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Abstract: Three-dimensional surface reconstruction is a well-known task in medical imaging. In
procedures for intervention or radiation treatment planning, the generated models should be accurate
and reflect the natural appearance. Traditional methods for this task, such as Marching Cubes, use
smoothing post processing to reduce staircase artifacts from mesh generation and exhibit the natural
look. However, smoothing algorithms often reduce the quality and degrade the accuracy. Other
methods, such as MPU implicits, based on adaptive implicit functions, inherently produce smooth
3D models. However, the integration in the implicit functions of both smoothness and accuracy of
the shape approximation may impact the precision of the reconstruction. Having these limitations in
mind, we propose a hybrid method for 3D reconstruction of MR images. This method is based on a
parallel Marching Cubes algorithm called Flying Edges (FE) and Multi-level Partition of Unity (MPU)
implicits. We aim to combine the robustness of the Marching Cubes algorithm with the smooth
implicit curve tracking enabled by the use of implicit models in order to provide higher geometry
precision. Towards this end, the regions that closely fit to the segmentation data, and thus regions
that are not impacted by reconstruction issues, are first extracted from both methods. These regions
are then merged and used to reconstruct the final model. Experimental studies were performed on
a number of MRI datasets, providing images and error statistics generated from our results. The
results obtained show that our method reduces the geometric errors of the reconstructed surfaces
when compared to the MPU and FE approaches, producing a more accurate 3D reconstruction.

Keywords: 3D reconstruction; Marching Cubes; implicit models; MR imaging

1. Introduction

Imaging technologies such as computed tomography (CT) and magnetic resonance
imaging (MRI) have been intensively developed and are now commonly used in medicine,
science and engineering to study the internal structures of a variety of specimens and
organs. In medical assessment, physicians still largely use the individual 2D slices of the
3D volume dataset to evaluate diseases. However, visualizing 3D structures is also very
advantageous for understanding the pathophysiological processes. For instance, the study
of neurodegenerative diseases such as Alzheimer’s involves the reconstruction of the brain
cortex to accurately estimate the cortical thickness [1]. Frequently, the reconstruction process
is preceded by the delineation and segmentation of specific regions in the slices. These
regions, representing a segmentation map, are then converted into 3D meshes in order
to be observed or used for therapeutic planning and other analyses. Many authors have
tackled the problem of reconstructing 3D models from medical image data. This subject
is motivating for many fields, such as medical diagnosis, prognosis, virtual education
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and visualization, model-based therapy planning, or surgical planning. One of the core
questions for these approaches concerns the smoothness of reconstruction, since anatomical
structures usually do not exhibit sharp edges. However, it is also important to generate
accurate 3D models that closely approximate the original medical data.

Historically, reconstruction techniques were introduced with the standard Marching
Cubes (MC) isosurface extraction algorithm [2]. Conceptually, the MC algorithm divides a
3D volume representing a specific structure into a discrete set of cubes and approximates
the mesh going through each cube by a set of zero or more triangles. It is widely used
for reconstructing a surface from medical data due to its simplicity, rapidity and its ro-
bustness to deal effectively with various types of data, such as isotropic and anisotropic
data. The popularity of the MC algorithm and its widespread adoption has led to several
improvements in the algorithm to enhance the quality of the generated mesh [3] or to
reduce the computational cost [4]. Recently, Schroeder et al. [5] proposed a fast isosurface
extraction algorithm called Flying Edges (FE). This algorithm is especially designed to
achieve a large scale with low memory requirements. However, since it is based on the
standard MC algorithm, it has inherited some particular shortcomings. The generated
mesh may contain several artifacts, such as staircases and terraces, since the Marching
Cubes mesh closely follows sharp voxel boundaries (instead of smoothly fitting them).
Thus, reconstructing smooth curves is still an approximation. Flying Edges (FE) adds
an additional mesh smoothing post processing to reduce artifacts from mesh generation,
but this may degrade the accuracy since relevant features may be removed and distances
between output surfaces and segmentation are changed [6].

Contour-based methods offer an elegant alternative for directly producing smooth
3D models. Most of them are based on the idea of converting the set of contours into 2D
distance fields and interpolating these fields using inter-slice interpolation methods [7–9].
However, interpolating intermediate slices results in much more data and computational
effort. In a different and much faster approach, Braude et al. propose Multi-level Partition
of Unity (MPU) implicit models [10]. MPU implicits offer advantages unlike other contour-
based reconstruction techniques, since they are based on implicit functions that adaptively
conform to local features and details. They are able to produce smooth curves thanks to
the use of piecewise local quadratic functions that capture efficiently the local shape of the
surface. Nevertheless, this method has some drawbacks. One difficulty is the inclusion in
the implicit functions of both the accuracy and smoothness of reconstruction. These two
properties are controlled by a single parameter called the tolerance. To achieve a high level
of smoothness around some regions, a large value of tolerance has to be used, which will
subsequently result in a poor approximation of the original segmentation.

The present work relies on the two following methods: Flying Edges (FE) and Multi-
level Partition of Unity (MPU) implicit models. Our main objective is to provide a recon-
struction method that fully benefits from the features brought by both of them, and gener-
ates a smooth and accurate 3D model that closely approximates the real medical data. In this
paper, we first describe each reconstruction method and discuss the key strengths and
weaknesses of each of them. We then propose an efficient hybrid approach, in which the
regions that closely fit to the segmentation data (pronounced correct regions) are identified
and extracted from both methods. These regions are then merged and used to reconstruct
the final 3D model. More precisely, the main contributions and advantages of our work can
be summarized as:

• A comparative analysis between FE and MPU implicits, which identifies the key
strengths and weaknesses of each method;

• A reconstruction process that allows the strengths of one method to offset the weak-
nesses inherent in another, offering thus a higher geometry precision;

• A reference metric for evaluating the quality of reconstructions, based on a qualitative
and quantitative analysis.

We show results on a variety of MRI datasets, demonstrating that our method produces
a more accurate reconstruction than the usual methods (FE and MPU). The remainder
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of this paper is organized as follows: we first discuss the state of the art (Section 2),
before describing the two reconstruction methods, FE and MPU (Section 3). We then
introduce the principle of our 3D hybrid reconstruction method (Section 4) and discuss the
results of the three methods, tested with a number of MRI datasets (Section 5). Finally, we
conclude with an outlook on future works (Section 6).

2. Related Work

The 3D reconstruction of objects has received much interest in a wide variety of fields,
such as computer graphics and computer vision, computer animation, medical imaging, vir-
tual reality, or computational science. This paper focuses on the 3D reconstruction methods
used in the medical field and more particularly on the reconstruction methods applicable
to MRI images. Historically, they have been introduced with the standard Marching Cubes
(MC) isosurface extraction algorithm [2]. The simplicity, robustness and rapidity of the
Marching Cubes have made it the most widely used method for the interactive visual-
ization of medical data. However, the generated mesh may present discontinuities and
topological incoherences due to the ambiguities in the interpolant behavior [11,12]. This
is the reason why several authors have increased the number of entries in the Marching
Cubes triangulation lookup table [13–16] to resolve these ambiguities and thus enhance
the topological correctness [17,18]. Unfortunately, the reconstruction of a precise geometric
mesh that reflects properly the anatomical structure still is an active research field, since the
extracted mesh often contains degenerate and skinny triangles [3,19]. Furthermore, mesh-
ing is often constructed from a 3D volume defined in the discrete space and the process
hardly reconstructs smooth curves. This lack of precision leads to artifacts such as staircases
and terraces, leading to imprecise meshes that do not reflect the natural appearance of
anatomical structures. Recently, Schroeder et al. [5] introduced the Flying Edges, which
is the parallel version of the Marching Cubes. This algorithm is now implemented in the
medical visualization and analysis platform 3D slicer, with an additional mesh smoothing
post processing. Smoothing algorithms allow us to reduce artifacts from mesh generation
and achieve a natural appearance since the anatomical structures usually do not exhibit
sharp edges, but in turn it may reduce the quality and degrade the precision [6]. In particu-
lar, this may alter the structure in some regions since the distance between the mesh and
the original segmentation is changed.

Moreover, numerous contour-based surface reconstruction techniques have been
developed, either with explicit or implicit surface representations. Contour stitching meth-
ods interpolate between the adjacent cross-sectional contours using a mesh, composed
of straight lines and flat faces [20–25]. However, representing a mesh by only a set of
straight lines does not allow one to depict smooth biological data. In addition, these
early approaches fail to deal effectively with handling special cases such as keyholes
contours, rapid changes, and branching. These issues have been addressed recently by
Sunderland et al. [26] in a more robust algorithm for interpolating planar contours. How-
ever, despite all the improvements, this method still has two major drawbacks: the resulting
mesh is not topologically correct (i.e., it might contain triangles that converge to a single
point at the edge of the contour) and it tends to produce a high number of triangles.

In contrast, methods based on implicit surface representation provide a more stable
surface reconstruction, since they maintain the smoothness of the biological structures,
regardless of the complexity of the regions. A first approach in this category interprets the
cross-sectional contours as a stack of smooth and continuous 2D distance fields. These latter
are then interpolated in the z-direction using inter-slice interpolation methods [7–9,27–29].
Although these methods produce smooth 3D models, the main drawback is that the interpo-
lated results may be affected by the disturbance of scanning noise and segmentation errors
on medical images, thus reducing the precision of the generated mesh. Another approach
tends to fit an implicit function to the input data using provided normals, after which the
final surface can be obtained by extracting an isosurface. A prominent example includes
the Multi-level Partition of Unity (MPU) implicit models [10], inspired by the work of
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Ohtake et al. [30]. We have chosen, in the current work, to build upon the Flying Edges [5]
and MPU implicit approach [10] and describe them in detail in Section 3.

3. Flying Edges and MPU Implicit Approach

This section details the two reconstruction methods, Multi-level Partition of Unity
(MPU) implicit models and Flying Edges (FE), used in our hybrid reconstruction system.
The 3D models illustrated in Figure 1 have been used to study the behavior of the two
reconstruction algorithms (MPU and FE). Additional case studies from complex real-world
data are presented in Section 5.

Figure 1. Three-dimensional reconstructed models from MR images used for our study.

3.1. Flying Edges (FE)

The Flying Edges (FE) was designed from the standard MC algorithm with parallelism
in mind [5]. It operates on a 3D grid of voxels and uses a lookup table from which
the triangle configuration of each voxel is determined. Instead of marching through all
the voxels in a single pass, FE uses multiple preprocessing passes to guide and reduce
dramatically subsequent computations. The first preprocessing stage marches through all
the voxels along one dimension of the volume and determines which edges are intersected.
The second stage determines which edges along the other two dimensions are intersected
using information gained in the first preprocessing stage. The sections are crossed in parallel
and each indicates its first and last intersections, so that only a smaller part of the grid
will be processed, thus reducing the time to find connections between triangles generated.
For example, as shown in Figure 2a, after the second pass, the grid (in 2D) is restricted to a
small region circumnavigating the isosurface. The third of the preprocessing stages allocates
memory to contain the triangles and points, while the last stage calculates the intersection
points and generates triangles. Moreover, 3D slicer [31] uses VTK’s implementation [32] for
FE and adds an additional mesh smoothing post-processing step [33] to remove staircase
artifacts and to exhibit the natural look of anatomical structures. We have chosen this
algorithm for its robustness to deal effectively with various types of data. In addition, it is
computationally efficient and scales favorably for large datasets. However, the generated
mesh may be impacted by the inherent issues of the Marching Cubes algorithm, coming
essentially from the triangulation lookup tables [3] and the smoothing post processing [6].
FE outputs 3D models that are geometrically smoothed using a smoothing filter. As a result
of surface smoothing, artifacts are reduced but, as a side effect, the distance between the
output surface and the original segmentation might be altered too much in some regions,
reducing the accuracy of reconstruction (Figure 3b,c).
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Figure 2. FE and MPU: (a) The region of the FE grid processed at the end of the second stage; on
the right side is a metadata array describing the interaction of the isosurface with the grid edges.
(b) Principle of MPU. Top: Two local approximations (dashed red curves) blended to form the global
MPU function (solid green curve). Bottom: (1–2) quadric functions are used to approximate the local
shape; (1) bivariate quadric is used; (2) general 3D quadric is used; (3) the local function’s error is
evaluated in each step of the algorithm in order to determine if the local function has to be refined.

Figure 3. Reconstruction of the brain and ventricle with FE (in yellow) and MPU (in red); (a,b) coronal
brain cross-sections; (c) axial ventricle cross-section; (top) overlaid models; (bottom) a zoom on the
red rectangle showing the reconstruction results of each method.

3.2. Multi-Level Partition of Unity (MPU) Implicit Models

The Multi-level Partition of Unity (MPU) implicit models presented in [10] operate on
a set of contours, representing the outlines of the structure, and produce a smooth 3D mesh
as output. The coordinates of the contour pixels (x,y), along with the slice number, allow us
to convert the set of contours into a set of 3D points in R3. The points are subdivided using
a recursive octree-based subdivision scheme, where the surface estimation of each partition
is performed locally and the overlapping local implicit functions are blended together to
produce the overall surface (i.e., zero iso-surface, from which the mesh is then extracted).
Figure 2 briefly recalls the principle. Since the MPU requires surface normal information,
the surface normal at each contour point is estimated from the binary volume, constructed
from the set of contours as described in [10]. The implicit functions are approximated using
local quadric functions, where the choice of the appropriate function depends on local
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surface features implied by the point normals (Figure 2b(1) ) and (Figure 2b(2)). At each
stage of the subdivision process, the local function’s accuracy has to be evaluated and
compared to a user-specified tolerance value (tol) in order to determine if the local implicit
surface needs to be refined (Figure 2b(3)) and thus allows us to refine areas of higher detail.

We have chosen to build upon this method, because the resulting mesh is not geo-
metrically smoothed through a post processing as in Flying Edges. Smoothing is basically
included in the reconstruction process, since the MPU is based on mathematical implicit
functions that smoothly conform to the local features and details of structures. However,
the flexibility of specifying the smoothness and the accuracy of the shape approximation
are both controlled by the tolerance parameter tol. To achieve a high level of smoothness
around the points, when fitting the implicit function to the target structure, a relatively
large value of the tolerance has to be used, which will subsequently result in a poor approx-
imation of the original geometric shape of the structure, especially in the case of non-dense
datasets or objects with intricate geometry (Figure 3a).

The reconstruction results and visualization of regions with errors are presented in
Figure 3. The models are overlaid with two different colors to see them together, and a
zoom on a specific zone (red square) is included to show the reconstruction differences. One
can observe that reconstruction results may differ from one cross-section to another and/or
from one structure to another. For example, the cross-section of the brain in Figure 3a shows
that FE better follows the segmentation when compared to MPU, which is not the case for
the cross-section in Figure 3b. Looking at the ventricle in Figure 3c, one can remark that
MPU is more precise than FE. Additional results and analysis based on numerous examples
are provided in Section 5 and Appendix B . The method that we propose in this paper aims
at reducing the drawbacks of both approaches. Our idea is to combine the advantages of
each reconstruction method in order to produce a higher geometry precision model, which
better preserves the details and the local characteristics of the surfaces. The next section
exposes the proposed method, shows how the imprecise 3D regions are localized, and
describes our choices for selecting the correct ones.

4. 3D Hybrid Reconstruction Method

The goal of the hybrid reconstruction method is to produce a 3D model as close as
possible to the data provided by the segmentation process. The main idea is to compare the
models produced by the two reconstruction methods, FE and MPU, in order to extract the
regions that are more faithful to the segmentation. This is accomplished by computing a
distance metric that retrieves from the two models the regions that closely fit to the input
structure, and thus the regions that are not impacted by the reconstruction issues. Since the
two models will be compared to the segmentation, they should be precisely aligned with
the segmented structure in the 3D space. Each 3D model is represented by a triangular
mesh (i.e., set of triangles), while the segmentation is represented by a set of 3D points (i.e.,
the voxel centers of the segmentation boundary within the volume). The principle of our
hybrid reconstruction system is illustrated in Figure 4 and it relies on the following stages.

The first stage takes as input the segmentation data and generates the corresponding
3D models, FE and MPU. The second stage compares the 3D models with the segmenta-
tion by searching for each triangle in the MPU model TMPU , the corresponding closest
triangle lying on the FE surface TFE. It also searches for the closest 3D point P lying on
the segmentation.

The distance between the center of each triangle and the point P is then computed and
the triangle with the smallest distance is retained, as shown in the equation below:

δ(TMPU , P, TFE) = min(||CMPU − P||, ||CFE − P||) (1)

where δ(TMPU , P, TFE) is the minimum distance between the triangles and the point P.
CMPU and CFE are the respective centers of triangles of TMPU and TFE.
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Figure 4. The pipeline of our hybrid reconstruction system: two reconstructed 3D models based on
FE and MPU are generated. The resulted models are compared with the segmentation and the correct
regions are extracted and merged. The MPU is fit to the points extracted from the merged triangles to
produce the 3D geometric mesh.

The collection of triangles retrieved from the MPU and FE models is then merged and
used to reconstruct the final 3D model. The last stage of the algorithm recovers the 3D
points from the set of triangles and approximates the surface defined by the point set with
the MPU implicit models. A merging step has to be applied before reconstructing the final
surface because an entire region composed of a set of triangles might be recovered from
FE or MPU, and thus the points shared with the neighboring triangles should be merged,
to avoid the appearance of redundant points in the resulting point cloud. It should also be
noted that it is not necessary to compute point normals since they can be directly recovered
from the 3D models.

We have chosen to reapply the MPU implicits to reconstruct the final surface for many
reasons: they are both space- and time-efficient, are able to deal with unstructured points
that vary in sampling density, do not require input points to lie on a plane, and do not need
any mesh post-processing (smoothing), which may degrade the accuracy of the resulting
3D model. In addition, since the point cloud extracted from the merged triangles is denser,
compared to the points extracted from the set of contours, a very small tolerance value is
sufficient to provide a good approximation with a high degree of smoothness.

5. Hybrid Reconstruction Results and Analysis

The overall system exposed in the previous sections has been implemented as a plugin
module for the 3D slicer platform. All software and code used are written in C++ using the
VTK Library [32] (i.e., an open-source software for manipulating and displaying geometric
data). We have tested and evaluated our reconstruction technique with a variety of MRI
datasets. Table 1 presents detailed information about four of the datasets (Brain, Skull-Bone,
Ventricle, and Kidney), including the number of slices, in-plane image resolution, and the
ratio of in-plane to slice sampling rates. The first three datasets are included in 3D slicer,
while the Kidney dataset is provided by the CHU of Poitiers.
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Table 1. Characteristics of input datasets.

Name # of Slices Resolution xy:z

Brain 65 256 × 256 1:1.3
Skull-Bone 65 256 × 256 1:1.3
Ventricle 65 256 × 256 1:1.3
Kidney 80 384 × 282 1:1

We also evaluated our technique on 39 human healthy brain MRI samples, also
provided by our clinical partner. All images are acquired on a Magnetom Skyra 3 Tesla
(Siemens Healthineers, Erlangen, Germany). The sequence used is a 3D T1 MPRAGE
0.9 mm isotropic (TE = 2.41 ms, TR = 1950 ms , TI = 816 ms, FOV = 256 × 213 mm2, matrix:
240 × 288, slices: 192, turbo factor: 224). Original DICOM data are converted to NIFTI to
be used in our homemade automated pipeline. As post-processing, FSL-BET [34], provided
as a part of the FSL software (http://www.fmrib.ox.ac.uk/fsl/ (accessed on 20 November
2020)) package, is applied to remove subcutaneous fat in order to create a mask of brain
only. Then, FSL-FAST [35] is launched to obtain the three segmentation classes: (i) cortex,
also known as grey matter; (ii) white matter; (iii) cerebral spinal fluid.

The reconstruction quality was examined in detail through analysis and error mea-
surements of each reconstructed model. Additionally, we investigated the effectiveness of
our method through analyzing the curvature of the reconstructed surface and compared
the results from our approach to those produced by FreeSurfer (https://surfer.nmr.mgh.
harvard.edu/ (accessed on 15 March 2021)) [36].

5.1. Evaluating Reconstruction Error

Figure 5 provides a detailed visual comparison between the three approaches. We focus
on the areas highlighted by the red block in different colors. On the top row, the MPU (in
red) constructs two separate components, while FE (in yellow) finds one main component
with a small noisy region. The hybrid (in green) performs better, since it reconstructs one
component, following closely the segmented region. On the bottom row, the MPU is more
precise than FE and the hybrid recovers the region constructed by the MPU since it is still
the closest one to the segmentation. It is noted that our hybrid method achieves a correct
reconstruction in all highlighted areas.

Although the visual evaluation of the reconstructions is reliable, it is necessary to
quantify the quality of the reconstructions in order to determine how faithfully the 3D
models fit to the segmented structure. Two distance-based metrics are used to estimate
the geometric errors: absolute distance and Hausdorff distance [37]. The absolute distance
measures the distance between each point of the segmentation and the nearest point of
the 3D model. The distance values are then gathered and statistics related to the complete
reconstruction are calculated. The Hausdorff distance [37] computes the maximum distance
between two sets of sampled points from the segmentation and the reconstructed surface.
All distances are computed bidirectionally in millimeters (mm) and represented as 3D
color-coded maps, where reconstruction errors are displayed from blue (low) to red (high).

http://www.fmrib.ox.ac.uk/fsl/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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Figure 5. A visual evaluation of the Kidney model, reconstructed with FE (yellow), MPU (red), and
Hybrid (green). From left to right: overlaid models followed by a zoom on the highlighted areas
showing the reconstruction result of each method.

Figure 6 presents the results of the distance measure on the Brain, Skull-Bone, and
Ventricle models for each of the three reconstruction methods. For each model, by exam-
ining the Hausdorff color-coded reconstruction maps, one can remark that, on average,
the reconstructions are around 1 mm away from the segmentation, which is manifested by
the predominance of the green color, as shown on the left side of Figure 6. The Hausdorff
color maps show also the efficiency of our hybrid method, which retrieves the correct re-
gions (i.e., the closest ones to segmentation) from FE and MPU. For instance, the Skull-Bone
color maps show the presence of a red area (i.e., a region that has an error greater than
1 mm) on MPU, which does not appear when moving to FE, where this flat area is perfectly
reconstructed. Our method recovers thus the FE area since it is closer to segmentation.
Looking at the curves on the right side, the statistics show that for all models, our hybrid
performs better than FE and MPU since it is still the closest one to the segmentation. If we
consider small distances, it has the greater percentage of points, since it retrieves the closest
regions either from FE or from MPU, offering 3D models benefiting from the accurate
reconstruction of the flat regions allowed by the FE and the smoothed contour tracking of
high curvature regions allowed by the use of implicit models.

The minimum, maximum, arithmetic mean, and the standard deviation of the distance
values for each reconstruction method are given in Table 2, as well as the percentage of
points that are one and half voxel sizes away from the segmentation. All of the metrics
that are presented here are in voxel units (1 mm). For example, a maximum distance of
2 signifies that the point surface lies, at most, 2 voxels away from the segmentation. Once
again, we can remark that, for all models, while the maximum distance values for the
hybrid lie between 1 and 4 voxels, the means and standard deviations still stay relatively
low. In addition, the percentage of points indicates that our hybrid still has the greater
percentage of points (around the voxel size of 1 mm) compared to FE and MPU.
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Figure 6. Distance from the segmentation for the reconstruction methods: FE, MPU, and Hybrid. The
voxel size of the segmentation grid in XY dimension is of 1 mm; (left) reconstruction error using
Hausdorff metric; (right) cumulative percentage of surface points as a function of their distance to
the segmentation.

Table 2. Approximation quality corresponding to each of the four reconstructed models (Brain,
Ventricle, Skull-Bone, and Kidney). Metrics are calculated in units of voxels (mm).

Name FE MPU Hybrid

Min Max St
dev

Mean % <
0.5

% <
1.0

Min Max St
dev

Mean % <
0.5

% <
1.0

Min Max St
dev

Mean % <
0.5

% <
1.0

Brain 0.008 2.68 0.31 0.79 39.86 72.08 0.006 3.72 0.32 0.81 22.34 81.48 0.01 3.45 0.27 0.69 43.36 84.04

Ventricle 0.05 1.78 0.29 0.64 42.59 84.21 0.06 3.34 0.34 0.79 55.13 86.55 0.03 1.53 0.28 0.61 58.52 88.83

Bone 0.02 1.04 0.30 0.75 36.67 80.59 0.05 4.73 0.33 0.83 22.64 78.57 0.02 1.53 0.28 0.72 39.51 83.32

Kidney 0.01 2.18 0.32 0.76 24.42 74.09 0.02 4.67 0.33 0.80 26.52 76.24 0.008 2.73 0.31 0.66 37.47 85.54

We also evaluated the effectiveness of our hybrid method on the 39 human healthy
brain MRI samples. The statistics related to each reconstruction method are given in
Table 3 and Figure A1.
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Table 3. Approximation quality of reconstructed surfaces for 10 brain cortices. Metrics are calculated
in units of voxels (mm).

Sub FE MPU Hybrid

Min Max St
dev

Mean % <
0.5

% <
1.0

Min Max St
dev

Mean % <
0.5

% <
1.0

Min Max St
dev

Mean % <
0.5

% <
1.0

1 0.005 2.51 0.35 0.71 32.78 78.41 0.003 7.36 0.36 0.78 19.33 78.73 0.007 3.89 0.31 0.60 45.16 88.64

2 0.010 2.47 0.34 0.71 33.17 78.96 0.011 4.66 0.35 0.77 20.09 79.89 0.010 4.45 0.31 0.59 45.92 88.95

3 0.006 2.41 0.35 0.73 31.28 76.48 0.005 4.81 0.34 0.76 20.63 81.12 0.006 5.06 0.32 0.61 44.76 87.79

4 0.002 2.42 0.34 0.70 33.97 79.32 0.009 5.01 0.35 0.78 19.22 79.10 0.006 5.47 0.31 0.60 44.15 88.64

5 0.007 2.38 0.34 0.70 33.70 79.31 0.092 5.82 0.35 0.76 20.13 81.35 0.003 4.20 0.30 0.59 45.52 89.08

6 0.009 2.42 0.34 0.72 32.11 78.52 0.002 4.96 0.34 0.76 21.04 81.33 0.008 4.10 0.30 0.59 46.69 89.25

7 0.006 2.35 0.34 0.71 33.26 79.13 0.002 5.49 0.34 0.77 20.10 80.68 0.001 3.21 0.30 0.60 44.15 88.64

8 0.006 2.35 0.34 0.71 33.26 79.13 0.002 4.62 0.34 0.77 20.10 80.69 0.001 6.63 0.30 0.60 44.85 88.75

9 0.007 2.49 0.34 0.69 34.89 80.57 0.005 4.99 0.33 0.74 22.11 83.12 0.004 3.85 0.30 0.57 48.60 90.19

10 0.003 2.56 0.34 0.70 34.16 80.12 0.011 4.62 0.33 0.74 21.63 82.75 0.003 3.92 0.29 0.58 46.89 90.01

One can remark that the maximum distance values for the FE lie between 2 and
3 voxels, compared to the MPU and the hybrid, where the maximum distance value can
reach 8 voxels for some cortices. However, the percentage of points indicates that almost all
regions of the hybrid model lie within the voxels defined by the segmentation. On average,
88.56% of the surface points for the hybrid are around the voxel size of 1 mm, followed
by MPU with 80.51% and FE with 78.39%. This demonstrates that the reconstruction error
of the hybrid is sub-voxel for the vast majority of surface points. If we consider small
distances (less than 0.5 mm), the hybrid performs even better, since 45.23% of the points are
less than half a voxel size, versus 31.18% for the FE and only 20.31% for the MPU. Results
can be further deepened looking at the standard deviations (Figure 7), where the statistics
show that the hybrid still stays relatively low compared to FE and MPU. Moreover, looking
into the arithmetic mean, the hybrid has the lower one, followed by the FE and then MPU.
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Figure 7. The standard deviation (left) (on average: Hybrid—0.31, FE—0.35, MPU—0.35) and
arithmetic mean (right) (on average: Hybrid—0.60, FE—0.71, MPU—0.77) of the error values for each
of the 39 cerebral cortices presented in the Table 3 and Appendix A, and reconstructed with FE, MPU,
and Hybrid. The hybrid method has a lower standard deviation and arithmetic mean.
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5.2. Curvature Analysis

Besides the qualitative study exposed above, we also evaluated quantitatively the
reconstruction methods through examining the curvature variation of the reconstructed
surfaces. The curvature behavior conveys rich information about the intrinsic shape and
provides some insight about the amount of smoothness of the underlying surface. Figure 8
presents the results of the measure of the magnitude of the mean curvature on each point
of the brain model for each of the three reconstruction methods. On the left side of the
Figure, one can observe that the blue-green faded color is predominant for the three models,
while the red color (very high curvature) is much less dominant for the FE compared to
MPU and hybrid. This means that, overall, the curvature surface of the FE is relatively
low compared to MPU and hybrid. Results can be validated looking at the statistics on the
right side of Figure 8, which shows the mean curvature versus the percentage of points.
If we consider low curvatures (between 0.0 and 0.2), the FE has the greater percentage
of points; however, this discrepancy vanishes with higher curvatures, where the FE has
the smaller percentage of points while MPU and hybrid are very close. This is mainly
due to the smoothing post processing applied on the output FE models, which tends to
change the local surface shape and oversmooth areas with high curvatures. It should be
noted that since the brain surface is highly folded, flat curvatures must not be predominant.
As for MPU, it appears to better maintain the local surface shape of the model, since it is
based on adaptive implicit functions that confine the reconstruction to a specified tolerance
parameter, and the amount of smoothing applied to the data is still controllable. The hybrid
retains this advantage and ensures the accuracy and smoothness of reconstruction while
respecting the local surface shape.

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00%

10.00%

5.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Figure 8. Visualization of the mean curvature on a 3D brain model: (left) triangles are colored
depending on their curvature value (blue reflects low curvatures and red high curvatures); (right)
percentage of points as a function of their mean curvature value.

5.3. Comparison to FreeSurfer

Figures 9 and 10 illustrate a comparison between our hybrid method and the recon-
struction method used by FreeSurfer (https://surfer.nmr.mgh.harvard.edu/ (accessed
on 15 March 2021)) [36] (i.e., an open-source software suite for processing and analyzing
(human) brain MRI images). The reconstruction is launched using the FreeSurfer command
“recon-all” that performs all the FreeSurfer cortical reconstruction process, including the
preprocessing steps. The results show that our method achieves better geometric accuracy
when compared to FreeSurfer. It generates surfaces that accurately track the borders of
the white matter, compared to FreeSurfer, which ignores some regions. The FreeSurfer
reconstruction method is based on a deformable surface approach that is typically driven by

https://surfer.nmr.mgh.harvard.edu/
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an energy functional designed to move it towards the segmented structure [38]. The main
issue of this approach lies in the difficulty of pushing the surface through the many narrow
openings into deep sulci, as illustrated in Figure 9, missing some relevant details. For ex-
ample, Figure 10 shows that FreeSurfer did not reconstruct correctly the inner regions and
attempted to close the exiting hole in the white matter. This is manifested by the red areas
(i.e., areas with high distance to the segmentation boundary) presented on the FreeSurfer
Hausdorff color map, unlike our hybrid model, which remains closer to the segmentation.

(a) (b)

Figure 9. Two examples of the reconstruction of the white matter of the brain with our method in
green and FreeSurfer in blue. (a) FreeSurfer surface is not properly reconstructed, some details are
missing. (b) FreeSurfer is unable to push enough the surface area through the narrow opening.

Figure 10. Visualization of the white matter surfaces reconstructed with our hybrid on the left side
and FreeSurfer on the right side. For each reconstruction method, on the top, a 3D view is shown,
with a zoom on the red rectangle of the reconstruction result. On the bottom, the surfaces are color-
coded with the absolute distance to the segmentation from blue (small distance) to red (high distance)
using the Hausdorff metric.
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5.4. Runtime

We computed the runtime for each of the 39 brain cortices, for each reconstruction
method. Flying Edges (FE) and MPU achieve the fastest runtime (<10 s). Our hybrid model
takes, on average, <40 s as it applies the two methods and requires additional processing to
select the correct regions from the FE and MPU models.

6. Conclusions and Perspectives

In this work, we have proposed a hybrid reconstruction method that combines the
Multi-level Partition of Unity (MPU) with Flying edges (FE). It performs an extraction
of the correct regions (i.e., the most faithful to the segmentation) from both methods,
before merging them to reconstruct a final accurate 3D model. This hybrid approach
overcomes thus the disadvantages of each of the two reconstruction methods when the
reconstructed region is further from the segmentation. We evaluated the effectiveness of
our hybrid method on 39 human MRI healthy brain images. The hybrid approach generates
a smooth surface model and seems more precise, since it offers sub-voxel accuracy to the
segmentation, producing thus that a lower standard deviation and arithmetic mean when
compared to FE and MPU. We also evaluated quantitatively the curvature variation of the
reconstructed surfaces. The hybrid preserves better the details and the local characteristics
of the surfaces compared to FE and MPU. We also compared our method to FreeSurfer
[10] and showed that our method generates surfaces that accurately track the borders,
compared to FreeSurfer, which ignores some regions.

Finally, we have tested our approach on a large number of datasets provided by
our clinical partner, and it has been shown that our method seems to be more robust
since it generates accurate reconstructions in every case and produces superior results in
comparison with other techniques.

One of the possible extensions of this work would be to include metabolite quantifica-
tion thanks to Magnetic Resonance Spectroscopy to improve the 3D reconstructed model.
The final purpose is to have an accurate and precise 3D model that meets medical expec-
tations and that can be used for diagnosis and virtual biopsy. In the long term, a precise
reconstruction will offer a non-invasive technique to detect and localize the presence of a
tumor, to classify its nature, and to study the tumor metabolism in order to evaluate the
response to possible therapies, thereby helping clinicians to optimize the treatment.
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Appendix A

Table A1. Approximation quality of reconstructed surfaces for 29 brain cortices. Metrics are calculated
in units of voxels.

Sub FE MPU Hybrid

Min Max St
dev

Mean % <
0.5

% <
1.0

Min Max St
dev

Mean % <
0.5

% <
1.0

Min Max St
dev

Mean % <
0.5

% <
1.0

11 0.011 2.55 0.35 0.71 32.71 78.35 0.010 4.25 0.34 0.77 20.45 80.59 0.006 3.80 0.31 0.60 45.74 88.62

12 0.003 2.38 0.36 0.73 31.33 76.29 0.012 4.34 0.34 0.74 21.75 82.89 0.005 4.53 0.32 0.61 44.36 87.50

13 0.002 2.37 0.34 0.70 33.30 79.88 0.009 5.39 0.34 0.78 19.51 79.64 0.006 3.49 0.30 0.59 45.14 89.19

14 0.004 2.56 0.35 0.73 31.18 76.51 0.011 4.18 0.35 0.77 20.47 80.73 0.007 4.51 0.32 0.61 43.69 87.43

15 0.009 2.53 0.35 0.73 31.36 76.56 0.004 5.09 0.35 0.77 20.22 80.33 0.006 8.25 0.34 0.61 43.61 87.65

16 0.011 2.44 0.34 0.72 32.24 78.32 0.010 4.97 0.33 0.75 21.51 82.49 0.009 3.87 0.31 0.59 45.78 88.78

17 0.015 2.37 0.34 0.71 32.31 78.57 0.008 7.20 0.34 0.75 21.22 82.10 0.004 3.79 0.30 0.59 45.72 89.05

18 0.015 2.45 0.35 0.71 32.83 78.32 0.009 5.24 0.34 0.75 21.57 82.14 0.006 4.20 0.31 0.59 46.61 88.74

19 0.016 2.46 0.35 0.71 32.63 78.39 0.010 5.16 0.33 0.74 21.88 82.76 0.007 3.59 0.31 0.59 47.02 89.16

20 0.003 2.33 0.34 0.71 33.07 78.67 0.017 5.02 0.35 0.78 19.35 78.81 0.004 3.88 0.31 0.60 44.99 88.52

21 0.002 2.56 0.35 0.71 34.06 78.94 0.003 4.20 0.35 0.77 20.41 80.39 0.004 5.17 0.31 0.60 45.16 88.50

22 0.007 2.46 0.36 0.73 31.42 75.97 0.010 7.27 0.36 0.78 20.02 79.68 0.009 4.79 0.32 0.61 43.70 86.97

23 0.009 2.48 0.35 0.73 31.70 76.86 0.010 4.38 0.35 0.78 19.81 79.87 0.031 5.50 0.32 0.61 43.72 87.41

24 0.005 2.46 0.36 0.73 31.60 76.51 0.014 4.40 0.34 0.76 20.87 81.13 0.006 5.87 0.32 0.60 45.29 87.70

25 0.005 2.39 0.35 0.71 33.35 78.87 0.011 4.27 0.35 0.77 20.37 80.39 0.009 4.17 0.30 0.59 46.17 88.96

26 0.015 2.42 0.36 0.74 30.70 75.65 0.004 4.30 0.33 0.74 21.58 83.03 0.008 3.97 0.32 0.61 44.09 87.39

27 0.006 2.44 0.35 0.69 35.98 80.32 0.014 6.91 0.37 0.81 18.07 76.31 0.009 4.48 0.31 0.61 43.55 87.99

28 0.015 2.53 0.34 0.71 32.72 78.73 0.014 4.88 0.35 0.78 19.54 78.00 0.006 3.78 0.30 0.59 45.62 89.01

29 0.015 2.54 0.34 0.70 33.24 79.92 0.012 3.87 0.33 0.76 20.22 80.80 0.006 4.16 0.30 0.59 45.69 89.47

30 0.008 2.47 0.37 0.72 33.57 76.42 0.009 5.28 0.36 0.78 19.77 78.76 0.004 7.43 0.33 0.61 44.35 86.92

31 0.007 2.48 0.34 0.70 33.60 79.36 0.003 4.10 0.35 0.78 19.72 79.62 0.006 4.73 0.31 0.60 45.28 88.91

32 0.009 2.41 0.35 0.72 32.50 77.78 0.005 5.42 0.35 0.77 20.03 79.65 0.008 5.72 0.31 0.60 45.24 88.24

33 0.012 2.32 0.35 0.71 32.60 78.42 0.011 4.34 0.35 0.77 20.01 80.04 0.009 3.59 0.31 0.59 45.71 88.84

34 0.012 2.58 0.34 0.70 34.18 79.50 0.003 4.84 0.35 0.78 19.08 79.75 0.005 5.01 0.31 0.60 44.66 88.64

35 0.002 2.43 0.35 0.72 32.87 78.03 0.007 4.19 0.36 0.79 19.14 78.38 0.009 3.46 0.31 0.61 43.80 87.95

36 0.010 2.46 0.34 0.70 33.18 79.65 0.002 4.24 0.35 0.78 19.39 79.25 0.011 4.50 0.30 0.59 45.38 89.44

37 0.010 2.48 0.34 0.70 33.66 79.68 0.009 4.23 0.33 0.76 20.91 81.35 0.017 6.50 0.30 0.58 47.30 89.85

38 0.012 2.49 0.34 0.70 33.25 79.65 0.006 4.02 0.34 0.76 20.11 80.84 0.007 3.80 0.30 0.59 45.46 89.25

39 0.009 2.54 0.35 0.73 31.53 77.09 0.004 8.45 0.37 0.76 20.81 81.24 0.009 8.19 0.32 0.60 44.65 87.94
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Appendix B

Figure A1. Reconstruction of the Brain, Ventricle, and Skull-Bone with FE (yellow), MPU (red), and
Hybrid (green). From left to right: overlaid models followed by a zoom on the highlighted areas
showing the reconstruction result of each method.
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