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S, tefănescu, B.I.; Culea, M.; Pavel,

S.M.; Culea-Florescu, A.L. A New

Approach in Detectability of

Microcalcifications in the Placenta

during Pregnancy Using Textural

Features and K-Nearest Neighbors

Algorithm. J. Imaging 2022, 8, 81.

https://doi.org/10.3390/

jimaging8030081

Academic Editors: Carmelo Militello,

Renato Cuocolo, Lorenzo Ugga and

Valeria Romeo

Received: 20 December 2021

Accepted: 17 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

A New Approach in Detectability of Microcalcifications in the
Placenta during Pregnancy Using Textural Features and
K-Nearest Neighbors Algorithm
Mihaela Miron 1, Simona Moldovanu 1 , Bogdan Ioan S, tefănescu 2,3,*, Mihai Culea 1, Sorin Marius Pavel 4

and Anisia Luiza Culea-Florescu 4,*

1 Department of Computer Science and Information Technology, Faculty of Automation, Computers, Electrical
Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Str., 800008 Galati, Romania;
mihaela.miron@ugal.ro (M.M.); simona.moldovanu@ugal.ro (S.M.); mihai.culea@ugal.ro (M.C.)

2 Department of Clinical Surgical, Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati,
47 Domneasca Str., 800008 Galati, Romania

3 Department of Obstetrics and Gynecology, Clinical Emergency Hospital “Sf. Ap. Andrei” Galat,i,
800578 Galati, Romania

4 Department of Electronics and Telecommunications, Faculty of Automation, Computers, Electrical
Engineering and Electronics, Dunarea de Jos University of Galati, 47 Domneasca Str., 800008 Galati, Romania;
sorin.pavel@ugal.ro

* Correspondence: bogdan.stefanescu@ugal.ro (B.I.S, .); anisia.culea@ugal.ro (A.L.C.-F.)

Abstract: (1) Background: Ultrasonography is the main method used during pregnancy to assess the
fetal growth, amniotic fluid, umbilical cord and placenta. The placenta’s structure suffers dynamic
modifications throughout the whole pregnancy and many of these changes, in which placental
microcalcifications are by far the most prominent, are related to the process of aging and maturation
and have no effect on fetal wellbeing. However, when placental microcalcifications are noticed earlier
during pregnancy, they could suggest a major placental dysfunction with serious consequences for the
fetus and mother. For better detectability of microcalcifications, we propose a new approach based on
improving the clarity of details and the analysis of the placental structure using first and second order
statistics, and fractal dimension. (2) Methods: The methodology is based on four stages: (i) cropping
the region of interest and preprocessing steps; (ii) feature extraction, first order—standard deviation
(SD), skewness (SK) and kurtosis (KR)—and second order—contrast (C), homogeneity (H), correlation
(CR), energy (E) and entropy (EN)—are computed from a gray level co-occurrence matrix (GLCM)
and fractal dimension (FD); (iii) statistical analysis (t-test); (iv) classification with the K-Nearest
Neighbors algorithm (K-NN algorithm) and performance comparison with results from the support
vector machine algorithm (SVM algorithm). (3) Results: Experimental results obtained from real
clinical data show an improvement in the detectability and visibility of placental microcalcifications.

Keywords: placenta; calcifications; preterm placental calcifications; first order feature; second order
feature; t-test; K-Nearest Neighbors algorithm; support vector machine algorithm

1. Introduction

In recent years, digital image processing has been increasingly used in medical imaging
where it has come to play a key role in the assisted diagnosis, planning, monitoring
and evaluation of the treatment. Because medical images are complex, and due to their
specific acquisition process, some details are often not very clear and easy to interpret;
sometimes this results in misdiagnosis, so medical professionals have become more and
more interested in exploring new methods that can improve manual interpretation and
analysis. Therefore, medical and engineering specialists have come to work closely together
to develop new methods for providing a diagnosis as quickly and accurately as possible
considering image processing and analysis as a post-imaging or pre-analysis step.
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Ultrasound is one of the most used tools for acquiring medical images for screening
and diagnosis in the field of obstetrics and gynecology. Ultrasound scanners capture
reflections at the boundaries between and within tissues using the principle of pulse-
echo imaging. Pulsed acoustic waves are transmitted and received by a transducer with
frequencies for diagnostics ranging between 1 and 20 MHz. In general, higher frequencies
produce better resolutions but penetration of the investigated tissues is lower, while lower
frequencies produce greater depth of penetration but lower resolution.

Currently, ultrasound technology is of a high performance and provides a wide range
of information, which gives the physician and the patient a high degree of confidence in
the diagnosis. However, the problem of noise sources that cause many types of artifacts
remains. As an example, the typical speckle artifacts in ultrasound images are caused by
the fact that sound waves are highly distorted when traveling through the tissues, and
these lead to distortion of the shape and texture of the structures and limit the detection of
the obscure details in the medical images [1].

Consequently, in recent years, there has been a continuous increase in the number of
methods supporting clinical decision making. More recent works are based on methods for
the extraction and analysis of textural features of medical images and machine learning
algorithms in order to classify them.

Textures of ultrasound images were analyzed by Park et al. [2] for studying the normal
supraspinatus tendon and abnormal supraspinatus tendon with the histogram and gray
level co-occurrence matrix. From the statistical results, the first order features provided an
accuracy of 95% and GLCM of 85%.

The first order features were used to differentiate between normal and infarcted my-
ocardial biostructures from ultrasound image textures. The results obtained by Moldovanu
et al. [3] show that standard deviation and mean are the significant features. Moreover, FD
is a solitary feature used for texture investigation and, in ultrasonography, FD characterizes
malignant and benign endobronchial ultrasound nodes [4] or carotid plaque [5].

Another way of performing robust feature selection and classification of MR images,
with direct applications to prostate cancer, is based on a combination of descriptive and
inferential statistics, as described by Barone et al. [6]. Here the selection is made so that the
set of features is the smallest one, which guarantees good predictive performance by using
a correlation coefficient to evaluate any association between two observed features.

However, not all the features contain important information; therefore, in [7], a novel
feature selection approach is presented, which creates a relevant predictive model used in
classifying prostate lesions in MR images.

First order and texture features can also be classified with different artificial intelligent
methods. Htay and Maung [8] proposed K-NN for early-stage breast cancer detection,
Torheim et al. [9], in their study, analyzed the cervical cancers using texture analysis and
support vector machines. The first order statistic features extracted from MR imagines
were classified with K-NN, support vector machines and neural network, providing an
accuracy of 97.37%.

The placenta is a transitory organ whose morphological and functional integrity
is essential for fetal development. According to the normally expected aging process,
ultrasound images of the placenta are different in respect with gestational age. These
aspects are all included into the four very well-known grades of Grannum classification
in which grade 0 stands for the uniform echogenicity of the placenta, whereas in grade
III there are extensive calcium deposits in all placental tissue but mainly in the placental
septic, giving the overall appearance of ring-like structures.

Echogenic foci in the placental tissue are seen in many ultrasound examinations,
especially during the second or third trimester of pregnancy, as the calcium progressively
deposits [10], and these changes are usually considered as normal aspects of aging and
maturation [11].

Placental calcifications are reported differently in the literature, but most of the studies
showed that more than 50% of the placentas have some degree of calcifications, whereas
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more than 18% have extensive calcium deposits [12]. In a study published by Miller et al.
in 1988, placental calcifications were seen in more than 39% of pregnancies at term [13].

In most cases, minor placental calcifications can be seen as the pregnancy progresses.
However, cigarette smoking during pregnancy, certain medications or vitamin supple-
ments as well as pregnancy associated pathology such as placental abruption or pregnancy
associated hypertension are more often correlated with early and more extensive calcifica-
tions [14].

A representative example of a placental aging process can be seen in Figure 1 where
several regions of interest (ROI) from various pregnancy ages are shown.
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The prevalence of preterm placental calcifications, whether early, before 32 weeks, or
late, between 32 and 36 weeks of gestation, is reported with different numbers in many
studies from the literature.

In a study published in 2005 by McKenna et al., the prevalence of placental calcifica-
tions at 36 weeks of gestation was only 3.8% [15].

In other studies, the prevalence of placental calcifications was 9% before 28 weeks of
gestation [16], 15% between 34 and 36 weeks [17] and 23.7% between 31 and 34 weeks of
gestation [18].

The significance of preterm placental calcifications is not fully understood. Moreover,
the reports from the literature show diverging data. Whether some studies show no
interference between placental calcifications and normal fetal growth and overall outcome,
there are reports that strongly correlate early preterm calcifications with intrauterine growth
restriction [15,18], low birth weight [15,17–19], low Apgar score [17], neonatal death [10]
and pregnancy-induced hypertension [15,20]. Moreover, postpartum hemorrhages seem to
be more frequent in pregnancies with preterm placental calcifications [10].

In this study, a method for analyzing the placenta structure based on the first, second
and fractal dimension is proposed. The original image is divided into ROIs from which
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the proposed features are extracted. As well as the first and second features, the fractal
dimension is extracted to follow the fine structure of microcalcifications. All features were
tested with the t-test, taking into consideration the significance, and then with the K-NN
algorithm; the classification accuracy was generated. To highlight the microcalcifications
area in the preprocessing step an unsharp filter was applied.

The rest of this paper has the following structure: Section 2 presents the materials and
methods proposed in the context of improving the detectability of microcalcifications in the
placenta during pregnancy using textural features and the K-Nearest Neighbors algorithm.
The results of the study, performance comparison with results from the SVM classifier
and a brief discussion are presented in Section 3. And Section 4 draws the conclusions of
the paper.

2. Materials and Methods

Medical images can be seen as processes in which the characteristics of the tissue are
translated into a shade of gray or RGB image.

The information contained in an image and perceived by the human eye through
features such as brightness, color, texture or edges may be affected by the sensitivity and
resolution of the acquisition equipment, noise and artifacts added over the useful signal.

Due to the nature of the technology used, even if it is currently very performant,
most of the acquired medical images are affected by various disturbances that lead to a
diminished contrast and visibility, especially in the case of fine details.

Improving the details of an image highlights its fine details that have been blurred or
diminished due to errors occurring as a result of the acquisition method. However, a disad-
vantage of the contrast enhancement method is that the noise can also be accentuated [21].

For this reason, the main contribution of this paper is the analysis of the placental
structure in areas where the microcalcifications are most likely to appear so that a correct
classification and selection of areas with microcalcifications can be made.

The paper proposes a new technique to improve the detectability of details in prede-
fined regions of interest in order to achieve a better contrast between different colors by
combining filtering methods, existing filtering techniques of the placental structure analysis
using textural features and K-Nearest Neighbors algorithm. For comparing classification
results of the K-NN algorithm, a support vector machine (SVM) classifier is also applied
due to its outstanding generalization capability [22] and reputation to achieve high accuracy
with less computational complexity for many practical problems from a medical imaging
field [23]. The algorithm diagram can be seen in Figure 2.

The proposed methodology was applied to raw data, marked as M1 method and
repeated for preprocessed images with an unsharp filter, marked as M2. For both M1 and
M2, the regions of interest were automatically generated by imposing a given ROI size,
and their selection and validation relied on the specialist human observer according to the
specific task.

Firstly, the approach required the implementation of a filtering method especially
suited for the detection of placental microcalcification; secondly, in order to increase the
accuracy of medical evaluation, a statistical textural features and signification checking
and performance analysis via different classification paradigms was performed on both
M1 and M2.

2.1. Preprocessing Operations
2.1.1. Contrast Enhancement

Increasing the contrast of the image aims at improving the visual perception of the
contours of objects because it is well known that human perception is sensitive to edges
and fine details. In general, this goal can be achieved by changing the pixel values on
both sides of a common border. The border can be seen as a transition from white to
black (from one color to another). Therefore, improving the contrast should produce a
rapid transition from white to black, which eventually leads to a clearer picture. Instead,



J. Imaging 2022, 8, 81 5 of 12

a gradual transition from white to black through multiple levels of gray leads to blurry
images and blurry details.
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Figure 2. Algorithm diagram.

In this context, we implemented a filtering method based on a classical approach of
image processing. This method consists of two steps: the first one is filtering the image
with a high-pass filter because information about small details is contained in the high
frequencies; the second one consists of obtaining a controlled, enhanced contrast by adding
to the original image a weighted filtered image [21,24].

The method was applied on cropped ROI of the images containing the microcalcifica-
tions, which were validated by a human expert. The result of applying the filtering method
to increase the visibility and detectability of microcalcifications in a 14 weeks of gestation
placenta are presented in Figure 3.

2.1.2. Edge Enhancement

Microcalcifications are fine shapes, white specks, sometimes like grains of salt. In
computer vision, fractal dimension is a tool extensively used for characterizing roughness
and self-similarity.

To analyze microcalcifications, the box counting method (BC) is proposed for the 2D
images as it provides values in the range of 1 and 2.

Before applying the BC, the edges of the gray level image were detected with first and
second derivative filter. From the first category, the Sobel filter and the second Laplacian of
Gaussian (Log) filter were chosen, and its preprocessing results are shown in Figure 3.

The FD computed with BC after the Sobel filter was applied as noted with FD_I and
with FD_II after LoG detected the edges.

2.2. Texture Analysis
2.2.1. First Order Features

First order features are computed from the histogram image. In this study, standard
deviation, skewness and kurtosis were considered.
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Standard deviation measures the distribution of intensity values about the mean.

SD =

√√√√ L

∑
i=1

(i−M)P(i) (1)

Skewness measures the unequal distribution or asymmetry of intensity values of
histograms about the mean value.

SK =
1

(SD)3

L

∑
i=1

(i−M)3P(i) (2)

The Kurtosis calculates the average amount of the peak of intensity distribution
values (sharpness).

KR =
1

(SD)4

L

∑
i=1

(i−M)4P(i) (3)

where P(i) is the probability of gray levels and M is the average of the intensity values
obtained from the bins of histograms and L belongs the range 0 to 255 [25].



J. Imaging 2022, 8, 81 7 of 12

2.2.2. Second Order Features

Gray level co-occurrence matrix (GLCM) is a main tool in image texture analysis, more-
over a statistical method that analyzes image texture structure of gray levels’ occurrence
in comparison with other gray levels. For a GLCM with N × M size, the next standard
features as contrast (C), homogeneity (H), correlation (CR), energy (E) and entropy (EN)
are computed from a normalized co-occurrence matrix.

C =
L−1

∑
i=0

L−1

∑
j=0

(i− j)2Np(i, j, δ, θ) (4)

H =
L−1

∑
i=0

L−1

∑
j=0

Np(i, j, δ, θ)

1 + |i− j| (5)

CR =
L−1

∑
i=0

L−1

∑
j=0

(i− µi)
(

j− µj
)

Np(i, j, δ, θ)

σiσj
(6)

E =
L−1

∑
i=0

L−1

∑
j=0

N2
p(i, j, δ, θ) (7)

EN =
L−1

∑
i=0

L−1

∑
j=0

Np(i, j)log2Np(i, j, δ, θ) (8)

where L = 256 represents the grey level, Np(i, j, δ, θ), the probability that two grey levels
occur at the same time at δ and at angle θ ∈ {0◦, 45◦, 90◦, 135◦}. µi, µj, σi and σj are the
mean and standard deviation of Np(i, j, δ, θ) [26].

2.2.3. Fractal Dimension and First and Second Derivative Filter

Fractal dimension (FD) is based on the concept of self-similarity. In image processing
FD is defined as

FD = lim
r→∞

log(Nr)

log
(

1
r

) (9)

where Nr is the least number of distinct copies of the 2D image in at the scale r [27].
The box counting method was applied on the binary image obtained with first and

second derivative filter. From the first order derivative filter category was used Sobel
filter and from the second order derivative filter category, the Laplacian Gaussian filter
was applied.

2.3. Statistical Analysis and Classification

The statistical significance of first, second and FD features was performed using a
t-test. Thus, the null hypothesis (all actual mean values are the same) is tested for each
feature extracted from healthy and calcified regions of interest because it is expected that
the features have significantly different values for the two cases considered. Three first
order statistics, 5 GLCM features and two FD features (FD_I and FD_II) with a p-value
under 0.05 are selected to be the inputs of the classification algorithm.

In this study, we used a K-NN to classify texture features and accuracy is used to
evaluate performance. K-NN algorithm is a popular and powerful machine learning
algorithm, and widely used in binary classification problems.

On the data set consisting of first and second features, and fractal dimension, the
K-NN algorithm is applied. The resulting performance of the prediction is obtained via
the confusion matrix (CM). The accuracy (see Equation (10)) is computed based on the
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following values provided by the CM [28]: true positive (TP), true negative (TN), false
positive (FP), false negative (FN).

Accuracy =
TP + TN

TP + FP + TN + FN
(%) (10)

2.4. Practical Implementation

The results presented in this study consist of 96 regions of interest from images
corresponding to different weeks of pregnancy, mainly before the 32 weeks of gestation.
The images were obtained with the informed consent of patients.

The images acquisition was realized with Voluson E6 machine (General Electric Com-
pany, Boston, MA, USA) equipped with a 2–8 MHz transabdominal GE RAB6-D transducer
(Jaken Medical Inc., Chino, CA, USA). The resolution of images was by 960 × 720.

Statistical analyses, classification and image processing were performed using MAT-
LAB R2020b with Image processing and statistic toolboxes (The MathWorks, Inc., Natick,
MA, USA). The hardware used was a computer with the following specifications: Inter (R)
Core (TM) i7-8550U CPU @ 1.80 GHz (Intel Corporation, Santa Clara, CA, USA); Memory
(RAM) 8 GB DDR4 Samsung, Pyeongtaek, Korea).

3. Results and Discussions

In this paper, we developed a quantitative ultrasound texture analysis to accurately
detect microcalcifications in the placenta during pregnancy. After the preprocessing stage
is completed, the next stage is feature extraction and analysis for the two classes, healthy
and calcified placenta. The features for our study are selected according to their correlation
to calcified placenta. From the 10 texture features analyzed with the t-test, the results are
all salient (p < 0.05); thus, all are further considered to be inputs for the K-NN algorithm.

In Table 1, the p-value resulted from the t-test for each feature extracted from the raw
images (M1) and our proposed method (M2) can be seen.

Table 1. The p-value from t-test computed for first, second and FD features.

SD SK KR C H CR E EN FD_1 FD_2

M1 0.012 0.043 0.041 0.033 <0.001 0.032 0.038 <0.001 0.045 0.048
M2 <0.001 0.035 0.04 0.008 0.002 0.030 0.022 <0.001 0.043 0.043

Furthermore, K-NN is used to classify the images in two classes: healthy and calcified
placenta. For this purpose, the data are divided into two sets: 80% training data and 20%
test data. In the next step, for k-fold cross validation, the training data are split into k = 5
subsets. The classifier is trained and validated by k separate times: with a training group
consisting of k-1 subsets (4 subsets × 16%) and with a remaining subset (1 subset × 16%)
for cross validation. The accuracy for each k experiment is computed. However, the
performance of the classifier is tested with unseen data from the validation set (20%). The
best accuracy of the algorithm is achieved when the number of neighbors is K = 3.

To differentiate between healthy and calcified placenta a combination of features is
initially considered for both methods, M1 and M2. In this case, the accuracy of the classifiers
obtained with K-NN and 5-fold cross validation procedure is lower than 75%. The low
performance results are:

(i) first order features and second order features, M1 (68.3%), M2 (68.8%);
(ii) first order features, second order features and FD, M1 (70.1%), M2 (71.1%);
(iii) first order features and FD, M1 (73.4%), M2 (73.2%);
(iv) second order features and FD; however, their clustering leads to a decrease in the

accuracy, M1 (68.1%), M2 (69.1%).



J. Imaging 2022, 8, 81 9 of 12

Consequently, analyzing the textural features individually leads to better performance.
The only downside is that for each feature, a separate classifier is required to be trained.
However, our study’s purpose is not negatively impacted by this.

The results obtained are presented in Figure 4 and show that the proposed method
(M2) provides good performance and high accuracy in comparison with M1 (raw images).
This is demonstrated by the GLCM features from M2: CR obtains high accuracy (84.01%)
and SD provides 83.01% accuracy.
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Figure 4. Performances for M1 and M2 methods obtained with K-NN.

Unfortunately, after applying the microcalcifications’ enhancement in the preprocess-
ing stage, FD_I and FD_II become low-level features.

As the paper shows a classification problem, a support vector machine classifier (SVM)
is applied further to check if the accuracy of both methods (M1 and M2) can be improved.
After testing several kernel functions, the polynomial kernel function proved to be the most
appropriate for the SVM.

The results from Figure 5, show that the accuracy of M1 and M2 are not improved
with the SVM algorithm; moreover, they present lower performances in comparison with
the values from the K-NN algorithm. This is observed from the GLCM features from M2:
CR has 76% accuracy and SD obtains only 69% accuracy.

All values of accuracy are obtained by evaluating the SVM classifier with a test set,
generated by splitting the images in two categories: 80% for training and 20% for testing.

This is a pioneering study of the texture and classification of placenta microcalci-
fications; therefore, there are no comparable studies from the scientific literature. The
proposed image detecting and classification method yield very good results, especially
when analyzing ultrasound images obtained before 32 weeks of gestation.

By using it, it is possible to have a fast diagnosis tool and also to better track the
evolution of preterm placental microcalcifications; in principle, small microcalcifications
that are difficult to identify in the unprocessed image.



J. Imaging 2022, 8, 81 10 of 12

J. Imaging 2022, 8, x FOR PEER REVIEW 10 of 12 
 

 

As the paper shows a classification problem, a support vector machine classifier 

(SVM) is applied further to check if the accuracy of both methods (M1 and M2) can be 

improved. After testing several kernel functions, the polynomial kernel function proved 

to be the most appropriate for the SVM. 

The results from Figure 5, show that the accuracy of M1 and M2 are not improved 

with the SVM algorithm; moreover, they present lower performances in comparison with 

the values from the K-NN algorithm. This is observed from the GLCM features from M2: 

CR has 76% accuracy and SD obtains only 69% accuracy. 

 

Figure 5. Performances for M1 and M2 methods obtained with SVM. 

All values of accuracy are obtained by evaluating the SVM classifier with a test set, 

generated by splitting the images in two categories: 80% for training and 20% for testing. 

This is a pioneering study of the texture and classification of placenta microcalcifica-

tions; therefore, there are no comparable studies from the scientific literature. The pro-

posed image detecting and classification method yield very good results, especially when 

analyzing ultrasound images obtained before 32 weeks of gestation. 

By using it, it is possible to have a fast diagnosis tool and also to better track the 

evolution of preterm placental microcalcifications; in principle, small microcalcifications 

that are difficult to identify in the unprocessed image. 

4. Conclusions 

According to many studies from the literature, preterm placental calcifications could 

be associated with poor maternal and fetal outcome. That is why placental calcifications, 

especially when their presence is noted early in the pregnancy, should be treated with 

extreme caution and regarded as a potential placental dysfunction instead of a normal 

aging process. 

As a result of our study, an image enhancement technique combined with techniques 

of placental structure analysis could be very useful in the detection of early placental mi-

crocalcifications. 

Classification plays an important role in this, improving the separation into healthy 

and calcified placenta. This process ensures the early detection of preterm placental calci-

fications, which, in turn, could improve the overall fetal and maternal outcome through a 

closer surveillance and proper counselling of the pregnant woman. 

50% 55% 60% 65% 70% 75% 80%

SD

SK

KR

CR

E

CR

H

EN

FD_I

FD_II

Accuracy

Im
ag

e
 f

e
at

u
re

s
M2

M1

Figure 5. Performances for M1 and M2 methods obtained with SVM.

4. Conclusions

According to many studies from the literature, preterm placental calcifications could
be associated with poor maternal and fetal outcome. That is why placental calcifications,
especially when their presence is noted early in the pregnancy, should be treated with
extreme caution and regarded as a potential placental dysfunction instead of a normal
aging process.

As a result of our study, an image enhancement technique combined with techniques
of placental structure analysis could be very useful in the detection of early placental
microcalcifications.

Classification plays an important role in this, improving the separation into healthy
and calcified placenta. This process ensures the early detection of preterm placental
calcifications, which, in turn, could improve the overall fetal and maternal outcome through
a closer surveillance and proper counselling of the pregnant woman.

In this paper, two different classifiers (K-NN and SVM) were investigated and com-
pared to find out which model would be suitable for our dataset and salient features data.
The accuracy of the classifiers obtained when using the K-NN, with a 5-fold cross valida-
tion, outperforms the SVM results in our case study. However, is important to note that
hyperparameter optimizations and selected features play a critical role in obtaining a good
classification. Different algorithms, based on nature-inspired approaches [29], such as the
convolutional neural network (CNN), that are capable of automatically extracting features
from raw data without prior knowledge about the dataset labels can be examined in future
work. Additionally, we plan to investigate unsupervised segmentation techniques [30] to
overcome the effort needed to be spent on extracting and selecting classification features.

Author Contributions: Conceptualization, A.L.C.-F. and S.M.; formal analysis, A.L.C.-F., S.M., M.M.,
M.C. and S.M.P.; investigation, A.L.C.-F., S.M., B.I.S, . and M.C.; methodology, A.L.C.-F. and S.M.;
software, A.L.C.-F., S.M. and M.M.; validation, A.L.C.-F., S.M., M.M., M.C. and B.I.S, .; writing—
original draft preparation, A.L.C.-F.; M.M. and B.I.S, .; writing—review and editing, M.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially supported under Contract no. RF 3627/30.09.2021 “Supporting
and developing Research, Innovation and Technology Transfer activities at the University Dunărea
de Jos of Galat, i”.

Institutional Review Board Statement: Not applicable.



J. Imaging 2022, 8, 81 11 of 12

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ortiz, S.H.C.; Chiu, T.; Fox, M.D. Ultrasound image enhancement: A review. Biomed. Signal Process. Control 2012, 7, 419–428.

[CrossRef]
2. Park, B.E.; Jang, W.S.; Yoo, S.K. Texture Analysis of Supraspinatus Ultrasound Image for Computer Aided Diagnostic System.

Healthc. Inform. Res. 2016, 22, 299–304. [CrossRef] [PubMed]
3. Moldovanu, S.; Moraru, L.; Bibicu, D. Characterization of myocardium muscle biostructure using first order features. Dig. J.

Nanomater. Biostruct. 2011, 6, 1357–1365.
4. Fiz, J.A.; Monte-Moreno, E.; Andreo, F.; Auteri, S.J.; Sanz-Santos, J.; Serra, P. Fractal dimension analysis of malignant and benign

endobronchial ultrasound nodes. BMC Med. Imaging 2014, 14, 22. [CrossRef] [PubMed]
5. Zhou, R.; Luo, Y.; Fenster, A.; Spence, J.D.; Ding, M. Fractal dimension based carotid plaque characterization from three-

dimensional ultrasound images. Med. Biol. Eng. Comput. 2018, 57, 135–146. [CrossRef] [PubMed]
6. Barone, S.; Cannella, R.; Comelli, A.; Pellegrino, A.; Salvaggio, G.; Stefano, A.; Vernuccio, F. Hybrid descriptive-inferential method

for key feature selection in prostate cancer radiomics. Appl. Stoch. Model. Bus. Ind. 2021, 37, 961–972. [CrossRef]
7. Comelli, A.; Stefano, A.; Coronnello, C.; Russo, G.; Vernuccio, F.; Cannella, R.; Salvaggio, G.; Lagalla, R.; Barone, S. Radiomics: A

New Biomedical Workflow to Create a Predictive Model. In Medical Image Understanding and Analysis; Papież, B., Namburete, A.,
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