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Abstract: Cardiovascular diseases (CVDs) are the primary cause of death. Every year, many people
die due to heart attacks. The electrocardiogram (ECG) signal plays a vital role in diagnosing CVDs.
ECG signals provide us with information about the heartbeat. ECGs can detect cardiac arrhythmia. In
this article, a novel deep-learning-based approach is proposed to classify ECG signals as normal and
into sixteen arrhythmia classes. The ECG signal is preprocessed and converted into a 2D signal using
continuous wavelet transform (CWT). The time–frequency domain representation of the CWT is
given to the deep convolutional neural network (D-CNN) with an attention block to extract the spatial
features vector (SFV). The attention block is proposed to capture global features. For dimensionality
reduction in SFV, a novel clump of features (CoF) framework is proposed. The k-fold cross-validation
is applied to obtain the reduced feature vector (RFV), and the RFV is given to the classifier to classify
the arrhythmia class. The proposed framework achieves 99.84% accuracy with 100% sensitivity and
99.6% specificity. The proposed algorithm outperforms the state-of-the-art accuracy, F1-score, and
sensitivity techniques.

Keywords: cardiac arrhythmia; ECG; deep learning; attention block; heart disease; features extraction

1. Introduction

Cardiovascular diseases (CVDs) are the primary cause of death every year. According
to the World Health Organization (WHO), approximately 17.9 million people died due to
CVD in 2019, which translated as CVDs causing 32% of global deaths. Of these deaths,
85% were due to heart attacks [1]. A heart attack is caused by the blockage of one or
more coronary arteries, whereas other CVDs cause the remaining 15% of the deaths due to
cardiac arrhythmia. Cardiac arrhythmia is an irregular heartbeat. ECGs are used to monitor
heartbeats. The ECG signal is recorded through electrocardiography in which 12 leads are
placed on the body. For correct recording of the ECG, the placement of the leads is very
important [2]. The correct positions of the leads and the components of the ECG signal are
shown in Figure 1.

A normal heartbeat has a regular rhythm in the ECG plot, whereas arrhythmia heart-
beats have irregularities. In this article, sixteen classes of cardiac arrhythmia are considered.
These classes are atrial premature beats (APBs), atrial flutter (AFL), atrial fibrillation (AFIB),
supraventricular tachyarrhythmias (SVTA), Wolff–Parkinson–White (WPW), premature
ventricular contraction (PVC), idioventricular rhythm (IVR), ventricular bigeminy, ventric-
ular trigeminy, left bundle branch block (LBBBB), ventricular tachycardia (VT), ventricular
flutter (VFL), second-degree heart block (SDHB), the fusion of ventricular and regular
beat, right bundle branch block (RBBBB) and short PR [3]. Not all cardiac arrhythmias are
harmful, but a few are, such as AFIB and VFL, which can cause heart attacks. Thus, it is
necessary to identify the arrhythmia class to avoid potential damage.

The classification of ECG beats into arrhythmic cardiac classes has been performed
using several conventional and deep-learning-based algorithms. ECG is a one-dimensional
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(1D) signal; therefore, the anomalies can be detected using machine learning approaches.
Prasad et al. [4] used k-nearest neighbors (kNNs) to classify arrhythmia and achieved
a 97.65% accuracy. The framework only considered the nonlinear local features and 1D
signals. Similarly, the authors of [5] used kNNs to detect arrhythmia and achieved a
sensitivity of 97.22% for the detection. The method only considered the handcrafted
features of the 1D signals. With the advancements in deep learning, many deep learning
architectures have been proposed to classify arrhythmias. In [6], the authors proposed a
multilayer perceptron (MLP) and convolutional neural network (CNN)-based architecture
for the classification of arrhythmia using 1D ECG signals. They achieved an accuracy of
88.7% for the MLP and 83.5% for CNN-based framework. Similarly, ref. [7] converted an
ECG signal to a 2D signal and used a CNN-based approach to classify arrhythmia. They
only considered eight classes and achieved a classification accuracy of 99.11%.
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Inspired by this, we propose a novel deep-learning-based framework for classifying
cardiac arrhythmia using attention-block-based CNN and the clump of features (CoF).
The ECG signal is segmented into beats and converted into a 2D time–frequency domain
signal using CWT. The features are extracted using attention-based CNN. After feature
extraction, feature reduction is achieved with the help of the CoF model; then, classification
is performed using classifiers. The performance of several classifiers is compared.

The rest of the article is organized as follows: Section 2 presents related work; the
proposed methodology is explained in Section 3; Section 4 shows the experimental results;
and in Section 5, conclusions are drawn.

2. Related Work

ECG signals are widely used for the detection and diagnosis of heart diseases. The sig-
nals can also be used for the classification of arrhythmia. These signals are one-dimensional
and can be transformed into two-dimensional signals to classify the arrhythmia beats.
ECG-based arrhythmia classification can be performed using handcrafted and deep tempo-
ral features. In [8], the authors proposed a gray-level co-occurrence matrix (GLCM) and
gray-level run-length matrix (GLRLM)-based model for the classification of arrhythmia.
They used six machine learning classifiers and achieved 90.42% accuracy for the 1D signal.
In this framework, only handcrafted features are considered.

Similarly, in [9], a multi-resolution representation-based deep neural network model
is proposed to classify arrhythmia. This model achieved an F1-score of 0.9238. The model
is only applicable for the 1D signal and only considers handcrafted features.

In [10], an attention-based model is proposed for the classification of arrhythmia. The
authors used the PhysioNet public dataset and achieved 92.8% accuracy, but the ECG signal
in 1D is considered classification. In [11], the authors calculated RR intervals to detect
arrhythmia. The approach uses conventional methods and achieves an accuracy of 99.98%.
They also considered ECG in 1D.
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In [12], the authors converted the ECG signal into a 2D spectrogram and proposed
a framework based on the spectrogram for arrhythmia classification. They achieved an
accuracy of 99.02% for the 2D-based CNN model. They only considered seven classes
of arrhythmia. In [13], the authors demonstrated a support vector machine (SVM)-based
framework for classifying arrhythmia using a 1D ECG signal. They considered 17 classes
of arrhythmia and achieved 97.3% accuracy. The authors of [14] used YOLO to detect
arrhythmia, and they considered only four classes of arrhythmia. Similarly [15], proposed
a CNN-based framework for classifying cardiac arrhythmia using short-time Fourier trans-
form (STFT) as input signal and achieved 99.00% accuracy, but they only considered four
arrhythmia classes.

Furthermore, SVM is used to classify arrhythmia using the MIT-BIH database in [16].
They used selective bands and achieved 97.06% accuracy. Similarly, the authors of [17] used
SVM to classify arrhythmia into four classes and achieved an accuracy of 83%. Moreover,
in [18], the authors demonstrated cardiac arrhythmia classification using fog computing.
They used the LSTM network for the classification of cardiac arrhythmia. Majahad et al. [19]
demonstrated the conversion of ECG into time–frequency domain representation to classify
arrhythmia. They used bagging methods and achieved 99% accuracy.

Motivated by the conversion of ECG into the 2D signal, we propose a novel deep-
learning-based framework for classifying sixteen cardiac arrhythmia classes. A plethora of
pre-trained D-CNNs, such as AlexNet [20], ResNet-50 [21], VGG-19 [22], Inception v3 [23],
GoogLeNet [24], ShuffleNet [25], SqueezeNet [26], EfficientNetb0 [27], Xception [28], and
DarkNet-53 [29], as well as the novel attention-based CNN ArrhythmiaNet, have been
used for the feature extraction of 2D time–frequency representations of ECG beats. These
features are reduced, and the classifier is trained using reduced features. The upcoming
section explains the proposed methodology.

3. Proposed Methodology

The proposed framework consists of four major blocks. In the first block, the ECG
signal is segmented into beats and then converted into 2D time–frequency representation
using CWT. These 2D signals are given to the second block where the local, as well as
global features, are extracted using a novel ArrhythmiaNet architecture. The output
of ArrhythmiaNet is SFV. SFV is fed into the third block where the k-means clustering
algorithm is applied, and the features are reduced to obtain RFV. This RFV is used to train
the classifier in the fourth block, and the outputs of the classifier are the arrhythmia classes.
The proposed framework is illustrated in Figure 2.
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3.1. Preprocessing

We used the MIT-BIH dataset [30] for this research. The dataset consists of ECG
signals of the standard and cardiac arrhythmia classes, and there are a total of 16 classes of
cardiac arrhythmia. Table 1 shows the number of samples in each class. Each sample has
1000 fragments.

Table 1. Summary of dataset classes.

Class Name Number of Samples

NSR 283

APB 66

AFL 20

AFIB 135

SVTA 13

WPW 21

PVC 133

Bigeminy 55

Trigeminy 13

VT 10

IVR 10

VFL 10

Fusion 11

LBBBB 103

RBBBB 62

SDHB 10

PR 45

All the ECG signals are segmented into beats using a timeframe window. The time-
frame is kept constant for all ECG signals. Each ECG signal of ten seconds is divided into
ten beats of one second. Figure 3 shows the ECG signal and its segmented beats.

After segmentation, the segmented beats are converted into the 2D time–frequency
domain representation. For 2D time–frequency domain representation, we have used
the CWT method. Traditional arrhythmia detection models extract features from the 1D
ECG signal, which causes abortive classification results and low accuracy. We use CWT to
transform a 1D signal into a 2D signal for better signal analysis and features extraction.

Continuous Wavelet Transform (CWT)

CWT expresses the signals in the form of wavelet functions. These wavelet func-
tions are localized in the time domain as well as the frequency domain. By allowing the
translation and scaling parameters of the wavelets to change constantly, CWT yields a
comprehensive representation of the 1D signal. The time–frequency domain representation
ECGω(α, β) of a continuous ECG beat ecgbeat(t) can be expressed as:

ECGω(α, β) =
1√
|α|

∫ ∞

−∞
ecgbeat(t)Ψ

(
t− β

α

)
dt, where α, β ∈ R (1)

Here, α is the scaling parameter and should be greater than 0; β is the translation
parameter; t is the instant of time; Ψ(t) is the continuous mother wavelet. Ψ(t) provides
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the translation and scaling of the original wavelet ecgbeat(t). The original ECG beats can be
expressed as:

ecgbeat(t) = C−1
Ψ

∞∫
−∞

∞∫
−∞

ECGω(α, β)
1√
|α|

Ψ̃
(

t− β

α

)
ab

da
a2 , (2)

where CΨ is the wavelet constant whose value is 0 < CΨ < ∞ and can be written as shown
in Equation (3).

CΨ =

∞∫
−∞

Ψ̂(ω) ˆ̃Ψ(ω)

|ω| dω, (3)
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The integration of the admissible wavelet must be zero. For this, ecgbeat(t) is recovered
using the second inverse wavelet transform, as shown in Equation (2).

ecgbeat(t) =
1

2πΨ̂(1)

∞∫
−∞

∞∫
−∞

1
α2 ECGω(α, β)e(

ι(t−β)
α )dβdα, (4)

The instantaneous wavelet at time t is defined as:

Ψ(t) = ω(t)eιt (5)

where ω(t) is the window. We derive the time–frequency representation of the beats by
using a filter bank in CWT. All the 2D representations are resized to 256× 256 and divided
into training and testing using tenfold cross-validation.

3.2. Train Test Dataset Split

After preprocessing, the dataset is divided into training and testing. Training involves
70% of the preprocessed data, whereas testing contains 30% of the preprocessed data.

3.3. Features Extraction Using ArrhythmiaNet

After preprocessing, the features of the 2D representations are extracted with the help
of a novel ArrhythmiaNet with an attention block. ArrhythmiaNet consists of three 2D
convolutional layers with the rectified linear unit (ReLU) as the activation function, one
max-pooling layer, attention block, one flatten layer, and one last fully connected layer.
The output of the fully connected layer is called the spatial feature vector. The attention
block is explained in Section 3.3.1. The output of this attention block is multiplied with the
max-pooling layer of the main ArrhythmiaNet. The purpose of this attention block is to
capture global features, as explained in [31]. The architecture of the ArrhythmiaNet with
the attention block is shown in Figure 4.

J. Imaging 2022, 8, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 4. Proposed ArrhythmiaNet with the attention block. 

The vector from the proposed CNN is called the spatial feature vector (SFV). There 

are 2097152 full features in the SFV. After feature extraction, these features are reduced to 

4096 using a clump of features (CoF) module. 

3.3.1. Attention Block 

In the attention block, a self-attention mechanism is followed. In particular, the self-

attention block calculates the response at one position in the feature map as a weighted 

sum of the features from all positions. As a result, the weights are calculated with only a 

small computational cost. 

Figure 5 shows the attention block. In the attention block, the input features map 

denoted by 𝑥 is transformed into three feature spaces, f, g and h. To derive these feature 

spaces, initially, the input is passed through 1 × 1 convolution, and then it is multiplied 

by the trained weighted matrices W using the following equations. 

𝑓(𝑥𝑖) = 𝑊𝑥𝑖 + 𝑏 (6) 

𝑔(𝑥𝑗) = 𝑊𝑥𝑗 + 𝑏 (7) 

ℎ(𝑥𝑖) = 𝑊𝑥𝑖 + 𝑏 (8) 

where W denotes the weights and b denotes the bias parameters. Then, matrices 

𝑓(𝑥𝑖)
𝑇(transpose of 𝑓(𝑥𝑖)) and matrices 𝑔(𝑥𝑗) are multiplied by the softmax function and 

the weighted value vectors are summed to obtain the attention map. Then, attention map 

and matrix ℎ(𝑥𝑖)  are multiplied to derive the attention feature matrix. The attention 

mechanism used is similar to the self-attention mechanism used in [32]. However, we have 

not used linear regulizers. 

Figure 4. Proposed ArrhythmiaNet with the attention block.

The vector from the proposed CNN is called the spatial feature vector (SFV). There are
2097152 full features in the SFV. After feature extraction, these features are reduced to 4096
using a clump of features (CoF) module.

3.3.1. Attention Block

In the attention block, a self-attention mechanism is followed. In particular, the self-
attention block calculates the response at one position in the feature map as a weighted
sum of the features from all positions. As a result, the weights are calculated with only a
small computational cost.

Figure 5 shows the attention block. In the attention block, the input features map
denoted by x is transformed into three feature spaces, f, g and h. To derive these feature
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spaces, initially, the input is passed through 1× 1 convolution, and then it is multiplied by
the trained weighted matrices W using the following equations.

f (xi) = Wxi + b (6)

g
(
xj
)
= Wxj + b (7)

h(xi) = Wxi + b (8)

where W denotes the weights and b denotes the bias parameters. Then, matrices f (xi)
T

(transpose of f (xi)) and matrices g
(

xj
)

are multiplied by the softmax function and the
weighted value vectors are summed to obtain the attention map. Then, attention map and
matrix h(xi) are multiplied to derive the attention feature matrix. The attention mechanism
used is similar to the self-attention mechanism used in [32]. However, we have not used
linear regulizers.
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3.4. Feature Reduction Using CoF

The reduced feature vector (RFV) is obtained using the CoF method, as explained
in [33]. In CoF, k-means clustering is applied to the SFV to derive the vocabulary of features.
k-means clustering is a highly unstable algorithm; therefore, the optimal value of k to make
clusters is crucial. The optimal value of the clusters can be obtained with the help of the
elbow method, in which the sum of the squared errors is plotted against different values of
k, and the optimal value of k is selected. From the elbow plot, we obtained the value of k
as 10. We further validated the clusters using silhouette analysis (SA). The pseudo-code of
SA is presented in Algorithm 1.

Algorithm 1: Silhouette Analysis (SA)

For every sample

1.
Find the mean distance from all features in the same cluster (ai)

2.
Find the mean distance from all features in the closest cluster (bi)

3.
Find the coefficient: Sc =

bi−ai

max(ai ,bi)

If Sc = 0, the sample is very close to the neighboring clusters
If Sc = 1, the sample is far away from the neighboring clusters
If Sc = −1, the sample is assigned to the wrong clusters

After clustering, the histogram of the clustered vocabularies is drawn to derive the
RFV. The RFV has the most important features. In feature reduction, the training and
testing features are treated separately because the inter-patient paradigm is more strict than
the intra-patient paradigm. The CoF method is illustrated in Figure 6.
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After feature reduction, the RFV is given to the classifier for the classification of
features into cardiac arrhythmia classes.

3.5. Classification

We used a support vector machine (SVM) for classification [34,35]. An SVM classifies
objects by drawing a hyperplane and support vectors. The margin between the support
vectors demonstrates the performance of the classifier. The greater the margin of the
support vectors, the better the performance of the classifier, and vice versa. We have trained
our SVM using RFV of the training dataset, and the RFV of the test dataset was used for
performing the classification.

The upcoming section explains the experimental results of the proposed framework.

4. Experimental Results

The proposed framework is evaluated in terms of accuracy, sensitivity, specificity,
F1-score, and classification error. Accuracy of the model was calculated using Equation (9).

Accuracy =
T P + T N

T P + T N +FP +FN (9)

where T P and T N denote true positive and true negative, respectively, whereas FP and
FN denote false positive and false negative, respectively. The accuracy of the system
shows its ability to correctly classify arrhythmia classes. Specificity is the ratio of the
prediction of normal beats present in the case of binary classification and can be calculated
using Equation (10).

Speci f icity (SP ) =
T N

T N +FP (10)

The ratio of the prediction of abnormal or cardiac arrhythmia class is called the
sensitivity of the model and can be determined using Equation (11).

Sensitivity (SE ) =
T P

T P +FN (11)

The F1-score is the mean of the specificity and sensitivity; the formula to calculate the
F1-score is given in Equation (12).

F1− score =
[
(SE ∗ SP )
(SE + SP )

]
∗ 2 (12)
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Here, SE and SP denote sensitivity and specificity, respectively. We also considered
Cohen’s kappa for the evaluation of our model. This can be calculated using Equation (13).

Cohen′s Kappa (κ) =

[
(T P .T N −FP .FN )

(T P +FP).(FP + T N ) + (T P +FN ).(FN + T N )

]
∗ 2 (13)

The optimal simulation parameters for training of the 36 million parameters of Ar-
rhythmiaNet are shown in Table 2.

Table 2. Summary of hyperparameters for ArrhythmiaNet training.

Parameter Name Parameter Value

Optimizer Stochastic Gradient Descent (SGD)

Momentum 0.9

Learning Rate 0.001

Mini batch size 32

Learning rate decay 10−7

Loss function Cross entropy

The performance of ArrhythmiaNet was compared with the pre-trained D-CNNs, and
is shown in Table 3.

Table 3. Comparison of the testing performance of the different D-CNNs with ArrhythmiaNet.

Name of D-CNN Classifier Accuracy F1-Score Sensitivity Specificity Cohen’s Kappa Error

AlexNet [20] SVM 98.70% 0.968 97.10% 96.50% 0.950 1.30%

ResNet-50 [21] SVM 95.40% 0.951 94.60% 95.60% 0.930 4.60%

VGG-19 [22] SVM 89.80% 0.918 93.3% 90.40% 0.900 10.20%

Inception v3 [23] SVM 98.20% 0.951 94.6% 95.60% 0.930 1.80%

GoogLeNet [24] SVM 94.40% 0.930 92.50% 93.50% 0.910 5.60%

ShuffleNet [25] SVM 96.80% 0.964 95.40% 97.40% 0.940 3.20%

SqueezeNet [26] SVM 86.83% 0.918 93.30% 90.40% 0.890 13.17%

EfficientNetb0 [27] SVM 96.50% 0.996 100% 99.20% 0.980 3.50%

Xception [28] SVM 98.55% 0.996 100% 99.20% 0.980 1.45%

DarkNet-53 [29] SVM 96.35% 0.928 92.3% 93.30% 0.900 3.65%

ArrhythmiaNet SVM 99.84% 0.998 100% 99.60% 0.990 0.16%

From Table 3, the performance of the proposed ArrhythmiaNet based framework is
better than the other pre-trained D-CNNs. We have also compared the performance of the
proposed ArrhythmiaNet with the PhysioNet dataset. The performance of the different
kernels of SVM and kNN for the MIT-BIH and PhysioNet datasets is shown in Figure 7.

We have also compared the accuracy of ArrhythmiaNet with the existing models. This
comparison is presented in Table 4.

From Table 4, all the CNN-based models which used ECG as 2D signals considered
a maximum of eight classes of cardiac arrhythmia, and the maximum accuracy achieved
by [7] was 99.11%. We have considered seventeen classes of arrhythmia and achieved
99.84%, which outperforms all the existing methods.

We also evaluated the classification accuracy of both classifiers for the MIT-BIH dataset
for different clusters in the CoF module; the highest accuracy was achieved at 10 clus-
ters. The classification accuracies of SVM and kNN for different clusters are shown in
Figures 8 and 9, respectively.
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Table 4. Comparison of the performance of ArrhythmiaNet with the state-of-the-art techniques.

Ref. Model ECG Signal Arrhythmia Classes Accuracy

[4] kNN 1D 03 97.65%

[5] kNN 1D 17 97.22%

[6] MLP 1D 09 88.7%

[7] CNN 2D 08 99.11%

[8] GLCM 1D 06 90.42%

[10] Attention-based
CNN 1D 07 92.8%

[12] CNN 2D 08 99.02%

[13] SVM 1D 17 97.3%

[15] CNN 2D 04 99.00%

[16] SVM 1D 04 97.06%

[17] SVM 1D 04 83.00%

This paper ArrhythmiaNet 2D 17 99.84%
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The confusion matrix of ArrhythmiaNet using the SVM classifier is shown in Figure 10.
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4.1. Ablation Study

We performed an ablation study to show the impact of the attention block added in
ArrhythmiaNet. Initially, we removed the complete block and calculated the performance
metrics of the network. Then, we added the block and calculate the performance metrics.
The accuracy of ArrhythmiaNet without the attention block was 90.71%, which is signifi-
cantly lower than the other D-CNN models. However, when attention model block was
added, more detailed features were extracted, and the accuracy of the network was 99.84%,
which outperformed the other D-CNNs models. Figure 11 shows the confusion matrix of
ArrhythmiaNet without the attention block.
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4.2. Limitations and Future Directions

The proposed framework is dependent on the attention block, and the accuracy of
the model decreases if the attention block is removed. The performance of the model also
varies by selecting different features. The inter-patient paradigm is also a factor which
affect the performance of the model. These limitations can be resolved by the use of class
tokens and the multi attention heads similar to the vision transformers. In future, we plan
to use a hybrid model of vision transformers to categorize different classes of arrhythmic
cardiac and to resolve these limitations.

Section 5 presents a brief conclusion of this research.

5. Conclusions

Cardiovascular diseases are the primary cause of death. Most deaths are due to heart
attacks. An irregular heartbeat causes a heart attack. A normal heartbeat has rhythm
in the ECG plot, whereas an abnormal heartbeat shows an irregular ECG plot. These
irregular ECGs are called cardiac arrhythmia. The timely classification of these cardiac
arrhythmias can avoid potential damage. In this article, we propose the novel attention-
based ArrhythmiaNet with a CoF module to categorize seventeen classes of heartbeats.
The proposed method achieved 99.84% accuracy with an SVM classifier. The sensitivity of
the proposed technique was 100%, and the F1-score was 99%. The classification accuracy of
ArrhythmiaNet with a kNN classifier was 98.64%, which is inferior to SVM. We have also
compared the proposed framework with existing methods, and the experimental results
verify that ArrhythmiaNet outperforms all the existing techniques in terms of accuracy.
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