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Abstract: The first part of the paper contains a short review of the image processing in early vision
is static, when the eyes and the stimulus are stable, and in dynamics, when the eyes participate in
fixation eye movements. In the second part, we give an interpretation of Donders’ and Listing’s law
in terms of the Hopf fibration of the 3-sphere over the 2-sphere. In particular, it is shown that the
configuration space of the eye ball (when the head is fixed) is the 2-dimensional hemisphere S+

L ,
called Listing hemisphere, and saccades are described as geodesic segments of S+

L with respect to the
standard round metric. We study fixation eye movements (drift and microsaccades) in terms of this
model and discuss the role of fixation eye movements in vision. A model of fixation eye movements
is proposed that gives an explanation of presaccadic shift of receptive fields.
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1. Introduction

The main task of the visual system is processing and decoding visual information,
recorded by the retinal photoreceptors, and constructing a model of the external world. The
photoreceptors convert the light signal into electric signals which are sent to retinal ganglion
cells and then by a conformal retinotopic mapping to LGN, then to the V1 cortex, V2 cortex
etc. The visual system has a hierarchical structure and consists of many subsystems
connected by direct and feedback.

The neurogeometry of vision deals with the construction of continuous models of
various visual subsystems in terms of differential geometry and differential equations.

There are three level of the models of the visual subsystems:

• Static, without taking into account time, i.e., under assumption that the eye and the
perceived object (stimulus) are stationary;

• Semi-dynamic, when the stimulus is stationary and the eye is moving;
• Dynamic, when both the eye and the stimulus are in motion.

Over the past two decades, great progress has been made in understanding the
functional architecture of early vision in static and constructing the neurogeometric models
of early vision systems (primary visual cortex V1, hypercolumns), see [1–9]. The models
are based mostly on the results obtained in experiments on anesthetized animals.

In natural vision, the eye always participates in different movements. According to
the classical experiments of A. Yarbus [10], the compensation of the eye movement leads to
the loss of vision of stationary objects in 2–3 s. Moving objects remain visible, albeit poorly.
Later experiments show that the most important phase of the fixation eye movements is
the drift. Compensation of microsaccades does not lead to loss of vision.

It was remarked by M. Rucci, E. Ahissar and D. Burr [11].
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“As there are no stationary retinal signals during natural vision, motion process-
ing is the fundamental, basic operating mode of human vision.”

They also note that due to this there is no big difference between semi-dynamic and
dynamic vision.

In the first part of the paper, we will briefly discuss the main results concerning the
static vision, which are the base points to deal with dynamic one. Currently, there are
some advances in the study of the dynamic case, [12–15] although the description of the
visual processes becomes significantly more complicated and new phenomena arise, such
as saccade remapping [16,17], shift of the receptive field, compression of the space and
time during saccades [18,19]. The main difference between static and dynamic vision
is the following. As it is generally accepted, in static vision all information comes from
the activation of retinal photoreceptors. In dynamic vision, the process of perception is
determined by the interaction of the visual information from the retina and the dynamical
information about eye movements, coded in the ocular motor system.

Even when the gaze is focused on a stationary point, it participates in different type
of movements, called fixational eye movements (FEM). For a long time, most neurophysi-
ologists did not pay serious attention to FEM. The situation has changed in the last two
decades, see [20]. Both experimental and theoretical works have appeared that substantiate
the important role of FEM in vision. Primarily the works by M. Rucci and their coau-
thors [11,21–25] contain detailed and critical analysis on many experimental results about
different types of FEM—tremor, drift and microsaccades, and new ideas about their role
in vision.

In the dynamic case, the eye movements are controlled by ocular motor system and
a copy of motor command, called corollary discharge or efference copy, is sent from
superior colliculus through MD thalamus to frontal cortex. It plays an important role in
visual stability, i.e., the compensation of the shift of retinal stimuli and perception stable
object as stable, see [26–28] for results and discussions on the problem of visual stability.

A deeper understanding of the mechanism of FEM depends on further progress in
description of image processing in retina, visual cortex and in ocular motor control of
eyes movements.

Fixational eye movements are stochastic in nature. There were proposed various
stochastic models of FEM as a random walk, see [29–31]. We especially note the works [32,33].
In the most works, FEM are modeled by a random walk on the plane or on a lattice in
the plane. However, the information about eye rotation, which is contained in corollary
discharge, treats the eye as a ball and not as a plane. For more realistic model of FEM,
which will be consistent with corollary discharge information, we need more sophisticated
model of saccades and drift, where such movements are considered as rotations of the eye
ball. Due to this, it is important to describe the configuration space of the eye.

A priori the configuration space of eye ball B3, rotating around its center O, is the
orthogonal group SO(3) (which can be thought as the 3-sphere with identified antipodal
points, SO(3) = S3/Z2).

A big surprise even for the great physicist and physiologist H. von Helmholtz was the
law, discovered in the middle of the 19th century by F.C. Donders and supplemented by
J.B. Listing. It states that, when the head is fixed, the real configuration space of eye positions
is two-dimensional. More precisely, the direction of the gaze e1 uniquely determines the
position of the eye, described by the retinotopic orthonormal frame (e1, e2, e3). From the
point of view of the modern control theory, such a constraint is quite reasonable. The
difference between the motion control on the 3-sphere and on a surface is similar to the
difference in piloting a plane and driving a car.

One of the main results of the work consists of interpreting Listing’s law in terms
of a section s : S̃2 → S+

L ⊂ S3 (which we call Listing’s section) of the Hopf bundles
χ : S3 → S2 over a punctured sphere S̃2 = S2 \ {−i} where i is the direction to the nodal
point of the eye sphere S2 (in the standard position) and −i is the direction to the center of
the fovea. Listing’s section is an open 2-dimensional hemisphere S+

L of a 3-dimensional
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sphere S3, identified with the group H1 of unit quaternions. This simple description of
Listing’s law provides a way for construction of more realistic stochastic models of FEM
and oculomotor system that control eyes movements. For example, denote by S2

E = ∂B3 the
eye sphere in the standard position. Let A, B ∈ S2

E be two points and a = s(A), b = s(B)
the corresponding points of Listing’s hemisphere S+

L . Then the saccade with the initial gaze
direction A and the final gaze direction B is the segment ab ⊂ S+

L of the unique geodesic
γa,b (the great semicircle) of Listing hemisphere S+

L (with the standard metric) through
points a, b. The corresponding evolution of the gaze is the segment AB = χ(ab) of the circle
S1

A,B ⊂ S̃2
E ∩Π(A, B,−i) (with the deleted point −i), which is the section of the punctured

sphere S̃2
E by the plane, generated by the points A, B,−i. So the space of saccades is the

direct product S+
L × S+

L of two copies of Listing’s hemisphere.
We propose a deterministic model of fixation eye movements (drift and microsdac-

cades) in terms of Listing’s hemisphere. The microsaccades are considered as a mechanism
of remapping the visual information, which depends of the choice of the salient point as
the next gaze target. It gives a simple description of the presaccadic shift of receptive fields.
We use this model to define a distance between point stimuli A, B. Then we shortly recall
the basic fact of diffusion geometry, initiated by R.R. Coifman and S. Lafon [34,35], and
discuss the extension of the model to the stochastic case, when the drift is considered as a
random walk on Listing’s hemisphere, in the framework of diffusion geometry.

2. Information Processing in Early Vision in Static and Functional Structure of Retina
and Primary Visual Cortex

In static, visual information is coded in firing of retinal photoreceptors, cones and rods.
In the first approximation, the input function of the retina may be considered as the function
I(x, y) on retina, which describes the density of energy of light, recorded by photoreceptors.
The visual information is primary processing in retina and it sent to primary visual cortex
V1 and then to V2, V3 and other visual systems for further processing and decoding. The
visual information is coded in visual neurons which are working as filters that is functionals
on the space of input function, which value depends only on the restriction of the input
function to a small domain D ⊂ R of the retina, called receptive filed (RF) . The linear
neurons are working as linear filters, i.e., the linear functionals, described as the integral∫

D f (x, y)W(x, y)dvol of the input function with some weight W(x, y), called the receptive
profile. In reality, most visual neurons have spatiotemporal character, that is their reply
depend also on time integration of the input function.

2.1. The Eye as an Optical Device and Input Function

The eye is a transparent ball B3 together with a lens L which focuses light rays to the
retina R, see Figure 1. The retina occupies a big part of the boundary sphere S2 = ∂B2 of
the eye ball. The lens is formed by the cornea and the eye crystal. We will assume that the
optical center of the lens or nodal point N belongs to the eye sphere S2.

A beam of light emitted from a point A of a surface Σ and passing through the nodal
point N is not refracted and falls to the point Ā = `AN ∩ R of the intersection of the retina
R with the ray `AN . A beam from the point A which passes through any other point of the
lens is focused and come to the same point Ā ∈ R. So we get a central projection of the
surface Σ to retina R with center N given by the map

π : M 3 A→ Ā = `AN ∩ R ⊂ R,

where Ā = `AN ∩ R is the second point of intersection of the ray `AN with the retina R, see
Figure 2. The central projection generically is a local diffeomorphism.

Note that if M = Π is the frontal plane (orthogonal to the line of sight) which is far
enough away compared to the size of the eyeball, then the central projection π : Π→ R ⊂
S2 is approximately a conformal map.
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Figure 1. The Human Eye. Adapted from Wikipedia.

Figure 2. Central projection.

The (density of) energy of light IR(Ā) coming from a point A ∈ Σ of the surface to the
point π(A) = Ā of retina is approximately proportional to the (density of) energy of light
I(A), emitted from the point A. So the input function

IR : R→ R≥0, Ā→ IR(Ā)

of the retina (where R≥0 is the set of non negative numbers), contains information about
the density I(A) of energy of light, emitted from the surface Σ. The aim of the static
monochromatic vision is to extract from the input function IR information about geometry
of the surface. We will not speak about other characteristics of the recorded light, for
example, the spectral properties, which are responsible for color vision. It seems that the
polarisation plays no role in human vision.

It was discovered by D. Hubel and T. Wiesel, that the most important characteristic
of the detected stimulus are the contours, i.e., the level sets of the input function IR(x, y)
with large gradient. J. Petitot [5] gave a precise geometrical formulation of this claim as
a statement that simple neurons of V1 cortex detect infinitesimal contours, i.e., 1-jets of
contours, considered as non parametrized curves. One of the main task of the higher order
visual subsystems is to integrate such infinitesimal contours to global ones.
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2.2. Retina
2.2.1. Anatomy of Retina

Retina consists of 5 layers. In human there are in approx. 80 different types of cells.
The bottom layer consists of receptors, photoelements which transform light energy into
electric signals, see Figure 3. They measure the input function

IR : R→ R≥0

and send information to ganglion cells. In fovea, one cone is connected with 1 ganglion. In
periphery, one rode is connected with 102–103 ganglions. There are 1 million of ganglions
and 125–150 millions of receptors.

Figure 3. Anatomy of retina.

2.2.2. Ganglion Cells as Marr Filters

It was discovered by S. Kuffler that the receptive field of a typical ganglion cell is
rotationally invariant (isotropic) and contains central disc and surround ring. It is working
as a linear filter with receptive profile which is ether positive in the central disc and negative
in the ring or vice versa. In the first case, Kuffler called it ON-cell and in the second one
OFF-cell, see Figure 4. D. Marr showed that the filter with Laplacian of the Gauss function
as the receptive profile gives a good model of Kuffler cell and proved that image processing
by a system of such filters turns a picture into a graphic image, see Figure 5. The purpose
of the information processing in retina is to regularize the input function, eliminate the
small artifacts of the retina image and to highlight the contours, which are the main objects
of perception in early vision.

2.2.3. Information Processing in Retina. Two Pathways from Receptors to Ganglion Cells

There are two pathways from receptors to ganglion cells: Direct path: receptor–
bipolar–ganglion activates the center of ganglion cells, which work as a linear filter.
Antagonistic surround is activated by (linear) negative feed back from horizontal cells
via indirect path: receptor–horizontal cell–(amacrine)–bipolar–ganglion. A nonlinear
rectifying mechanism (associated with contrast gain control) is related with amacrine cells.
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For sufficiently small contrast, ganglion P-cells is working as linear Marr filter. M-cells,
responsible for perception of moving objects, are working as essentially non-linear filters.
Response depends on stimulus contrast and temporal frequency [36].

Figure 4. On and Off Kuffler cells.

Figure 5. Action of Marr filter.

2.2.4. Fovea

The fovea was discovered by Leonardo da Vinci. It is a small pit in the retina which
contains mostly cones, see Figure 6. The cental part of the fovea, called the foveola, has a
diameter 0.35 mm ∼ 1◦. It consists only from cones packed with maximum density. The
fovea occupies 1% of retina, but is projected onto almost 50% of area of the visual cortex.
When we fix gaze on a point A, the image Ā of this point on retina moved due to the
fixation eye movements (FEM), but remains inside fovea.

2.2.5. Inhomogeneity of the Retina and Magnification. Physiological Metric in Retina

The physical metric in retina (considered as a sphere) is standard metric of the sphere.
(The distance is described in mm or in degrees). 1 mm = 3.5◦ ∼ 6 cm at a distance of
1.5 m , 1◦ ∼ 0.3 mm ∼ 2.5 cm at a distance 135 cm. Apparent diameter of Moon and Sun
is 0.5◦ = 0.15 mm = 150 µ. Receptive field of neurons of V1 cortex projected to fovea has
diameter 0.25◦–0.7◦ and the area 0.07◦ × 0.15◦ ∼ 0.12 mm2. The receptive field of neurons
projected onto the periphery of the retina has a diameter up to 8◦, on average this is 30 times
more then in fovea and the RF here contains thousands of rods.
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Figure 6. Eye, retina and fovea. Adapted from Wikipedia

Magnification = distance between two points of V1 cortex which corresponds to 1 mm
distance in retina. The cortical magnification in the fovea 1mm ∼ (1/6)◦ = 0.05 mm is
20 times. The cortical magnification in the periphery 1 mm = 6◦ = 1.8 mm is 0.55 times.

Hubel [37] remarked that the structure of retina is very inhomogeneous. He supposed
that it is one of the reason, why the information processing in retina is very limited. On the
other hand, he emphasized the amazing homogeneity of the cortex V1. It is expressed in
the fact that a shift in 2 mm at any point of the cortex corresponds to shift on diameter of
the corresponding receptive field in retina. We define the physiological metric in the retina,
where the length of a curve is given by the number of receptive fields of neurons along
this curve. This metric in the retina is proportional to the physical metric in the cortex. In
particular, the diameter of fovea 1◦ corresponds to 6 mm in V1 cortex. (Hubel).

We will discuss a possible application of this metric to choosing of appropriate diffu-
sion kernel for stochastic model of the drift.

2.2.6. Conformal Retinotopic Map from the Retina to the LGN (Lateral Geniculate Nucleus)
and to the Visual Cortex V1

After image processing in the retina, the input function is encoded by the firings of
ganglion cells. Then it is sent to the LGN and the V1 cortex by the conformal retinotopic
mapping, see [38,39]. There are three main pathways from the retina to the V1 cortex: the
P-pathway, which is responsible for the perception of stable objects, the M-pathway, which
is important for the perception of moving objects, and the K-pathway, important for the
color vision. In static models, only the P-pathway is considered, but for dynamic model the
M-pathway is also very important. M-pathway is more complicated then P-pathway, since
M-neurons are not linear, see [36].

Let (x, y) be the standard coordinates of the tangent plane TFS2 of the eye sphere at the
center F of the fovea. We will consider these coordinates as conformal coordinates on the
eye sphere due to the stereographic map with center at the nodal point N. It is convenient
also to introduce the complex coordinate z = x + iy and the associated polar coordinates
r, θ where z = reiθ . In physiology, the coordinate r (the geodesic distance to F) is called the
eccentricity and θ the angular coordinate. In appropriate complex coordinate in LGN and
the V1 cortex, the retinotopic map is described by a meromorphic function of the form

z 7−→ F(z) = log
z + a
z + b

, a, b ∈ R.
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The module |F(z)| describes the local magnification at a point z of the retina (see
E. Schwartz [38]).

2.3. Functional Architecture of the Primary Visual Cortex: Columns, Pinweels, Simple and
Complex Cells, Hypercolumns

The primary visual cortex V1 is a surface of depth 1.5–2 mm which consists of 6 layers.
Each layer consists of columns of cells which have approximately the same receptive
field. Hubel and Wiesel proposed a classification of V1 cells into simple and complex
cells. Simple cells act as Gabor filters (defined by the receptive profile, that is the Gauss
function modulated by sin or cos). The most important property of the Gabor filter is that
it detects orientation of the contour, crossing its receptive field. There are several versions
of the Gabor filters, which measure at the same time other parameters of the stimuli, for
example, spatial frequency, phase etc. This means that the Gabor filter is activated only if
these parameters take (with some precision) certain values. All simple cells from a regular
column act as Gabor filters with almost the same center and they detect almost the same
orientation of the contour.

A singular column called(pinwheel) contains simple cells which measure any possi-
ble orientation of the contour.

One of the purposes of the eyes movement is to produce the shift of the retinal stimulus
such that the contour intersects pinwheels and is detected by their neurons.

Hypercolumns of V1 Cortex

Hubel and Wiesel proposed a deep and very productive notion of hypercolumns in
V1 cortex. Given a system of local parameters (e.g., orientation, ocular dominance, spatial
frequency, temporal frequency, phase etc.). A lhypercolumn (or, module) is defined as
a minimal collection of (regular) columns, containing simple cells which measure any
possible value of these parameters and which is sufficient to detect the local structure of
the stimulus. Applying this notion to orientation and ocular dominance, they proposed
a famous ice cube model of V1 cortex. Now this notion is applied also for the V2 cortex.
Usually, the area of hypercolumns is 1–2 mm2.

3. Information Processing in Dynamics
3.1. The Eye as a Rotating Rigid Ball

From a mechanical point of view, the eye is a rigid ball B3 which can rotate around its
center O. The retina occupies only part of the eye sphere but for simplicity, we identify it
with the whole eye sphere S2 = ∂B3. We will assume that the eye nodal point N (or optical
center) belongs to the eye sphere and the opposite point F of the sphere at the center of
the fovea.

For a fixed position of the head, there is a standard initial position S2
E of the eye sphere,

described by the canonical orthonormal frame e0 = (i, j, k), which determines the standard
coordinates (X, Y, Z) of the Euclidean space E3 with center O. We will consider these
coordinates as the spatiotopic (or the world-centered) coordinates and at the same time
as the head-centered coordinates. Here i indicates the standard frontal direction of the
gaze, j is the lateral direction from left to right which is orthogonal to i and k is the vertical
direction up.

Any other position of the eye is described by an orthogonal transformation R ∈ SO3
which maps the frame e0 = (i, j, k) into another frame (e) = (e1, e2, e3) = R(i, j, k) where
e1 is the new direction of the gaze. Recall that any movement R ∈ SO(3) is a rotation Rα

e
about some axis e ∈ S2

E through some angle α.

Definition of a Straight Line by Helmholz

If the frontal plane (orthogonal to the line of sight) is far enough away compared to
the size of the eyeball, then the central projection can be considered as a conformal map.

H. von Helmholtz gave the following physiological definition of a straight line:
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A straight line is a curve ` ⊂ E3, which is characterized by the following property:
when the gaze moves along the curve `, the retinal image of ` does not change.

Indeed, given a straight line ` = {γ(t)}, let us denote by Π = Π(O, `) the plane
through ` and the center O of the eye ball and by n its normal vector. Assume that for the
standard position S2

E of the eye, the gaze is concentrated on the point γ(0), i.e., γ(0) ∈ Ri.
The retina image of ` belongs to the intersection Π ∩ S2

E between Π and the standard
position S2

E of the eye sphere. When the gaze moves along γ(t), the eye rotates with the axis
n. Since at each moment t the new position of the eye sphere is S2

t = Rt
nS2

E, the retina image

S2
t ∩Π = Rt

nS2
E ∩Π = Rt

n(S
2
E ∩Π) = S2

E ∩Π

remains the same for all t.
We will see that saccades correspond to such movements along the straight lines.

3.2. Saccades and Fixation Eye Movements: Tremor, Drift and Macrosaccades
3.2.1. Saccades

Eyes participate in different types of movements [40]. We are interested only in
saccades and fixation eye movements (FEMs) when the gaze is “fixed” [41].

Saccades are one of the fastest movements produced by the human body. The
angular speed of the eye during a saccade reaches up to 700◦/s in humans for great
saccades ( 25◦ of visual angle). Saccades to an unexpected stimulus normally take about
200 milliseconds (ms) to initiate, and then last from about 20–200 ms, depending on
their amplitude. For amplitudes up to 15◦ or 20◦, the velocity of a saccade linearly
depends on the amplitude. Head-fixed saccades can have amplitudes of up to 90◦, but in
normal conditions saccades are far smaller, and any shift of gaze larger than about 20◦ is
accompanied by a head movement. Most researchers define microsaccades as a small
saccades, i.e., saccades with a small amplitude, such that the during a microsaccade the
retina image of the point of fixation belongs to the fovea and even foveola, [23]. How-
ever in [42], the authors distinguish the small goal-directed voluntary eye movements
from microsaccades. They showed that properties of microsaccades are correlated with
precursory drift motion, while amplitudes of goal-directed saccades do not dependent
on previous drift epochs. Microsaccades represent one of the three types of fixation
eye movements.

3.2.2. Fixation Eye Movements (FEM)

The fixation eye movements are responsible for detection of local image structures
and consist of tremor, drifts and microsaccades.

Tremor is an aperiodic, wave-like motion of the eyes of high frequency but very small
amplitude. We hypothesize that the role of tremor is to increase the width of the contour
on the retina, so that it is perceived by several rows of photoreceptors. This will allow also
to estimate the value of the gradient along the contour. A detailed study of tremor and its
influence on the retina images was made in [43], see Figure 7.

Drifts occur simultaneously with tremor and are slow motions of eyes, in which the
image of the fixation point for each eye remains within the fovea. Drift is an involuntary
stochastic process. However, the stochastic characteristics of the drift may depend on the
local structure of the stimulus. Drifts occur between the fast, jerk-like, linear microsaccades.
The main property of the FEMs is that during FEM the retina image of the point of fixation
remains in the fovea and even the foveola [23]. The following Table 1 indicates the main
characteristics of the FEM.
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Figure 7. (A) An example of an eye trace taken from an AOSLO movie. A microsaccade (magenta
background) is clearly distinguishable from the ocular drift (blue background). Gray vertical gridlines
demarcate frame boundaries from the AOSLO movie. Each frame is acquired over 33 ms as indicated
by the scale bar. (B) An example of an image/frame from an AOSLO movie. The cone mosaic can be
resolved even at the fovea. (C) An example of the AOSLO raster with a green letter E as it would
appear to the subject. The small discontinuities in the eye trace at the boundaries between frames
478–479 and 480–481 are likely the result of tracking errors that occur at the edges of the frame. They
are infrequent and an example is included here for full disclosure. Errors like this contribute to the
peaks in the amplitude spectrum at the frame rate and higher harmonics. All original eye motion
traces are available for download. Adapted from [43].

Table 1. Characteristics of fixation eye movements (Adapted from [44]) with refined data from [23,43]
and Wikipedia.

Amplitude Duration Frequency Speed

Tremor 11-60 arcsec - 50–100 Hz Max 20 arcmin/s
Drift 1.5–4 arcmin 0.2–0.8 s 95–97% of time 50 arcmin/s

Micsac 1–30 arcmin 0.01–0.02 s 0.1–5 Hz 40–220 deg/s

Per 1 s tremor moves on 1–1.5 diameters of the fovea cone, drift moves on 10–15 diam-
eters, microsaccads moves on 15–300 diameters, see Figure 8.
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Figure 8. Microsaccades and Ocular Drifts. Adapted from Wikipedia https://commons.wikimedia.
org/wiki, CC-BY.

3.2.3. The Role of Fixation Eye Movements

The papers by M.Rucci and his collaborators [21–25] contain very useful information
about different characteristics of fixation eye movements and a detailed analysis of the role
of FEM in vision. In a survey [23], the authors critically revised three main hypotheses
about the role of microsaccades (MS) in vision:

(1) the maintenance of accurate fixation;
(2) the prevention of image fading due to fast adaptation of retinal photoreceptors;
(3) vision of fine spatial detail.

They gave many very convincing arguments in support of the hypotheses (1) and (3)
and 10 arguments against the hypothesis (2). We add here only one additional argument
against (2). Support that before the MS a retinal photoreceptor in fovea received light signal
from stimulus A. After the MS, it will receive a signal from another stimulus B, which can
be even brighter. Why this will prevent the photoreceptor from adaptation?

We mention also one geometric argument why FEM are useful for vision. In monocular
vision, provided that the position of eye is fixed, the retina gets information only from
the 2-dimensional Lagrangian submanifold L(N) = {` 3 N} ' RP2 of the 4-dimensional
space of lines L(E3) consisting of lines incident to the eye nodal point N. The space of lines
is naturally identified with the (co)tangent bundle T∗S2 ' TS2 of the unit sphere. It is a
symmetric pseudo-Kähler manifold of neutral signature (2, 2). When the eye moves with a
small amplitude, the retina gets information from a neighborhood of this 2-surface L(F) in
the 4-manifold L(E3).

M. Poletti and M. Rucci [23] gave evidence that during natural vision the microsaccades
can not be regarded as a random process. Their characteristics depend on the scene.
Moreover, the ability to control microsaccades plays an important role in performing
different fine work, like reading, threading a needle, playing some sports (e.g., table
tennis), etc. However, it seems plausible that in some cases MS can be considered as
random processes. For example, when contemplating the sea, the blue sky and similar
homogeneous scenes, it can be assumed that microsaccades make a random walk. Perhaps
the pleasure that a person feels when contemplating such scenes is due to the fact that the
eyes get rid of the difficult work of finding new targets for microsaccades.

3.2.4. Remapping and Shift of the Receptive Fields (RFs)

In a seminal paper, J.-R. Duhamel , C.L.Colby and M.E.Goldberg [45] described the
shift of receptive field of many neurons in macaque lateral intraparietal area (LIP), which
shows that the visual neurons of these systems get information about the retina images of

https://commons.wikimedia.org/wiki
https://commons.wikimedia.org/wiki
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their future receptive fields. This is one of the most remarkable discoveries of neurophysi-
ology of vision at the end of the 20th century.

Assume that the RF of a neuron before a saccade covers the retina image Ā of a point
A and after the saccade the retina image B̄ of another point B. Then 100 ms before the
saccade, the neuron detects stimuli at the locations B̄. This process constitutes a remapping
of the stimulus from the retina coordinates with the initial fixation point A to those of the
future fixation point B. The process is governed by a copy of the motor command (corollary
discharge).

For a long time, it had been assumed that the presaccadic shift of the receptive field
(RF) from Ā to B̄ is an anticipation of the retinal consequences of the saccade, which
randomly changes the gaze direction and the RF of the neurons to B̄. Since any point B̄
of the retina can be a new position of the receptive field, this means that the information
about the visual stimulus at the point B̄ can be transmitted to neurons with receptive
field at the point Ā. This seems very doubtful, since the number of neurons pairs is too
big. The solution was proposed by M. Zirnsac and T. Moore [46]. They conjectured that
the presaccadic shift of RF is a part of a process of remapping and reflects the selection
of the targets for the saccades. Some local area of a higher center of the visual system
has information about visual stimulus concentrated at Ā and about other points of the
retina. It uses this information to choose a new saccadic target B̄. Just before the saccade,
it sends the information about the visual stimulus at the retinal point B̄ to neurons with
presaccadic receptive field at Ā. After saccades, the real RF of these neurons cover the
retina stimulus B̄. Then the visual system use information from these neurons to corrects
the presaccadic information. In the last section, we propose a mechanism of realization of
such presaccadic remapping.

3.2.5. Oculomotor System, Corollary Discharge and Stability Problem

In dynamic, the retinal photoreceptors are not the only source of visual information.
The important part of information about eyes movements is coded in oculomotor system.
A copy of motor commands, which control eyes movements, the corollary discharge (CD)
or efference copy, is sent from the sensorimotor region through the MD thalamus to the
frontal cortex. The mechanism of interaction of CD information with information from
retinal receptors processed in the visual cortex is not well known. It is very important
for solution of the stability problem, i.e., explanation of the compensation mechanism for
shift of stimuli on the retina caused by eye movements, such that a stable stimuli will be
perceived as stable, see [26–28]. Clearly, it must be very strong synchronization between
corollary discharge and the presentation of the retina input function in visual cortex.

The stability problem was first formulated in the eleventh century by the Persian
scholar Abu’Ali al-Hasan ibn al-Hasan ibn al-Haytham (latinized, Alhazen) and was
discussed by Descartes, Helmholtz, Mach, Sherrington and many others scientists.

3.3. The Geometry of the Quaternions

Now we recall the basic facts about quaternions and the Hopf bundle, which are we
need for reformulation of Donders’ and Listing’s laws in terms of Listing’s section of the
Hopf bundle.

Let H = R4 = R1 + ImH = R1 + E3 be the algebra of quaternions with the unit 1,
where the space E3 of the imaginary quaternions is the standard Euclidean vector space
with the orthonormal basis (i, j, k) and the product ab of two elements from E is the sum of
their scalar product and the cross-product:

ab = 〈a, b〉+ a× b.

The group
H1 = {q = q01 + q′, |q|2 := q2

0 + |q′|2 = 1} = S3
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of unit quaternions are naturally identified with the three dimensional sphere S3 and its
Lie algebra is the algebra E3 = R3 of imaginary quaternions with the cross-product as the
Lie bracket.

Denote by
L : H1 → SO(R4), a 7→ La, Laq = aq, q ∈ H

the (exact) left representation and by

R−1 : H1 → SO(R4), a 7→ R−1
a , R−1

a q = qā, q ∈ H

the (exact) right representation, which commutes with the left representation. They define
the representation

L× R−1 : H1 ×H1 → SO(4) = (LH1 × RH1)/Z2

with the kernel Z2 = {±1}.
The representation

Ad : H1 → SO(4), a 7→ Ada. Adaq = aqā

is called the adjoint representation. It has the kernel Z2 = {±1}, acts trivially on the real
line R1 and defines the isomorphism H1/Z2 = AdH1 = SO(E3) = SO(3) which shows that
the group H1 = S3 is the universal covering of the orthogonal group SO(3). The standard
scalar product 〈q, q〉 = qq̄ in H, where for q = q01 + q′ the q̄ := q0 − q′ is the conjugated
quaternion, induces the standard Riemannian metric of the unit 3-sphere S3 = H1 , which
is invariant with respect to the (transitive) actions of the group LH1 × R−1

H1
. The group AdH

preserves the points 1 ,−1 (which will be considered as poles of S3) and acts transitively on
the equator S2

E := S3 ∩ E3 , which is the standard Euclidean unite sphere of the Euclidean
space E3. The geodesics of S3 are the great circles (the intersections of S3 with 2-subspaces
of H = R4).

The following simple facts are important for us and we state them as

Lemma 1.

(i) Any point a ∈ S3 different from ±1 belongs to unique 1-parameter subgroup ga =

span (1, a) ∩ S3 (the meridian) and can be canonically represented as

a = eψv := cos ψ + sin ψ v, 0 ≤ ψ < π/2, vs. ∈ S2
E,

where v = prS2
E

a is the closest to a point of the equator.

(ii) Points v ∈ S2
E \ ±1 bijectively corresponds to oriented 1-parameter subgroups

gv(t) := etv = cos t + sin t v

of H1, parametrized by the arclength.
(iii) Any orbit γ(t) = gv(t)a, a ∈ S3 of the left action of an one-parameter subgroup γ(t) (as well

as the right action) is a geodesic of the sphere S3. All geodesics are exhausted by such orbits.
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3.3.1. The Adjoint Action of the Group H1

Lemma 2.

(i) The 1-parameter subgroup gv(t) = etv of H1 generated by a unit vector v ∈ S2
E ⊂ H1 acts on

the sphere S2
E as the 1-parameter group R2t

v of rotation w.r.t. the axe v:

Adgv(t) = R2t
v .

(ii) More generally, let
γ(t) = gv(t)a ⊂ S3 = H1

be a geodesic of S3, considered as the orbit of an 1-parameter subgroup gv(t). Then for x ∈ S2
E

the adjoint action of the curve γ(t) is given by

Adγ(t)x = Adγ(t)x = Adgv(t)x
a = R2t

v (xa), where xa := Adax = axā.

In other words, the orbit Adγ(t)x is the circle, obtained from the point xa by action of the
group Adgv(t) = R2t

v of rotations w.r.t. the axe v.

Proof.

(i) The adjoint image Adgv(t) of the one-parameter subgroup is an one-parameter sub-
group of SO(E3), which preserves the vector v ∈ S2

E, hence the group Rv of rotation
w.r.t. v. To calculate the angle of the rotation, we apply Adgv(t) to a vector u ∈ S2

E,
which anticommutes with v, as follows

Adgv(t)u = etvue−tv = e2tvu = cos 2tu + sin 2t vu.

This shows that Adgv(t) = R2t
v .

(ii) follows from (i) and the following calculation

Adγ(t)x = gv(t)axāḡv(t) = Adgv(t)axā = Adgv(t)x
a = R2t

v xa.

3.3.2. The Hopf Bundle and Listing’s Sphere

The Hopf bundle is defined as the natural projection

χ : S3 = H1 → S2
E = S3/SO2, q 7→ Adqi = qiq̄

of H1 = S3 to the AdH1 -orbit S2
E = AdH1 i of the point i.

The base sphere S2
E = S3 ∩ E3 is called the Euclidean 2-sphere. The points i,−i will be

considered the north and south poles of S2
E. We denote by S1

E = {p = cos θ j + sin θ k} the
equator of S2

E.
The Hopf bundle is a non trivial bundle and has no global section. However, by

removing just one point−i with the preimage S1
E from the base sphere S2

E, we will construct
the canonical section

s : S̃2
E = S2

E \ {−i} → S̃3 = S3 \ S1
E.

of the bundle
χ : S̃3 → S̃2

E

over the punctured sphere S̃2
E.

First of all, we define Listing’s sphere and Listing’s hemisphere , which play a central
role in the geometry of saccades. The Listing’s sphere is intersection S2

L = S3 ∩ i⊥ of the
3-sphere with the subspace i⊥ = span (1, j, k) spanned by vectors 1, j, k. In other words, it
is the equator of the 3-sphere S3 w.r.t. the poles ±i, see Figure 9.



J. Imaging 2022, 8, 76 15 of 26

We consider the point 1 (resp., −1) as north (resp. south) pole of Listing’s sphere and
denote by S+

L (resp., S−L ) the open north (resp., south) hemisphere and by S̄+
L (resp., S̄−L ) the

closed hemisphere. Note that the equator S1
L of Listing’s sphere coincides with the equator

S1
E of the Euclidean sphere S2

E.

Figure 9. Listing’s sphere.

3.3.3. Geometry of Listing’s Hemisphere S+
L

We consider Listing’s sphere as the Riemannian sphere with the induced metric of
curvature 1 equipped with the polar coordinates (r, θ) centered at the north pole 1 . The
geodesics of S2

L are big circles. Any point a = erp = cos r1 + sin r p 6= ±1 of S2
L belongs to

the unique 1-parameter subgroup ga(t) = eta = cos t1 + sin ta of H1.
Any point a ∈ S+

L , different from 1, can be canonically represented as

a = erp := cos r1 + sin r p, p = cos θ j + sin θ k ∈ S1
L

where 0 < r < π/2 is the polar radius (the geodesic distance to the pole 1 (such that
ϕ := π/2− r is the geographic latitude) and 0 ≤ θ < π is the geographic longitude of the
point a. The point p = prS1

L
a is the geodesic projection of a to the equator , i.e., the closest

to a point of the intersection of ga(t) = γa,1 with the equator S1
L.

Note that the coordinate lines θ = const are big circles (meridians), in particular, θ = 0
is zero ("greenwich") meridian and the coordinate lines ϕ = const are parallels. The only
geodesic parallel is the zero parallel , i.e., the equator S1

L.
The open Listing’s hemisphere S+

L is geodesic convex. This means that any two distinct
points a, b ∈ S+

L determine a unique (oriented) geodesic γa,b of the sphere S2
L and are joined

by a unique geodesic segment ab ⊂ S+
L .

Canonical Parametrization of Geodesics γa,b ⊂ S2
L

Let a, b ∈ S+
L be two distinct points and γa,b the oriented geodesic. Denote by p the

first point of intersection of γ(a, b) with the equator S1
L.

If 1 ∈ γa,b then the geodesic is an 1-parameter subgroup and

γa,b = etp = cos t1 + sin p

is its canonical parametrization.
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If 1 /∈ γa,b, the unique top point m ∈ γa,b , with the maximal latitude ϕ has the form
m = eϕq where q = prS1

L
m ∈ S1

L is the geodesic projection of m to S1
L and 〈p, q〉 = 0, hence

q = ±pi.
Then

γa,b = γp,m = {cos t p + sin t m = etv p}, v = mp̄ = −mp,

where vs. = mp̄ = − cos ϕ p+ sin ϕ pq ∈ S2
E and pq = ±i, is the canonical parametrization

of the geodesic γa,b.
The intersection γ+

a,b = γa,b ∩ S+
L of the geodesic with the Listing hemisphere L+

L is
called the Listing’s semicircle.

3.3.4. Properties of the Restriction of the Hopf Map to Listing’s Sphere

Theorem 1. The restriction χ : S2
L → S2

E of the Hopf map χ to the Listing sphere is a branch Z2
covering. More precisely

(i) It maps the poles ±1 of the sphere S2
L into the pole i of the sphere S2

E and the equator S1
L into

the south pole −i = χ(S1
L).

(ii) Any different from 1 point a ∈ S2
L belongs to a unique 1-parameter subgroup ga = et′a (the

meridian of Listing’s sphere) which can be written as ga = gp = etp where p = prS1
L
a =

cos θ j + sin θ k ∈ S1
L is the equatorial point of ga.

The map χ : ga → S1
p is a locally isometric Z2 covering of the meridian ga = γp,1 of Listing’s

sphere S2
L onto the meridian S1

p of the Euclidean sphere S2
E through the point p ∈ S1

E. The
restriction of χ to the semicircle ga ∩ S+

L is a diffeomorphism.
(iii) More generally, let γa,b = γp,m = {etv p}, v = mp̄ be a geodesic through points a, b ∈ S+

L
with the canonical parametrization

γp,m(t) = cos t p + sin t m, m = eϕq = cos ϕ 1 + sin ϕ q.

It is the orbit etv p of 1-parameter group etv,

vs. = mp̄ = − cos ϕ p + sin ϕ pq ∈ S2
E

and the Hopf mapping χ maps it into the orbit

S1
v := {Adetv(−i) =} = {R2t

v (−i)} ⊂ S2
E,

of the 1-parameter group of rotations R2t
v . In other words, the circle S1

v := χ(γp,m(t)) is
obtained by rotating the point −i about the axis v ∈ S2

E.
(iv) The restriction of the map χ to the Listing hemisphere S+

L is a diffeomorphism χ : S+
L → S̃2

E.

Proof. (i)–(ii) follow from the remark that quaternions ±1 commute with i and the quater-
nions from S1

L anticommute with i. Hence Adetp i = e2tpi = ie−2tp for p ∈ S1
L.

(iii) We calculate

χ(γp,m(t)) = χ(etv p) = etv pip̄e−tv = −etvie−tv = −e2tvi = R2t
v (−i).

(iv) follows from (ii) or from Lemma 2.

3.3.5. Listing Section

According to the Theorem, the Hopf map defines a diffeomorphism

χ : S+
L → S̃2

E := S2
E \ {−i}

a = etp 7→ A := χ(a) = e2tpi = R2t
p i = cos 2t i + sin 2t q, q := pi = −ip.
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Since the preimage ξ−1(−i) = S1
L is the equator of Listing’s sphere S2

L, the inverse map

s := χ−1 : S̃2
E → S+

L ⊂ S3

A := e2tqi = cos 2t i + sin 2t q =→ a := s(A) = etp = cos t + sin t p,

where q ∈ S1
E = S1

L, q = pi is a section of the principal bundle

χ : S̃3 := S3 \ S1
L → S̃E = S2

E \ {−i}.

We call the section s the Listing section.

3.4. The Physiological Interpretation: Donders’ and Listing’s Laws and Geometry of Saccades

We use the developed formalism to give an interpretation of Donders’ and Listing’s
laws and to study the saccades and drifts.

We consider the Euclidean sphere S2
E ⊂ Im H = R3 as the model of the eye sphere, see

Figure 10, (the boundary of the eye ball B3 ⊂ R3 = ImH) with the center at the origin 0. We
assume that the head is fixed and the standard basis e0 = (i, j, k) determines the standard
initial position of the eye, where the first vector i (the gaze vector) indicates the standard
frontal direction of the gaze, the second vector j gives the lateral direction from right to left
and k is the vertical direction up.

Figure 10. The eye sphere.

The coordinates (X, Y, Z) associated with the standard basis are the head-centered
and spatiotopic (or world-centered) coordinates. A general position of the eye, which can
rotate around the center 0 is determined by the orthonormal moving (retinatopic) frame
e = (e1, e2, e3) , which determine the (moving) retina-centered coordinates (x, y, z).

The configuration space of the rotating sphere is identified with the orthogonal group
SO(3), an orthogonal transformation R define the frame

e = (e1, e2, e3) = Re0 = R(i, j, k).

It is more convenient to identify the configuration space with the group H1 = S3 of
unit quaternions, which is the universal cover of SO(3). The corresponding Z2-covering is
given by the adjoint representation

Ad : H1 → SO(3) = H1/{±1 }, a 7→ Ada.
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A unit quaternion a ∈ H1 gives rise the orthogonal transformation Ada ∈ SO(E3) and
the frame e = Adae0 = Ada(i, j, k) which defines the new position of the eye. We have to
remember that opposite quaternions a,−a ∈ H1 represent the same frame and the same
eye position. Note that a direction of the gaze e1 determines the position e = (e1, e2, e3) of
the eye up to a rotation w.r.t. the axe e1. Such rotation is called the twist.

Donders’ law states that if the head is fixed, then there is no twist. More precisely, the
position of the gaze A = e1 ∈ S2

E determines the position of the eye, i.e., there is a (local)
section s : S2

E → S3 of the Hopf bundle

χ : S3 = H1 → S2
E = AdH1 i.

In other words, the admissible configuration space of the eye is two-dimensional.
Physiologists were very puzzled by this surprise. Even the great physiologist and physicist
Hermann von Helmholtz doubted the justice of this law and recognized it only after their
own experiments. However, from the point of view of the modern control theory, it is very
natural and sensible. The complexity of motion control in 3-dimensional configuration
space compared to control on the surface is similar to the difference between piloting a
plane and driving a car.

Listing’s law specifies the section s. In our language, it can be stated as follows.
Listing’s law. The section of Donder’s law is the Listing’s section

s = χ−1 : S̃2
E = S2

L \ {−i} → S+
L ⊂ S3

A = e1 = cos ti + sin tq = etqi 7→ a = s(A) = e(t/2)p

where p = qī = iq, which is the inverse diffeomorphism to the restriction

χ : S+
L → S̃2

E

a = etp 7→ a := χ(a) = Adetp i = e2tpi = R2t
p i = cos 2ti + sin 2tq, q = pi.

of the Hopf projection to Listing’s hemisphere.
In other words, a gaze direction A = e1 = cos ti + sin tq ∈ S̃2

E determines the position
e = (e1, e2 e3) of the eye as follows

e = Adse1
e0 = Ade(t/2)p(i, j, k), p = qī ∈ S1

L = S1
E.

Saccades

We define a saccade as a geodesic segment ab ⊂ S+
L of the geodesic semicircle γ+

a,b =

γa,b ∩ S2
L. Recall that the semicircle γ+

a,b = γ+
p,m, (where p is the first point of the intersection

of the oriented geodesic γa,b with the equator S1
L, m = eϕq is the top point of γ+

a,b and q is
the equatorial point of the meridian of the point m), has the natural parametrization

γ+
p,m(t) = {cos t p + sin t m = (cos t + sin t mp̄)p = etv(p)}, 0 < t < π

where v = mp̄ = (cos ϕ p + sin ϕ q) p̄ = − cos ϕ + sin ϕ (qp̄). We may chose the vector q,
defined up to a sign, such that qp̄ = i.

The image

χ(γ+
a,b) = Adetv pi = Adetv pip̄ = Adetv(−i) = R2t

v (−i) = S1
v ⊂ S̃2

E

is the circle S1
v (without the point −i), obtained by the rotating of the point −i with respect

to the axe Rv, or , in other words, it is the section of the punctured sphere S̃2
E by the

plane −i + span (A + i, B + i) with the normal vector v ∈ R(A + i) × (B + i), where
A = χ(a), B = χ(b). The segment AB ⊂ S1

v is the gaze curve, the curve, which describes
the evolution of the gaze during the saccade ab ⊂ γ+

a,b.
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The natural question arises. If the gaze circle S1
v is not a meridian, it is not a geodesic

of S̃2
E and the gaze curve AB ⊂ S1

v is not the shortest curve of the sphere, joint A and B.
Why the eye does not rotate such that the gaze curve AB is not the geodesic?

The answer is the following. If all gaze curves during saccades would be geodesics,
then we get the twist and the configuration space of the eye becomes three-dimensional.
Assume that the gaze curve of three consecutive saccades is a geodesic triangle ABC
which starts and finishes in the north pole A = i. Since the sphere is a symmetric space,
moreover, the space of constant curvature, the movements along a geodesic induce a
parallel translation of tangent vectors. This implies that after saccadic movements along
the triangle, the initial position e0 = (i, j, k) of the eye will rotates w.r.t. the normal axe i on
the angle α which is proportional to the area of the triangle. Hence, a twist will appear.

Fortunately, since the retina image of the fixation point during FEM remain in the
fovea with the center at −i, the gaze curve remains in a small neighborhood of the standard
position i. In this case, the deviation of the gaze curve AB during MS from the geodesic
will be very small. This is important for energy minimization, since during wakefulness,
2–3 saccades occur every second. Hence more than 100,000 saccades occur during the day.

Consider the stereographic projection π−i : S̃2
E → TiS2

E of the sphere S̃2
E onto the

tangent plane at the point TiS2. It is a conformal diffeomorphism, which maps any gaze
circle S1

v ⊂ S̃2
E onto a straight line and any gaze curve AB of a saccade ab onto an interval

A′B′ = π(AB) = π(A)π(B) where A′ is the point of the intersection of the tangent plane
TiS2

E = i + span (j, k) with the line −i + R(A + i) and similar for B′. More precisely,
A′ = −i + 2

1+cos ψ (A + i) where A = cos ψi + sin ψq. The spherical n-gon A1 A2 · · · An,
formed by gaze curves A1 A2, · · · , An A1 of saccades, maps into the n-gone A′1 · · · A′n on
the plane, such that the angles between adjacent sides are preserved.

3.5. Listing’s Section and Fixation Eye Movements

Below we propose an approach to description of information processing in dynamics.

3.5.1. Retinotopic Image of a Stable Stimulus during Eye Movements

Recall that the direction N = e1 of the gaze determines the position a = s(N) ∈ S+
L of

the eye, which determines the frame e = (e1, e2, e3) := Adae0 = Ada(i, j, k) and associated
retinotopic coordinates.

Let the eye look for some time [0, T]] at a stationary surface, for example, at a plane
Π, and the gaze describes a curve N(t) ⊂ S2

E and hence is directed to the points A(t) :=
RN(t) ∩Π of the stimulus Π. Then the eye position is defined by the curve a(t) = s(N(t)).
We call a(t) Listing’s curve.

The retinal image of the points A(t) forms the curve Ā(t) := −N(t).
Moreover, if B̄(0) it the retinal image of a point B ∈ Π at t = 0, then due to eye

movement, the retinal image B̄(t) of the same point B at the moment t will be

B̄(t) = Adā(t)B̄(0), ā = a−1.

Hence the retinal curve B̄(t) is the retinal image of the external point B. Indeed, in
retinotopic coordinates, the eye is stable and the external plane Π is rotating in the opposite
direction and at the moment t take the position Π(t) := AdāΠ. The point B̄(t) ∈ Πt is the
new position of the point Ada(t)B(t) = B(0).

3.5.2. n-Cycles of Fixation Eye Movements

We define a fixation eye movement n-cycle as a FEM which starts and finishes at the
standard eye position a0 = 1 and consists of n drifts δk = δ(ak−1, a′k−1), k = 1, · · · , n and
n microsaccades Sk = a′k−1ak between them. We will assume that MSs are instantaneous
movements and occur at times T1, T2, · · · , Tk = T. Then the corresponding Listing’s curve
can be written as

δ(a0, a′0), a′0a1, δ(a1, a′1), a′1a2, · · · , δ(an−1, a′n−1), a′n−1an, a0 = an = 1.
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We associate with n-cycle the spherical polygon P ⊂ S+
L with 2n vertices (2n-gone)

P = (a0, a′0, a1, a′1, · · · , ak−1, a′k−1, ak), a0 = ak = 1.

The sides (a′k−1, ak) represent saccades Sk = a′k−1ak and the sides (ak−1, a′k−1) corre-
sponds to the drifts δk(ak−1, ak−1).

Using the stereographic projection of Listing’s sphere from the south pole −1 to the
tangent plane T1S+

L , we can identify P with an 2n-gone on the tangent plane T1S+
L .

In the case of saccade, Listing’s curve is a segment ab ⊂ S+
L . Hence all saccades of n-

cycle are determined by the position of their initial and final points in Listing’s hemisphere,
i.t. by 2n points a′k−1, ak, k = 1, · · · , n.

For example, a 3-cycle is characterised by the hexagon a0a′0a1a′1a2a′2a3, a0 = a3 = 1
and consists of 3 drifts and 3 MSs:

δ1 = δ(1, a′0), S1 = a′0a1, δ2 = δ(a1, a′1), S2 = a′1a2, δ3 = δ(a2, a′2), S3 = a′21.

An example of 3-cycle and associated hexagon is depicted in Figure 11.

Figure 11. Hexagone.

We suppose that during n-cycle with a Listing’s curve a(t), t ∈ [0, T] the visual system
perceives local information about the stimulus, more precisely, information about points B
whose retinal image belong to the fovea. The information needed for such local pattern
recognition during a FEM cycle consists of two parts:

(a) The dynamical information about Listing’s curve a(t), t ∈ [0, T], coded in oculomotor
command signals. A copy of these signals (corollary discharge (CD)) is sent from the
superior colliculus through the MD thalamus to the frontal cortex. It is responsible
for visual stability, that is the compensation of the eye movements and perception of
stable objects as stable.

(b) The visual information about characteristics of a neighborhood of points B of the
stimulus which is primary encoded into the chain of photoreceptors along the closed
retinal curve B̄(t) = Adā(t)B(0), which represents the point B during FEM. Then this
information is sent for decoding through LGN to the primary visual cortex and higher
order visual structures. In particular, if A(t) = χ(a(t)) = Ada(t)(i) is the gaze curve
with the initial direction to external point A ∈ RA(0) = Ri, the point of fixation A is
represented by the retinal curve Ā(t) = Adā(t)(i) with Ā(0) = −i.
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3.6. A Model of Fixation Eye Movements

At first, we consider a purely deterministic scheme for processing information encoded
in CD and visual cortex.

Then we discuss the problem of extending this model to a stochastic model. We state
our main assumptions. If the opposite is not stated, we assume that we are working in
spatiotopic coordinates associated to a0 = 1.

1. We assume that CD contains information about the eye position a′k−1, ak,
k = 1, · · · , n during the beginning and the end of the saccades Sk, (which is equivalent to
information about the gaze positions) and about the corresponding time Tk.

2. We assume also that CD has information about Listing’s curve δk(t), t ∈ [Tk−1, Tk] of
the drift δk+1 = δ(ak, a′k) from the point ak to the point a′k. (This assumption is not realistic
and later we will revise it.)

3. Let B be a point of the stable stimulus and B̄(0) its retina image at the time
t = 0. Then during the drift δk+1(t) = δ(ak, a′k) the image of B is the retina curve
B̄k+1(t) = Adδ̄k+1(t)B̄. We denote by IB

k+1(t) = I(B̄k+1(t)) the characteristics of this image
B, which is recorded in the activation of photoreceptors along the retinal curve B̄(t) during
the drift δk+1 and then in firing of visual neurons in V1 cortex and higher order visual
subsystems. Note that the information about the external stable point B is encoded into the
dependent on time vector–function IA

k (t). This is a manifestation of a phenomenon that E.
Ahissar and A. Arieli [12] aptly named "figurating space by time".

4. We assume that the (most) information about the drift δk+1(t), encoded in Listing’s
curve δk+1(t) ⊂ S+

L and about the characteristic functions IB
k+1(t), is encoded in the co-

ordinate system, associated to the end point ak of the preceding saccade Sk. We remark
that if ak = cos θ1 + sin θp, p ∈ S1

L, then associated with ak coordinate system is obtained
from the spatiotopic coordinates by the rotation along the axe p of the Listing plane Π(j, k)
through the angle 2π. (These coordinates are the retinotopic coordinates at the time Tk).

5. Let C be another point of the stable stimulus with the retina image C̄(0) at t = 0
and IC

k+1(t), t ∈ [Tk, Tk+1] the characteristic function of the retina image

C̄(t) = Adδ̄k+1
(t)C̄(0)

of C during drift δk+1. Then the visual system is able to calculate the visual distance
between point B, C during drift δk as an appropriate distance between their characteristic
functions IB

k+1, IC
k+1.

6. We assume that the change of coordinates (remapping) appear during each saccade.
So for example during 3-cycle, the system uses the coordinates associated to the following
points of Listing’s hemisphere

a0 = 1 [0, T1], a1 [T1, T2], a2 [T2, T3]

Here the interval [Tk, Tk+1] indicates the time of the drift δk+1 when the coordinates ak
is used.

7. In particular, this means that the information about the characteristic function
IB
k+1(t) of the external point B along the retinal curves during the drift δk+1 = δ(ak, a′k) is

encoded into the coordinates associated to the end point ak of the preceding saccade Sk
(which are the retinotopic coordinates at the time Tk).

To recalculate the characteristic function IB
k (t) in terms of the spatiotopic coordinates,

associated to a0 = 1, it is sufficient to know the point ak ∈ S+
L .

8. Following M. Zirnsak and T. Moore [46], we suppose that during the drift
δk+1 = δ(ak, a′k), the visual system chooses an external saliency point A as the target
for the next gaze position. More precisely, it fixes the retinal image Ā ∈ S2

E of this point
w.r.t. coordinates associated with ak (which are retinotopic coordinates at the moment Tk).
After the next saccade Sk+1 = a′kak+1 (at the moment Tk+1) the point Ā ∈ S2

E will become
the point F (the center of the fovea) and after the saccade the point A will be the target
point of the gaze vector N = −F, A ∈ RN.
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9. This allows to give an explanation of the presaccadic shift or receptive fields.
The above assumption means that before the time Tk+1 of the saccade Sk+1, the visual

system knows the future gaze vector e1(Tk) = N = −F with respect to the coordinates,
associated with ak. Of course, this information may be obtained only due to collaboration
of the visual system with the ocular motor system. At some moment tshi f t = Tk+1 − ∆ <

Tk+1, ∆ ≈ 100 ms these subsystems recalculate the characteristic functions IB
k+1(t) from the

coordinates ak into the new coordinates, associated to the future gaze point ak+1 and send
this information to neurons of different visual systems.

This leads to the shift of receptive field, discovered in [45]. The information about
the future characteristic functions will contains some mistakes since the real position of
the eye at the moment tshi f t is different from the position ak. It is observed as dislocation
(compression) of the image in space and time [16–19]. After the saccade, this mistakes
are corrected. One of the way to reduce such dislocation is to increase the frequency of
microsaccades.

3.6.1. Diffusion Maps and Stochastic Model of FEM

It seems that the assumption 1. that the CD contains information about the eye position
at the beginning and the end of each saccade is rather reasonable. However, the assumption
2. must be clarified. Since the drift trajectory δk+1(t) (Listing curve) can be arbitrary, it is
difficult to believe that the CD stores information about its shape even for a short time. It is
naturally to assume that the drift is a random walk and the ocular motor system and CD
store information about random trajectory of the drift. Similarly, the characteristic functions
IB
k+1(t), which contain information about the stable stimulus B, recorded by photoreceptors

during the drift δk+1 becomes a random function.

3.6.2. Diffusion Map by R. R. Coifman and S. Lafon

We shortly recall the basis ideas of the diffusion maps (or diffusion geometry) by R. R.
Coifman and S. Lafon [34,35], which we will need.

The diffusion geometry on a (compact oriented) manifold M with a volume form dvol
such that

∫
M dvol = 1 is determined by a kernel k(x, y) i.e., a non negative and symmetric

((k(x, y) = k(y, x) ≥ 0) function on M×M. An example of the kernel is the Gauss kernel

kε(x, y) = exp−||x−y||2
ε , ε > 0, of the Euclidean space or the heat kernel of a Riemannian

manifold. The normalization of the kernel gives the transition Markov kernel

p(x, y) :=
k(x, y)
d(x)

:=
k(x, y)∫

M k(x, y)vol(y)
.

which defines a random walk on M. The value p(x, y) is considered as the probability to
jump in one step from the point x to the point y.

The associated diffusion operator P on the space of function is defined by

(P f )(x) =
∫

M
p(x, y) f (y)vol(y).

Then the probability density to move form x to y in T ∈ N steps is described by the
kernel pT(x, y) associated to the T ∈ N power PT of the operator P such that

(PT f )(x) =
∫

M
pT(x, y) f (y)vol(y).

It can be defined for any T ∈ R in terms of the eigenvectors and eigenfunction of
the operator P [34]. So any point x ∈ M determines a family of the bump functions
pT

x (u) := pT(x, u) on M, which characterize the local structure of a small neighborhood
of x. We call pT

x (u) the trajectory of random walk (or random trajectory) started from x
during time interval [0, T].
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R. R. Coifman and S. Lafon [34] define the diffusion distance between points x, y ∈ M
as the L2-distance between the bump functions (or random trajectories) pT

x (u) and pT
y (u),

started form these points:

(DT(x, y))2 = ||pT
x − pT

y ||2 :=
∫

M
[pT

x (u)− pT
y (u)]

2dvol(u).

Let λ0 = 0 < λ1 ≤ λ2 ≤ λ3 · · · be eigenvalues of the diffusion operator P and
ψ0 = 1, ψ1, ψ2, · · · associated eigenfunctions. Then for sufficiently big number m , the
diffusion distance DT(x, y) is approximated by the function Dm,T(x, y) given by

D2
m,T(x, y) =

m

∑
k=1

(λ2T
k (ψk(x)− ψk(y))2.

In other worlds, the map (called the diffusion map)

ΦT : M→ Rm, x 7→ ΦT = (λt
1ψ1(x), λt

2ψ2(x), · · · , λt
mψm(x))t

is closed to the isometric map of the manifold M with the diffusion metric DT to the
Euclidean space Rm. If the manifold M is approximated by a finite systems of points
X = (x1, x2, · · · , xN), the diffusion map gives a dimensional reduction of the system X.

3.6.3. Remarks on Stochastic Description of Drift as Random Walk and Possible
Application of Diffusion Distance

The idea that FEMs is a stochastic process and may be described as a random walk
has a long history, [29–33,42].

1. We assume that the drift is a random walk on the Listing hemisphere S+
L defined by

some kernel. The question is to chose an appropriate kernel. The first guess is to assume
that it is the heat kernel of the round (hemi)sphere. The short-time asymptotic of the heat
kernel of the round sphere is known, see [47]. The functional structure of the retina which
records light information, is very important for choosing the kernel. Inhomogeneity of
the retina shows that the first guess is not very reasonable. It seems that the more natural
assumption is that the system uses the heat kernel for the metric on Listing hemisphere,
which corresponds to the physiological metric of the retina. Recall that it is the pull back of
the physical metric of the V1 cortex with respect to the retinotopic mapping.

2. We assume that the drift is a random walk in Listing’s hemisphere, defined by
some kernel. Then by the drift trajectory δk+1(t) from the point ak we may understand the
random trajectory on S+

L (or the bump function) pak (a) := p∆T
ak

(a) during the time interval
∆T = [Tk, Tk+1]. It has no fixed end point but it allows to calculate the probability that
the end point belongs to any neighbourhood of the point a′k. The situation is similar to
Feynman’s path integral formulation of quantum mechanics. Moreover, if by a point we
will understand not a mathematical point but a small domain, e.g., the domain which
corresponds to the receptive field of a visual neuron in V1 cortex or the composite receptive
field of a V1 column (which is 2–4 time larger) [37], then we may speak about random
drift δak, ak+1 from the point ak to the point ak+1 with the bump function p∆T

ak ,ak+1
(a) (“the

random trajectory”). Roughly speaking, this function gives the probability that the random
drift from the point ak to the point ak+1 after ∆T steps comes to the point a ∈ S+

L .
3. Due to diffeomorphism defined by the Hopf map χ : S+

L → S̃2
E, we may identify the

random walk in S+
L with the random walk on the eye sphere S̃2

E. A drift δk+1(t) = δ(ak, ak+1)
in S+

L induces the “drift” of a point B ∈ S̃2
E given by

B(t) := Adδ̄k+1(t)B.

Let A be the fixation point of the gaze at the initial moment t = 0, such that its retina
image is −i. Then the retina image of the point A during the drift δk+1(t) is the curve
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A(t) = Adδ̄k+1
(−i). More generally, if B(0) is the retina image at t = 0 of any other point B

of the stimulus, then the retina image during the drift δk+1 is

B(t) := Adδ̄k+1(t)B(0).

In the stochastic case, the drift δ̄k+1(t) is characterized by the random trajectory p∆T
ak

(a),
and associated “drift” of points in S̃2

E by the random trajectory

p∆T
Bk

(x) := p∆T
ak

(sx)

where Bk = Adak B(0) and s = χ−1 is Listing’s section. Note that the right hand side does
not depend on the point B(0).

We conjecture that the ocular motor control system detects information about random
trajectories in S+

L and S2
E and the corollary discharge get a copy of this information.

It seems that the proposed explanation for shifting receptive fields may be generalized
to the stochastic case.

4. Let B be a stable stimulus and B0 its retina image at t = 0 and Bk := Adāk B0
the retina image at the time Tk. Denote by IB

k (t) = I(Bk(t)) the characteristic function,
which describes the visual information about a stable stimulus point B with the retina
image Bk(t) during the drift Bk(t), t ∈ [Tk, Tk+1]. If the drift is considered as a random
walk, the information about the drift curve Bk(t) ⊂ S2

E is encoded in the function p∆T
ak

(sx)
and the characteristic function IB

k (t) becomes a random function and is described by the
bump function p∆T

IB
k
(x) on S2

E. We suppose that the visual system calculates the visual

distance between external points B, C as the diffusion distance between the associated
bump functions.

5. We also conjecture that like in deterministic case, the information about the random
trajectory of the drift δk+1 encoded in CD and the information about characteristic bump
function, encoded in different structures of the visual cortex are sufficient for stabilization
of visual perception. The problem reduces to recalculation of all information in spatiotopic
coordinates, associated with the point a = 1.
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