far from actual
cases. Ferrara et al. analyze modern smartphones from VISION Dataset [21] and propose
to compute the fingerprint from the most representative frames that, once accumulated,
maximize the peak-to-correlation energy (PCE) [22]. The main drawback is the growth
of false alarm rate due to the maximization step. In [18], the authors notice that the first
frame of a video sequence is generally not affected by EIS, thus making it effective by itself
to compute a reliable fingerprint estimate. This fact also suggests that the first group of
pictures (GOP) can be less affected by digital stabilization, thus providing important PRNU
information. Nevertheless, the authors consider I frames only, based on the results in the
previous works. Eventually, Altinisik et al. [23], focusing on I frames, introduce a source
camera verification method for strongly stabilized videos, by assuming more degrees of
freedom and taking into account the spatially variant nature of EIS. In the VISION and
other datasets, they correctly verify the source of 23–30% of the strongly stabilized videos
available. The main drawbacks of the method are its high computational cost for the
blind inversion step and the rise of false PRNU matching due to content similarity among
frames. Overall, it is still not clear whether there is a general and optimum strategy to
select frames within a video sequence in the case of digitally stabilized videos. In this
paper, we systematically analyze the PCE on several video sequences, including digitally
stabilized videos, to determine whether: (i) I frames always produce a better fingerprint
estimate than P frames; (ii) the quality of a fingerprint estimated from P frames depends
on the frame position within the GOP; (iii) the first GOP should be preferred for a better
fingerprint estimate.

The paper is organized as follows: Section 2 recalls technical fundamentals of video
compression; Section 3 provides an introduction of PRNU and describes the methodology
that we used to conduct our study. Section 4 reports the performed experiments, while
Section 5 summarizes the main findings and insights of our analysis. Finally, Section 6
draws the conclusions and highlights the open issues.
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2. Basics of Video Compression

Before going into the details of source camera attribution based on PRNU, we briefly
recall some basics of video compression. Any digital video is essentially a temporal
sequence of pictures (i.e., frames) acquired at a given frame rate. Such a data stream can be
compressed to save storage or transmission bandwidth by exploiting spatial and temporal
redundancies and, at the same time, by considering the characteristics of the Human Vision
System (HVS) in order to minimize visual degradation. To achieve this goal, the most
common video compression standards such as Advanced Video Coding (also known as
MPEG-4 AVC or H.264) [24,25], or the more recent H.265 [26], employ block-oriented and
motion-compensated encoding approaches. Briefly, these coding schemes divide frames
into two different types: intra-coded frames, also referred as I frames, and predictive-coded
frames, which can be divided in sub-types such as predicted (P) and bidirectional predicted
(B) frames. During the encoding process, frames are grouped in GOPs (group of pictures).
Every GOP always begins with an I frame and then presents a certain number of predictive
frames. The number of frames composing a group of pictures is called GOP size, which can
be constant or variable depending on the specific implementation. In modern smartphones,
GOPs generally have a fixed number of frames (e.g., 30) and do not include B frames, thus
making available a fixed percentage of I and P frames, respectively.

When a frame is compressed, the encoder divides it into macroblocks (MBs), and
encodes each MB individually: MBs belonging to I frames are always encoded without
referring to other frames, by means of a DCT quantization strategy. In this sense, I frames
are encoded in a similar way as JPEG images. The main difference resides in the MB
size, bigger than the typical 8× 8 pixels JPEG block, and in the quantization coefficients
applied to the DCT. Compared to a JPEG image whose quality factor is 100%, quantization
coefficients of an intra-coded MB are larger, so that most of the high frequency components
are filtered out.

On the contrary, MBs belonging to predictive-coded frames may be encoded referring
to previous frames (this is the only possibility in P frames) or even referring to the following
frames (allowed in B frames). Besides predicted MBs, the encoder embeds the motion
vectors associated to each MB. In some configurations, the encoder has also the possibility
to skip a MB in a predictive-coded frame, if this MB can be directly copied from a previous
frame (e.g., in presence of a static content). Finally the numeric stream is further compressed
by means of lossless compression.

For a more detailed explanation, reader might refer to [24–26].

3. Prnu Estimation

When dealing with digitally stabilized videos, it is convenient to estimate the camera
fingerprint from still images because they are not affected by EIS [27].

In the proposed analysis, we thus exploit still images to generate fingerprints of all
available devices. The workflow for generating camera fingerprints is shown in Figure 1.
Note that, when testing a query video, it is necessary to properly downscale and to crop the
image fingerprint that is generally acquired by using a larger portion of the camera sensor,
while when generating a video sequence, the full-frame sensor is generally downsized
to reduce the amount of processed data (e.g., through pixel binning [28]). The scaling
and cropping parameters of each device are estimated according to the methodology first
introduced in [27], and then refined in [18,22].

Given a set I of N images I1, . . . , IN , the camera fingerprint is estimated as follow: a
denoising filter [1,29] is applied to the images to obtain the noise residuals W1, . . . , WN ;
the reference camera fingerprint estimate K̃I is derived by the maximum likelihood estima-
tor [30]:

K̃I =
∑N

i=1 WiIi

∑N
i=1 I2

i
(1)
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where the subscript I stands for a PRNU at the same resolution as the images. Two further
processing are applied to K̃I to remove demosaicing traces, JPEG blocking, and other
non-unique artifacts [30].

Figure 1. Pipeline describing the generation of the camera PRNU. The workflow is repeated for each
device. The sets of images I and the video V are assumed to be acquired by the same device.

In parallel, the same denoising filters and processing are used to extract the noise
patterns from video frames originated by the same camera as the set of images I . The noise
patterns are processed individually in order to avoid the combination of geometrically
misaligned frames when EIS is activated. For each frame, we estimated the parameters
of scaling ŝ and cropping (T̂x, T̂y). The estimation is performed by means of exhaustive
search over the parameters (ŝ, T̂x, T̂y) that maximize the cross-correlation between the
frame noise pattern and KI. Once estimated at the level of single frame, the parameters
are aggregated by calculating the most frequently estimated values, as suggested in [22].
Finally, we applied the geometrical transformation Tŝ,T̂x ,T̂y

to K̃I in order to obtain the

camera fingerprint for video K̃V.
The testing procedure is described in Figure 2. Given a query video frame V, belonging

to the video V , and a reference camera fingerprint K̃V, the source attribution test is defined
as follow: given W, the noise residual extracted from V, the two-dimensional normalized
cross-correlation ρ(s1, s2; W, K̃V) is computed for any plausible shift (s1, s2); then the PCE
ratio [5] is derived as

PCE(V, K̃V) =
ρ(speak)

2

1
mn−|N | ∑

s/∈N
ρ(s)2

, (2)

where N is a small set of peak neighbours and (m, n) is the image pixel resolution, and
speak is the shift value that maximizes the correlation ρ(s1, s2). In case of stabilized videos,
the search space of the shift peak can be reasonably considered a square centered in (0, 0),
representing the plausible shift introduced by the EIS.

Figure 2. Pipeline describing the testing process between a query video V and the camera PRNU.
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In general, a query video V comprises hundreds of frames V1, . . . , VN , thus allowing
to compute Equation (3) for all available frames. In the end, given N frames, we compute
the test statistic

P(V , K̃V) = max
j=1,...,N

PCE(Vj, K̃V). (3)

For a given threshold τ, we decide that the fingerprint K̃V is found within V , i.e., the
video belongs to the reference camera, if P > τ.

For the sake of completeness we report the pseudo-codes of the algorithms for es-
timating the video fingerprint (Algorithm 1) and testing the video frames respectively
(Algorithm 2).

Algorithm 1 Fingerprint Generation.

1: input data: for each device, V1, . . . , VN , I frames, I1, . . . , Im still images;
2: neighbourhood size N , PCE_threshold τ;
3: minimum scale sm, maximum scale sM, scale increment δs;
4: result: Fingerprint of the inquired camera;
5:
6: for 1 ≤ i ≤ m do
7: extract PRNU Wi from Ii
8: end for
9:

10: apply Equation (1) among I1, . . . , Im and get K̃I
11:
12: for 1 ≤ j ≤ n do
13: extract PRNU Wj from Vj;
14: inizialize Tx, Ty = 0;
15: for s = sm; s ≤ sM do
16: s = s + δs;
17: compute s(Wj), scaled version of Wj by s;
18: curPCEj = PCEj(s(Wj), K̃I)
19: end for
20: if max(curPCE) > τ then
21: save s̃j, T̃x j, T̃y j corresponding to achieved max(curPCE)
22: end if
23: s = mode(s̃); Tx = mode(T̃x), Ty = mode(T̃y)
24: end for
25:
26: obtain KV by scaling and cropping KI by s, Tx, Ty

Algorithm 2 Frame Testing.

input data: video fingerprint reference KV, for each device,
2: V1, . . . , Vn belonging to video V

result: PCE between KV and each frame
4:

for 1 < l < n do
6: extract PRNU Wl from Vl ;

compute PCE between KV and Vl
8: end for

4. Experiments

The experiments are performed on a computer with an Intel64 Family 6 Model 158
Stepping 9 GenuineIntel @ 3.601 GHz CPU and 32 GB RAM. The code for PRNU extraction
and matching is developed in MATLAB.
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Tests were performed on the VISION dataset [21], including images and videos from
34 devices (We excluded device D13 from the original dataset given the low resolution of
the images and videos) belonging to 11 different brands: Apple, Asus, Huawei, Lenovo, LG
Electronics, Microsoft, OnePlus, Samsung, Sony, Wiko, and Xiaomi. For each device, we pro-
duced a reference PRNU pattern by using the approach defined in [22]. For query data, we
used the videos categorized as indoor and outdoor according to VISION names convention.

4.1. Experimental Setup

We systematically analyzed the PRNU contribution of each frame type. To do so, we
extracted the PRNU from all video frames, and we determined the frame types by using
ffprobe, a tool provided by FFmpeg (https://ffmpeg.org/ accessed on 12 February 2022).
To be independent of the resolution, we computed the PCE between the reference and
the frame PRNU by cropping a central patch of 480× 480 pixels. The search space of the
correlation peak within the correlation matrix was set at 30× 30 pixels and centered around
the expected peak position (ideally at (0, 0) lag). Such a large search space allows to deal
with possible horizontal and vertical translations of the query PRNUs due to EIS. Possible
rotation and scaling factors are excluded since they do not severely affect the performance
and they allow to keep the complexity reasonable [18].

Afterward, we performed a distinctive analysis in function of:

• whether the frame is an intra or a predicted coded one;
• whether the video is acquired in presence of EIS or not;
• whether the frame belongs or not to the first GOP.

The last distinction was made to reach a deeper understanding of some devices where
EIS eventually is not applied to the first (intra-coded) video frame [18].

4.2. Evaluation at Frame Level

First, we evaluated the PCE distributions grouped by devices. Results are shown in
Figure 3: for the sake of space, we reported the most meaningful examples that summarize
all the observed behaviors. In each subfigure, we plotted the PCE value in function of the
correlation peak position (Tx, Ty). Each detected peak comes from the comparison between
a frame and the reference PRNU coming from the same device. Different colors are used for
I frames (in blue) and P frames (in gray), as well as distinct markers are adopted for frames
belonging to the first GOP (triangle) and following GOPs (circle), respectively. The overall
finding is that the achievable correlation energy strongly varies among devices, based on
several factors: (i) the basic amount of sensor noise (that may vary among brands); (ii) the
video acquisition settings and coding parameters (e.g., quantization tables) of the camera
software; (iii) the estimation uncertainty suffered by the alignment compensation between
the image and video PRNU. Although it is unlikely to predict the combined effects of these
factors for each device, we try to provide some justification about the main behaviours
(reported in Figure 3). In videos acquired from the same (or similar) device models, such as
the iPhone 4 and 5c in (b), (d), and (e), the chances are that non-stabilized frames achieve
higher PCE values than stabilized frames. This first conclusion is reached by considering
that EIS introduces rounding errors among the relative positions of the acquired video
frames. Then, the estimation of EIS parameters introduces a further uncertainty, resulting
in a lower PCE value. Unfortunately, this assessment is hard to be done for (f) since we do
not have any non-stabilized video of the same or similar models. Similarly, video frames in
(a), (b), and (c), all non-stabilized, achieve very different PCE: devices in (a) and (c) achieve
lower PCE ranges compared to (b). The small dynamics of D01 values can be explained
by the effect of a strong compression. For device D23, it is likely that the reference PRNU
is not extracted correctly. It worth also noticing that, for device D09 (not adopting EIS),
we observe a significant offset between the reference PRNU for that device and the PRNU
extracted from video frames. In this case, a small neighborhood (5× 5 or 10× 10) of search
could lead to a missed detection.

https://ffmpeg.org/
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(a) (b)

(c) (d)

(e) (f)

Figure 3. 3D scatter plots of PCE in function of correlation peak position of six most representative
devices. PCE is evaluated for each frame of all videos available for a given device. Samsung (a),
Apple (b,d,e), Asus (c) and OnePlus (f) devices are shown. Non-stabilized (a–c), as well as stabilized
(d–f) videos are presented. We also report a case of missed detection (c) at frame level.

Globally, in non-stabilized videos, frames tend to match in a position very close to the
same PCE location (see Figure 3a,b), except for device D23. It is worth noting that in all
cases there is no a significant ’preference’, neither for selecting I frames with respect to P
frames, nor for using frames from the first GOP with respect to the ones belonging to the
following GOPs.

The situation rather changes for stabilized recordings (Figure 3d–f). Commonly, PCE
values tend to spread around a central position, following the fact that EIS compensates
horizontal and vertical relative shifts between subsequent frames so that the PRNU of each
frame is misaligned to each other. In most cases, the first frame contains discriminative
information for the source attribution. However, while in some devices, the first video frame
is not affected by stabilization (e.g., D05 and D14), in other cases, a motion compensation
must be taken into account to avoid a missed detection (e.g., D25). In several devices,
properly compensated P frames can also contribute to the PRNU information (e.g., D05,
D14, D25). However, it is worth noticing that the PRNU contribution of each frame type
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(I and P) may strongly vary among devices. Overall, in Table 1 we report,the percentage
of I and P frames providing a relevant PCE (τ > 50) for each device. Devices equipped
with EIS are highlighted in bold. In the last two columns, we also report the corresponding
standard deviation of the estimated peak shifts. For instance, the shift alignment required
to match the I frames of the iPhone 4s has a standard deviation of 6.16 and 9.87 pixels on
the horizontal and vertical axes respectively. In some cases, we are not able to estimate
them since we could not find any matching frames (e.g., P9 Lite). PRNU information can
be found more easily on Apple devices and some fewer spread models (e.g., Lumia 640
LTE, Ridge 4G). Conversely, in Samsung and Huawei devices, the contribution of a single
frame is rather enough to correctly identify the source, especially for intra-coded pictures.

Table 1. Frame-level analysis: second and third columns show the percentage of I frames and P
frames, respectively, providing a PCE higher than a threshold Th ≥ 50. The remaining columns
provide the standard deviation of the shift associated with each correlation peak whose energy is
higher than the threshold. Devices adopting EIS are highlighted in bold. PRNU information can be
found more easily on Apple devices and some fewer spread models (e.g., Lumia 640 LTE, Ridge 4G).
Conversely, in Samsung and Huawei devices, the contribution of a single frame is rather enough to
identify the source, especially for inter-coded ones correctly.

Brand Model Device (%) I Frames (%) P Frames (σx, σy) on I Frames (σx, σy) on P Frames

Apple

iPhone 4s D02 50.74 12.63 (6.16, 9.87) (6.50, 8.68)

iPhone 5c D05 11.76 13.21 (3.48, 0.92) (1.11, 1.06)

iPhone 6 D06 35.69 7.97 (3.80, 4.45) (2.95, 3.53)

iPhone 4 D09 85.22 51.37 (0.44, 0.00) (0.55, 0.05)

iPhone 4s D10 5.37 0.06 (6.55, 6.47) (3.69, 4.21)

iPhone 5c D14 7.36 8.64 (4.72, 4.92) (5.92, 9.91)

iPhone 6 D15 37.73 23.52 (3.89, 4.35) (2.60, 3.04)

iPhone 5c D18 25.65 26.07 (0.42, 0.61) (1.19, 1.18)

iPhone 6 Plus D19 52.50 25.54 (4.88, 5.42) (3.70, 4.09)

iPad Mini D20 36.48 19.85 (5.93, 7.34) (3.92, 4.27)

iPhone 5 D29 9.62 6.20 (2.01, 2.10) (2.43, 2.07)

iPhone 5 D34 10.46 13.20 (0.92, 2.94) (1.08, 2.04)

Huawei

P9 D03 1.84 0.03 (0.00, 0.38) (0.00, 0.00)

P9 Lite D16 0.00 0.00 - -

P8 D28 2.68 0.00 (0.00, 0.23) -

Honor 5c D30 0.00 0.00 - -

Ascend D33 2.64 0.04 (0.00, 0.00) (0.00, 0.00)

Samsung

Galaxy S3 Mini D01 1.20 0.04 (0.28, 0.00) (0.00, 0.00)

Galaxy Tab 3 D08 0.00 0.00 - -

Galaxy S3 D11 18.61 1.64 (0.00, 0.00) (0.15, 0.15)

Galaxy Trend Plus D22 0.97 0.00 (0.00, 0.00) -

Galaxy S3 Mini D26 0.00 0.00 - -

Galaxy S5 D27 3.33 0.10 (0.46, 0.50) (0.50, 0.51)

Galaxy S4 Mini D31 1.94 0.00 (0.00, 0.00) -

Galaxy Tab A D35 18.19 0.83 (0.00, 0.46) (0.52, 0.49)
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Table 1. Cont.

Brand Model Device (%) I Frames (%) P Frames (σx, σy) on I Frames (σx, σy) on P Frames

OnePlus
A3000 D25 17.50 7.84 (3.74, 2.69) (0.79, 0.91)

A3003 D32 22.50 17.34 (4.78, 4.64) (2.30, 2.43)

LG D290 D04 0.00 0.00 - -

Lenovo P70A D07 0.14 0.03 (0.00, 0.00) (0.00, 0.00)

Sony Xperia Z1 Compact D12 22.08 9.40 (0.77, 0.76) (0.75, 0.69)

Microsoft Lumia 640 LTE D17 33.33 12.08 (0.45, 0.00) (0.48, 0.08)

Wiko Ridge 4G D21 26.51 11.77 (0.00, 0.00) (0.04, 0.00)

Asus Zenfone2 Laser D23 0.00 0.00 - -

Xiaomi Redmi Note 3 D24 0.97 0.02 (0.53, 0.38) (0.55, 0.45)

4.3. Performance at Video Level

The previous analysis provides useful insights at the level of a single frame. At the
video level, we applied Equation (3), and then we performed a binary classification. We
describe the performance through Detection Error Trade-off (DET) curves, produced by
considering only I frames or only P frames in a given position within the video stream
and considering or not the first GOP. We draw them by varying the decision threshold
and by calculating the False Positive Rate (i.e., the rate of true negative samples wrongly
classified as positive) and the Missed Detection Rate (i.e., the rate of true positive samples
that are erroneously classified as negative). Finally, the axes are non-linearly scaled by their
standard normal deviates in a logarithmic scale. The DET curves are separately drawn for
non-stabilized and stabilized videos (Figure 4a,b respectively). For the sake of visualization,
we report results obtained using I frames, the first P frames, or the last P frames only.

A first observation rises: performance over stabilized videos seems better than non-
stabilized videos over the VISION dataset, independently from the type of frame considered.
This outcome is quite unexpected because the PRNU footprint of non-stabilized videos
should not be misaligned, and we should have observed higher performance for non-
stabilized videos. Either can explain this phenomenon by poor quality reference PRNU
for some devices (particularly in devices D023 and others) or stronger compression for
the oldest devices, which usually need to produce more compressed video files to address
their limited storage capabilities. Nevertheless, by analyzing the two figures separately, we
still notice some interesting insights. In Figure 4a we remark that I frames provide better
discrimination capabilities with respect to P frames. This result is in agreement with most
of the previous works, which selected I frames, only. Moreover, the position of the I frames
within the entire GOP does not produce relevant differences.

Regarding stabilized videos, we remind to Figure 4b, showing that the use of I frames
performs better than other strategies. However, if the first GOP is excluded, I frames
and the first P frames have worst and not far discrimination capabilities (green and red
dot lines in Figure 4b). Conversely, the second video frame, provides PRNU information
close to most I frames (red line and green dot line, respectively). This outcome can be
explained by considering how EIS works: because for some devices it is not applied to the
first (I) frame, the following one (first P frame of the whole video) is weakly affected by
EIS, since the content of the frames are quite correlated each other for small time intervals.
Coherently, the last P frames do not contain PRNU information, independently from the
considered GOP.

We extended the previous analysis to frames in other positions (see Figure 5). We show
the Equal Error Rate (EER) computed for the DET curves obtained by considering the frames
in position {1st, 2nd, 6th, 12th, 18th, 24th, 29th}, for each GOP. It appears even clearer that
for non-stabilized videos, the choice of I frames minimizes the classification error. However,
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P frames still contain some PRNU traces, independently from the position of the GOP. For
stabilized videos, the first frame usually provides the most discriminative information,
independently from the presence or absence of stabilization. Similar conclusions can be
made for the first P frame, which is often slightly affected by EIS, thus providing useful
PRNU traces.

As a the last experiment, we compared two different strategies: the first (suggested
in [18]) is to use a very limited number of I frames; the second one is to consider first five
video frames, independently from their type. The results are grouped by brands available
in VISION (see Figure 6). It is worth to note that performance can strongly vary among
different brands. Overall, the detection rate of the Apple brand is the highest. This fact is
relevant if we consider that the different behaviors among brands are never considered in
most proposed methods. This fact also exposes that methods’ performance can significantly
change by adding or removing a few devices from a specific brand. We can fairly notice that
the discrimination power is almost the same for Apple devices between the two approaches.
At the same time, it is quite worse for Huawei and Samsung models (with a preference for
the use of I frames only).

  0.1   0.2  0.5    1     2     5     10    20    40  

False Positive Rate (%)

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

M
is

se
d

 D
e
te

c
ti

o
n

 R
a
te

 (
%

)

I frames, first GOP included

first P frames, first GOP included

last P frames, first GOP included

I frames, first GOP excluded

first P frames, first GOP excluded

last P frames, first GOP excluded

(a)

  0.1   0.2  0.5    1     2     5     10    20    40  

False Positive Rate (%)

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

M
is

se
d

 D
e
te

c
ti

o
n

 R
a
te

 (
%

)

I frames, first GOP included

first P frames, first GOP included

last P frames, first GOP included

I frames, first GOP excluded

first P frames, first GOP excluded

last P frames, first GOP excluded

(b)

Figure 4. Detection Error Trade-off curves for non-stabilized (a) and stabilized videos (b). Curves are
obtained by considering only I frames, only the first P frame, or only the last P frame of each GOP.
The analysis is conducted by considering (solid lines) or not (dotted lines) the first GOP.
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Figure 5. Missed Detection Rate (MDR) at 1% of False Positive Rate (FPR), obtained by considering
frames at a different positions within the GOP. In blue, the results for non-stabilized videos, in red for
the stabilized ones. Solid lines are obtained by considering all GOPs in a video, dot lines by excluding
the first GOP.
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Figure 6. DET curves grouped for different brands available in VISION: Apple (blue), Huawei (red),
and Samsung (green). Comparison of two possible strategies: taking the first five I frames (solid
lines) and the first five frames of the first GOP (dotted lines).

5. Findings and Insights

The above analysis comes up with some findings and insights that can be exploited to
design a PRNU-based source video attribution task. In the following, we summarize them.

Finding #1 a strategy that could be optimal both in presence of EIS and not is difficult to
be achieved. In fact, the literature [21,31] shows that for non-stabilized videos,
the optimal solution is to aggregate PRNUs extracted from all frames, or at
least all the I frames, according to Equation (1). At the same time, this approach
can hardly be applied to the case of stabilized videos. Conversely, working at
frame level, [18] improves results for stabilized videos, but it is sub-optimal for
non-stabilized videos.

Finding #2 from the previous finding, we can derive that a system able to classify whether
a video is stabilized or not reliably could lessen the problem. Some techniques
exist, such as [20], but if used, the final accuracy is clearly affected by the
uncertainty that this tool introduces. Moreover, when this solution is adopted
in large-scale scenarios, the complexity that the solution introduces becomes
not negligible.
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Finding #3 the overall performance of source attribution based on PRNU heavily depends
on the device model and/or brand.

Finding #4 I frames indeed convey a less attenuated and distorted PRNU independently
from the presence/absence of EIS and the source brand.

Finding #5 In presence of EIS, the first I frame usually provides the most significant PRNU
information. Depending on the device, it can be affected or not by EIS.

Finding #6 P frames could contain a weakly distorted-attenuated PRNU in both cases. In
presence of EIS, we found that P frames within the first GOP generally provide
the most reliable PRNU information.

Finding #7 When possible, P frames that follow an I frame should be preferred. Except for
this, the contribution of P frames does not depend on their position within the
GOP.

By following the previous findings, we provide some possible strategies in function of
the use cases.

Insight #1 If a reliable system for classifying a video as stabilized or not is provided, it
should be adopted in order to perform two different matching strategies (global
accumulation vs. frame-level analysis). The final performance should take into
consideration the accuracy of the whole system.

Insight #2 If the video duration is long enough and with a sufficient number of I frames
(a 1-min length video, encoded at 30 fps and with a GOP size of 30 frames,
contains at least 60 I frames), the choice of using only I frames is a good trade-off
between performance and complexity. The first I frames should be privileged
in the analysis.

Insight #3 If the video is short and the number of I frames is limited, P frames could be
exploited to improve performance. In particular, the first P frames following
an I frame are proved to be more suitable than the others.

Insight #4 When deciding a threshold for the binary decision, a training with a control
dataset should be adopted. The dataset should be as close as possible to
the target devices in terms of EIS and video encoding to avoid unexpected
classification errors.

6. Conclusions

In this paper, we evaluated which type of frame is more useful to perform PRNU-
based video source attribution, even in presence of electronic image stabilization. We
systematically analyzed the PRNU contribution of each video frame in order to assess
if an optimum unified strategy could be performed, independently from the adoption
of electronic image stabilization and the device model. The analysis shows that such a
strategy still remains far from being defined, since we discovered that video compression
behavior and EIS implementations can strongly vary among brands. At the same time, we
provided some findings and insights that the forensic practitioner should take into account
to optimize the source attribution strategy depending on the investigated device and the
available information.
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Abbreviations
The following abbreviations are used in this manuscript:

B frame Bidirectional predicted frame
DCT Discrete Cosine Transform
DET Detection Error Trade-off
EER Equal Error Rate
EIS Electronic Image Stabilization
GOP Group of Pictures
HVS Human Vision System
I frame Intra-coded frame
MB Macro Block
MDR Missed Detection Rate
P frame Predicted frame
PCE Peak-to-Correlation Energy
PRNU Photo Response Non-Uniformity
LD Linear dichroism
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