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Abstract: Face attribute estimation can be used for improving the accuracy of face recognition,
customer analysis in marketing, image retrieval, video surveillance, and criminal investigation.
The major methods for face attribute estimation are based on Convolutional Neural Networks
(CNNs) that solve face attribute estimation as a multiple two-class classification problem. Although
one feature extractor should be used for each attribute to explore the accuracy of attribute estima-
tion, in most cases, one feature extractor is shared to estimate all face attributes for the parame-
ter efficiency. This paper proposes a face attribute estimation method using Merged Multi-CNN
(MM-CNN) to automatically optimize CNN structures for solving multiple binary classification
problems to improve parameter efficiency and accuracy in face attribute estimation. We also pro-
pose a parameter reduction method called Convolutionalization for Parameter Reduction (CPR),
which removes all fully connected layers from MM-CNNs. Through a set of experiments using the
CelebA and LFW-a datasets, we demonstrate that MM-CNN with CPR exhibits higher efficiency of
face attribute estimation in terms of estimation accuracy and the number of weight parameters than
conventional methods.

Keywords: face attribute estimation; CNN; multi-task learning; deep learning; biometrics

1. Introduction

Face recognition is one of the most attractive topics in biometrics and computer vision
because of its convenience, hygiene, and low cost, since face images can be acquired in
a contactless manner without requiring any special equipment [1]. Face recognition is in
great demand as personal authentication for smartphones, security gates, payment services,
communication robots, etc. due to its advantages. Although the explosive development
of Convolutional Neural Networks (CNNs) has dramatically improved the accuracy of
face recognition, face recognition still faces the problem that its accuracy is significantly
degraded by changes in pose, facial expression, motion, illumination, and resolution.
To address the great demand for face recognition, further improvements in its performance
have been investigated. There are two approaches to improve the performance of face
recognition: a direct approach to improve the face recognition method and an indirect
approach to improve the performance by adding other factors to the face recognition
method. In this paper, we focus on face attribute estimation, which is an indirect approach,
in the sense that it can be used not only for improving the accuracy of face recognition but
also for customer analysis in marketing, image retrieval, video surveillance, and criminal
investigation [2,3].

A face has a wide variety of biological features, including age, gender, hair color,
hairstyle, mouth size, nose height, etc. These facial features, called face attributes, cannot be
used for personal identification on their own; however, they can be used together for rough
personal identification. This use of biometric traits is known as soft biometrics, in contrast
to hard biometrics, where a single biometric trait such as fingerprint, iris, or face can be
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used for personal identification. For example, the recognition accuracy of face recognition
methods can be improved by combining general face features with face attributes [4,5].
The processing time of face recognition can be reduced by prescreening using face attributes.

Face attribute estimation can be regarded as a multiple binary classification problem,
as shown in Figure 1; that is, it is a problem of estimating whether a face has or does
not have the attribute. Face attributes have multiple names depending on their color and
shape, such as hair, or are expressed numerically, such as age. To deal with face attribute
estimation as a binary classification problem, for example, hair can be decomposed into
several classes such as black hair, blond hair, brown hair, and gray hair, and age can be
simplified to young. Face attribute estimation consists of three processes: face detection,
feature extraction, and classification [3,6]. Among these processes, feature extraction is the
most important process, since it has the greatest impact on the estimation accuracy.

Traditional methods utilize hand-crafted features such as Local Binary Patterns (LBP) [7] in
feature extraction. The LBP-based methods can estimate attributes from only one face image,
since they do not require any training process; however, their estimation accuracy is quite
low, since LBP cannot handle a wide variety of face attributes. CNN-based approaches have
recently become the most popular approach for face attribute estimation, since CNN has made a
significant impact on image recognition. Although one feature extractor should be used for each
attribute to explore the accuracy of attribute estimation, in most cases, one feature extractor is
shared to estimate all face attributes for the parameter efficiency [2,8–14]. To achieve both high
parameter efficiency and high estimation accuracy, it is necessary to design CNN consisting
of multiple layers such as convolution and pooling layers to extract the optimal features for
each attribute. Several methods have been proposed to improve the accuracy of face attribute
estimation by appropriately sharing the layers of CNNs [2,13–15]. In those methods, the manual
grouping and clustering of face attributes were used to share layers of CNNs based on grouping.
Manual grouping is not only time consuming but also arbitrary, and simple attribute clustering
is not always effective for attribute estimation.
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Figure 1. A typical processing flow of face attribute estimation. Face attribute estimation consists
of multiple two-class classification problems. First, a face region is detected from a face image,
and features are extracted. Then, the features are input to a discriminator for each attribute, and the
presence or absence of the attribute is estimated.

In this paper, we propose a method to automatically optimize CNN structures for
solving multiple binary classification problems in order to improve the processing efficiency
and accuracy in face attribute estimation. The basic structure of CNN used in the proposed
method, which is called Merged Multi-CNN (MM-CNN), consists of a large number of
convolution blocks regularly located in the depth and width directions, which are con-
nected to each other at each depth by merging layers. MM-CNN is automatically optimized
for face attribute estimation by introducing trainable weight parameters for each merging
layer between blocks. We also propose a parameter reduction method called Convolu-
tionalization for Parameter Reduction (CPR), which removes all fully connected layers
from MM-CNN. Through a set of experiments to evaluate the performance on two public
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datasets, Large-scale CelebFaces Attributes dataset (CelebA) [9] and Labeled Faces in the
Wild-a dataset (LFW-a) [16], we demonstrate that MM-CNN can estimate face attributes
with high accuracy using CNN with fewer weight parameters than conventional methods.
This paper is a full version of our initial study [17] with a detailed description of the pro-
posed method, a survey of recent works, and performance comparison. The contributions
of this paper can be summarized as follows:

• We propose a novel CNN architecture, MM-CNN, specifically designed for multi-task
processing; and

• We also propose CPR, which significantly reduces the parameters of CNN by removing
fully connected layers.

2. Related Work

The conventional methods for face attribute estimation are summarized in Table 1.
These methods can be categorized as Support Vector Machine (SVM), CNN, and others de-
pending on the type of classifier. In the following, we give an overview of the conventional
methods for each type of classifier.

Table 1. A summary of face attribute estimation methods.

Method Feature Extraction Classifier

Kumar et al. [6] Pixel value (gray, RGB and HSV),
edge magnitude and orientation One SVM for each attribute

Zhang et al. [8]
Pose Aligned Networks (4 Conv and
1 FC) for Deep Attribute modeling
(PANDA)

One linear SVM for each attribute

Liu et al. [9]
LNet (5 Conv) for face localization
and ANet (4 Conv) for face attribute
prediction

One linear SVM for each attribute

Zhong et al. [10] FaceNet [18] or VGG-16 [19] Softmax classifier or one linear SVM
for each attribute

Wang et al. [12] Siamese network (2 Conv and 7 In-
ception and 1 Fc) Softmax

Hand et al. [2]
Multi-task deep Convolutional Neu-
ral Network (MCNN) (3 Conv and
2 FC)

Softmax classifier with an AUXili-
rary network (AUX)

Gao et al. [13] ATNet, ATNet_G, ATNet_GT
(4 Conv and 3 FCc) Softmax

Cao et al. [15] Partially Shared MCNN (PS-
MCNN) (5 Conv and 2 FCc) Multi-label classifier

Han et al. [14] AlexNet-like CNN [20] (5 Conv and
4 FC) with facial landmark detector Multi-label classifier

Fukui et al. [21] Attention Branch Network (ABN)
based on ResNet-101 [22] Softmax

Bhattarai et al. [23] VGG-16 [19] and word2vec [24] Multi-label classifier

Chen et al. [25]
Hard Parameter Sharing-Channel
Split network (HPS-CS) based on
AlexNet (9 Conv and 1 FC)

Softmax

Huang et al. [11] DeepID2 [26] Large Margin Local Embedding
(LMLE)-kNN

Huang et al. [27] ResNet-like CNN (64 Conv and
1 FC) with facial landmark detector

Cluster-based Large Margin Local
Embedding (CLMLE)

Ehrlich et al. [28]
Multi-Task Restricted Boltzmann
Machines (MT-RBMs) with PCA
with facial landmark detector

Softmax

The first type of methods employs SVM as classifiers, which are the earliest methods
for face attribute estimation [6,8–10]. SVM is a machine learning method to determine the
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decision boundaries for separating classes in feature space. Kumar et al. [6] proposed one of
the famous face attribute estimation methods using handcrafted local features. This method
extracts pixel values from grayscale, RGB, and HSV color spaces, edge magnitude, and ori-
entation as features and classifies them into each face attribute using SVM. After this work,
most of the methods have employed CNN-based feature extractors due to its excellent
performance on image recognition. Zhang et al. [8] proposed Pose Aligned Networks for
Deep Attribute modeling (PANDA), which consists of feature extraction by CNNs with
poselet detection and attribute prediction by a linear SVM for each attribute. Liu et al. [9]
proposed two CNN architectures: LNet for face localization and ANet for face attribute
prediction with a linear SVM for each attribute. Zhong et al. [10] extracted features using
FaceNet [18] or VGG-16 [19] and predicted attributes using a linear SVM.

The second type of methods employs neural networks as classifier [2,12–15,21,23,25],
where most methods employ a single CNN to complete feature extraction and classification
as a multi-task CNN. Wang et al. [12] proposed a GoogLeNet-like network architecture
consisting of three CNNs for face recognition, weather prediction, and location estimation.
Face attributes are estimated from concatenated features in the fully connected layers.
Hand et al. [2] proposed Multi-task deep Convolutional Neural Network (MCNN) with
an AUXiliary network (MCNN-AUX). They separate the 40 face attributes into six or nine
groups based on facial parts, and they extract features for each attribute group. Auxiliary
network, which finally estimates face attributes based on the estimation results of the multi-
task CNN, is added. Cao et al. [15] proposed Partially Shared Multi-task CNN (PS-MCNN).
They separate the 40 face attributes into four groups: upper, middle, lower, and whole
images, based on the position of each attribute in the face. The PS-MCNN aggregates the
features extracted by the network for each group and estimates their attributes using a
classifier consisting of fully connected layers. Gao et al. [13] proposed three small multi-task
CNNs: ATNet, ATNet_G, and ATNet_GT. Although these approaches are similar to MCNN,
CNNs are desinged according to multiple clusters obtained by classifying face attributes
using the k-means algorithm. Han et al. [14] proposed a multi-label classification method us-
ing original labels determined by their own rule in light of correlation among face attributes.
They separate the attributes into eight groups—one group related to the whole face and
seven groups related to each facial parts—and design a special classifier architecture with
multiple one output for each group. Fukui et al. [21] proposed Attention Branch Networks
(ABN), which is a sort of general-purpose CNN with attention to features. ABN consists of
two branches: an attention branch for generating a visualization map and a perception
branch for classification. They demonstrated that the attention mechanism with a visual-
ization map is effective for estimating face attributes. Bhattarai et al. [23] proposed a new
loss function based on a continuous label, which is generated by word2vec [24] based on
40 face attributes labels written in text. Chen et al. [25] proposed a Hard Parameter Sharing-
Channel Split network (HPS-CS) consisting of normal and group convolution layers.

The third type of methods employs other classifiers [11,27,28]. Huang et al. proposed
Large Margin Local Embedding (LMLE)-kNN [11] and Cluster-based LMLE (CLMLE) [27].
They focused on the class imbalance of face attribute labels and proposed a learning method that
takes into account the distance between small clusters generated for each class. In LMLE-kNN
and CLMLE, DeepID2 [26] and ResNet-like CNN [29] are used for feature extraction, respectively.
Ehrlich et al. [28] proposed Multi-Task Restricted Boltzmann Machines (MT-RBMs) with Principal
Component Analysis (PCA).

Our approach is similar to MCNN [2], PS-MCNN [15], and ATNet [13]. Although
the relationships among facial attributes are hierarchical and complex, these methods use
manual or non-hierarchical clustering to make a preliminary set of groups of facial attributes.
On the other hand, our approach automatically optimizes the network parameters by
recognizing the relationships among face attributes during the training of CNN.
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3. Fundamentals of Face Attributes

In this section, we give fundamental observations about the face attributes that we
focus on in this paper. We use the 40 face attributes defined in CelebA [9], as shown
in Table 2. CelebA is a large-scale dataset of face attributes that has been used for the
training and performance evaluation of major face attribute estimation methods. In this
paper, for convenience, each attribute is assigned an index number from 1 to 40, as shown
in Table 2. Most of the attributes in CelebA are defined on the biological characteristics,
while some are defined by whether the person wears ornaments such as glasses and
earrings. These face attributes can be classified into groups based on the following relations:
(i) commonality of facial parts, (ii) co-occurrence, and (iii) color, shape, and texture. Figure 2
shows an example of illustrating the relationship among face attributes based on relations
(i)–(iii). In the following, we discuss the details of each relation.

(i) Commonality of facial parts—For face attribute labels, the most obvious relationship
is based on the organs, that is, the facial parts included in the face. For example, Black Hair
(9) and Wavy Hair (34) are attributes related to “hair,” Arched Eyebrows (2) and Narrow
Eyes (24) are attributes related to “eyes,” and Big Nose (8) and Pointy Nose (28) are attributes
related to “nose.” Note that the attribute labels such as Male (21), Attractive (3), and Young
(40) are assigned to “face” in Figure 2, since they are based on the features of the entire face.

(ii) Co-occurrence—Some attributes have co-occurrence, since they can appear simul-
taneously. Figure 3 shows a color map visualizing the co-occurrence probabilities of 40 face
attributes in CelebA. The co-occurrence probability of two face attributes indicates the ratio
of face images assigned with those two attributes. The face attributes with the highest co-
occurrence probability are related to gender. Male (21) has a high probability of attributes
such as 5 O’Clock Shadow (1), Bald (5), and Goatee (17), while female has a high probability
of attributes such as Arched Eyebrows (2) and Heavy Makeup (19), where female means the
face image without the Male (21) assignment. Exceptions are the co-occurrence of Smiling
(32) with High Cheekbones (20) and Rosy Cheeks (30) for facial expressions, and Young (40)
with Rosy Cheeks (30) for age. The co-occurrence of face attributes has a positive correlation
in most cases, while there are some cases that have a negative correlation. For example,
Gray Hair (18) symbolizing “aging” shows a high negative correlation with Young (40) and 5
O’Clock Shadow (1). No Beard (25) and Sideburns (31) also show a high negative correlation.
We guess that Sideburns (31) is assigned a label as part of the beard in CelebA. However,
note that such correlations between face attributes depend on the dataset. In Figure 3, Blond
Hair (10) and No Beard (25) have high co-occurrence probability, while Black Hair (9) and
No Beard (25) have low co-occurrence probability. This fact indicates that most of the fe-
males in CelebA have blond hair rather than black hair. CelebA consists mainly of Western
celebrities and a very small number of Asian celebrities. Thus, the correlation of facial
attributes strongly depends on ethnicity and gender.

(iii) Color or shape or texture—Most face attributes are related to either color, shape,
or texture, except for abstract attributes such as age and gender. Color-related attributes
include Black Hair (9), Blond Hair (10), Brown Hair (12), Gray Hair (18), Bags Under
Eyes (4), Pale Skin (27), and Rosy Cheeks (30), shape-related attributes include Straight
Hair (33) and Wavy Hair (34), Chubby (14), and Oval Face (26), and texture-related attributes
include Blurry (11), Eyeglasses (16), and Heavy Makeup (19). The 5 O’Clock Shadow (1)
and No Beard (25) attributes are related to both color and shape.

It is important to consider the above relationships among face attributes for estimating
face attributes using multi-task CNN. In multi-task CNN, sharing feature extractors for
face attributes with strong relationships can improve the estimation accuracy and reduce
computational cost and memory consumption. There are complex relationships among
face attributes, and it is difficult to manually design the optimal network architectures that
takes them into account. To address this problem, in this paper, we propose a method to
automatically optimize multi-task CNN for face attribute estimation.
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Table 2. Face attribute labels defined in CelebA [9].

Idx. Attribute Idx. Attribute

1 5 O’Clock Shadow 21 Male
2 Arched Eyebrows 22 Mouth Slightly Open
3 Attractive 23 Mustache
4 Bags Under Eyes 24 Narrow Eyes
5 Bald 25 No Beard
6 Bangs 26 Oval Face
7 Big Lips 27 Pale Skin
8 Big Nose 28 Pointy Nose
9 Black Hair 29 Receding Hairline
10 Blond Hair 30 Rosy Cheeks
11 Blurry 31 Sideburns
12 Brown Hair 32 Smiling
13 Bushy Eyebrows 33 Straight Hair
14 Chubby 34 Wavy Hair
15 Double Chin 35 Wearing Earrings
16 Eyeglasses 36 Wearing Hat
17 Goatee 37 Wearing Lipstick
18 Gray Hair 38 Wearing Necklace
19 Heavy Makeup 39 Wearing Necktie
20 High Cheekbones 40 Young

Eye

Mouth

Nose
Face

Neck

Chin

Cheek

Ear

Hair

Shape

Color

Else

Co-occur

Bald
Bangs

Brown Hair
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Figure 2. Example of illustrating the relationship among face attributes based on (i) commonality of
facial parts, (ii) co-occurrence, and (iii) color, shape, and texture.
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Figure 3. Color map visualizing the co-occurrence probabilities of 40 face attributes in CelebA.

4. Merged Multi-Convolutional Neural Network for Face Attribute Estimation

In this section, we describe the details of the Merged Multi-Convolutional Neural
Network (MM-CNN) for face attribute estimation proposed in this paper.

4.1. Network Architecture of MM-CNN

We describe the network architecture of MM-CNN. First, we consider Multi-CNN
that estimates attributes by inputting a face image to a small CNN for each attribute,
as shown in Figure 4a. One small CNN is designed based on AlexNet [20], which consists of
five convolution blocks and one fully connected layer. Note that the following points are
different from the original AlexNet. In Conv1, the kernel size of convolution is changed
to 7 × 7 from 11 × 11. In Conv2, the stride of convolution is changed to 1 from 2. All the
normalization layers are replaced by the batch normalization layer [30]. The number of out-
put channels in Conv5 is set to 1000, and the output of Conv5 is input to the Global Average
Pooling (GAP) [31] layer. In the case of estimating 40 attributes, 40 single CNNs are set up
in parallel, as shown in Figure 4a, with each CNN estimating one attribute. In this paper,
the number of CNNs set in parallel is called “parallels”. Then, we design MM-CNN based
on Multi-CNN as shown in Figure 4b. In MM-CNN, a unique layer called the merging layer
is inserted after every convolutional block except Conv5. All the convolution blocks are
connected to the merging layer for each stage, and their outputs are merged individually.
The details of the merging layer are described below.
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Conv1 Conv2 Conv3 Conv4 Conv5 GAP FC Att.

1

40
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40

Conv1

Input

(a) Multi-CNN

(b) MM-CNN

Convolution
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pooling

Global
average 
pooling Fully-connected Merging

Input

Figure 4. Overview of network architectures for (a) Multi-CNN and (b) MM-CNN.

4.2. Merging Layer in MM-CNN

The role of the merging layer is to merge multiple inputs into one, and a trainable
weight parameter for merging is assigned to each input. The initial values of all the weight
parameters are set to 1.0 unless otherwise specified. In the merging layer, the inputs are
merged after weighting similarly to the fully connected layer. We consider three types of
merging weighted inputs in the merging layer: Concat, Add, and Mean. In the following,
we refer to these three types of merging as merging functions. An overview of each
merging function is shown in Figure 5. In Concat, the weighted inputs are concatenated in
the channel direction. In Mean, the weighted inputs are averaged for each channel. In Add,
the weighted inputs are added for each channel. Since the value of the output feature map
becomes extremely large if the weighted inputs are simply added, the weight a′ is used by
applying a softmax function to the weights a before weighting. Which merging function to
use needs to be decided before training MM-CNN.
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: Feature map : Merging weights

: Merging weights applied Softmax

(c) Add

(b) Mean

(a) Concatenate
Conv

Conv

Merging

Weighting

ConvConv 

Figure 5. Overview of 3 types of merging function used in MM-CNN. For simplification, both the
number of parallels and output channels of convolution layers are set to 2 in this figure.

4.3. Convolutionalization for Parameter Reduction (CPR)

MM-CNN consists of the same number of CNNs as attributes; thus, it has a huge
number of weight parameters. The larger the size of CNN, the higher its performance may
be; however, the higher its computational cost and memory consumption. It is not practical
to use such large CNNs due to the limited computational resources available on the device
such as cell phones and PCs. Therefore, we introduce two approaches to reduce the number
of weight parameters to be trained in MM-CNN.

The first approach is to control the number of output channels in the convolution
blocks. The number of output channels of the convolution blocks strongly affects the
number of weight parameters of MM-CNN. Therefore, we introduce a hyperparameter c for
the number of output channels in the convolution blocks. Note that the number of output
channels for Conv5 is independent of c. The larger c is, the larger the number of weight
parameters, resulting in the larger scale of MM-CNN. Table 3 shows the configuration
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of one CNN consisting of MM-CNN when c is introduced in the output channel of the
convolution blocks.

Table 3. Configuration of one CNN consisting of MM-CNN when c is introduced in the output
channel of the convolution blocks.

Layer Kernel Stride Padding Output Shape

Conv 1 7× 7 4 2 56× 56× c
BatchNorm 1 56× 56× c
MaxPool 1 3× 3 2 0 28× 28× c

Conv 2 5× 5 1 1 28× 28× (2× c)
BatchNorm 2 28× 28× (2× c)
MaxPool 2 3× 3 2 0 12× 12× (2× c)

Conv 3 3× 3 1 1 12× 12× (2× c)
BatchNorm 3 12× 12× (2× c)

Conv 4 3× 3 1 1 12× 12× (2× c)
BatchNorm 4 12× 12× (2× c)

Conv 5 3× 3 1 1 12× 12× 1000
BatchNorm 5 12× 12× (2× c)
MaxPool 3 3× 3 2 0 5× 5× 1000

GAP 1× 1× 1000
FC 2

The second approach is to reduce the number of weight parameters by eliminating
the fully connected layers without sacrificing the estimation accuracy. Early CNNs such
as AlexNet [20] and VGG [19] used three fully connected layers in the classifier, as shown
in Figure 6a, where the number of outputs is set to 2 for two-class classification based on
whether an attribute is available or not. In general, the number of weight parameters of
CNN increases significantly as the number of fully connected layers increases. Recent CNNs
such as ResNet [22] and MobileNet [32] reduce the number of weight parameters by using
Global Average Pooling (GAP) and one fully connected layer in the classifier, as shown in
Figure 6b. The same configuration is used in MM-CNN. However, this configuration is
proposed to be used for ImageNet [33] with 1000-class classification. The weight parameters
in the classifier can be further reduced, since face attribute estimation is based on two-class
classification, which is a simpler task than 1000-class classification. We assume that feature
extraction in convolution blocks already classifies the face image into two classes and
propose Convolutinalization for Parameter Reduction (CPR) that eliminates all the fully
connected layers in the classifier. The configuration of the classifier using CPR is shown in
Figure 6c. The number of output channels of Conv5 is set to 2, and the feature map output
from Conv5 is aggregated by GAP to obtain two channels of output. The final output is the
score obtained by applying the softmax function without passing through a fully connected
layer. Some CNNs without fully connected layers have already been proposed such as
FCN [34], U-Net [35], MobileNetV2 [36], and EfficientNet [37]. FCN and U-Net are designed
for image segmentation, which consist of an encoder and a decoder. The encoder is the
same as a feature extractor of general CNNs for image classification, and the fully connected
layers are replaced by a decoder including transposed convolution layers to output 2D or 3D
matrices. MobileNetV2 and EfficientNet are designed for image classification. All the fully
connected layers are replaced by 1 × 1 convolution layers for fast and parallel processing
with Graphical Processing Units (GPUs). Unlike the above methods, CPR eliminates fully
connected layers without replacing them with other layers to reduce the number of weight
parameters in the network. To the best of our knowledge, CPR is the first method to
eliminate all the fully connected layers with the aim of reducing the number of weight
parameters. The effect of reducing the number of weight parameters by CPR is summarized
in Table 4. CPR reduces the number of weight parameters in MM-CNN by 82.4% for Mean
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and c = 30, and by 97.8% for Concat and c = 3, respectively. The effect of CPR on reducing
the number of parameters in Add and Mean is the same. The effect of CPR in Concat is
more significant than that in Add and Mean, since many weight parameters are required in
Conv5.

2x2 MaxPool

3x3 Conv, 512
14x14x512

7x7x512

FC (ReLU), 4096 
4096

4096

FC (ReLU), 4096 

FC (Linear), 2

Softmax

Output

2

2

3x3 Conv, 1000

Softmax

Output

FC (Linear), 2
2

2

GAP

13x13x1000

1x1x1000

Softmax

Output

GAP

3x3 Conv, 2
13x13x2

1x1x2

2

(a) VGG-16 [19] (b) MM-CNN (c) MM-CNN with CPR

Figure 6. Configuration of CNN classifiers for two-class classification: (a) VGG-16 [19], (b) MM-CNN,
and (c) MM-CNN with CPR.

Table 4. Effect of reducing the number of weight parameters by CPR, where “Ratio” indicates the
ratio of the number of weight parameters in each conv block to the total number of weight parameters
in the MM-CNN.

Type
MM-CNN (Mean, c = 30)

w/o CPR w/ CPR
# of Params Ratio # of Params Ratio

Conv1 176,400 0.7% 176,400 3.8%
Conv2 1,800,000 6.9% 1,800,000 39.0%
Conv3 1,296,000 4.9% 1,296,000 28.1%
Conv4 1,296,000 4.9% 1,296,000 28.1%
Conv5 21,600,000 82.3% 43,200 1.0%
FC 80,080 0.3% — —

Total 26,248,480 100% 4,611,600 100%

Type
MM-CNN (Concat, c = 3)

w/o CPR w/ CPR
# of Params Ratio # of Params Ratio

Conv1 17,640 0.1% 17,760 0.9%
Conv2 720,000 0.8% 720,240 37.0%
Conv3 518,400 0.6% 518,640 26.6%
Conv4 518,400 0.6% 518,640 26.6%
Conv5 86,400,000 97.8% 172,800 8.9%
FC 80,080 0.1% — —

Total 88,254,520 100% 1,947,240 100%

5. Experiments and Discussion

In this section, we describe the performance evaluation of the proposed method and
ten conventional methods on two public datasets: CelebA [9] and LFW-a [16].
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5.1. Dataset

CelebA (http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html, accessed on 5 Septem-
ber 2019)—This dataset consists of 202,599 face images of 10,177 identities, 40 binary facial
attributes, and 5 landmark coordinates. In this experiment, we use face images aligned
based on the coordinates of five landmarks: the left eye, the right eye, the nose, the left
edge of the mouth, and the right edge of the mouth.

LFW-a (https://talhassner.github.io/home/projects/lfwa/, accessed on 17 November
2019)—This dataset consists of 13,233 face images of 5749 identities and 73 binary facial
attributes. In the experiment, we use only the 40 facial attributes common to CelebA. We
also use face images aligned based on the coordinates of three landmarks: the right eye,
the left eye, and the center of the mouth.

5.2. Experimental Condition

As for CelebA, 182,637 images and the remaining 19,962 images are used for train-
ing and test, respectively. The splitting of the dataset follows the experimental protocol
recommended by CelebA. As for LFW-a, 6263 images and the remaining 6880 images
are used for training and test, respectively. For both datasets, 10% of the training data
is used as validation data to verify overfitting. The cross-entropy loss is used as the
loss function in training, and Nesterov Accelerated Gradient (NAG) [38] is used as the
optimizer. The initial value of the learning rate is set to 0.025. The maximum number
of epochs is set to 50. The batch size is set to 64. If the loss to validation data is not
improved for two consecutive epochs, the learning rate is reduced to half. If the loss is
not improved in five consecutive epochs, the training is completed. The pixel values of
input images are normalized to have 0 mean and 1 variance, are randomly horizontally
flipped, and are resized to 227 × 227 pixels. The weight parameters of all convolution
layers and fully connected layers are initialized using He initialization [39]. Python 3.8.8
(https://www.python.org, accessed on 1 February 2022), Pytorch 1.8.1 [40], CUDA 10.2
(https://developer.nvidia.com/cuda-toolkit, accessed on 1 February 2022), and cuDNN
7.6.5 (https://developer.nvidia.com/cudnn, accessed on 1 February 2022) are used in the
implementation. All the CNN models are trained and evaluated on NVIDIA GeForce GTX
1080 Ti (https://www.nvidia.com/en-us/geforce/10-series/, accessed on 1 February 2022)
hardware.

We compare the performance of MM-CNN with that of the ten conventional methods:
LNets + ANet [9], FaceNet [10], MT-RBMs [28], MCNN-AUX [2], ATNet_GT [13], PS-
MCNN-LC [15], AlexNet + CSFL [14], ABN [21], VGG16 + Auglabel [23], and
DeepID2 + CLMLE [27]. We also evaluate the performance of MM-CNN with three merging
functions: Concat, Mean, and Add. The performance of MM-CNN is evaluated for Concat
at c = {1, 2, 3, 4} and for Mean and Add at c = {5, 10, 20, 30, 60}, respectively. Each method
is evaluated on the estimation accuracy of each face attribute or the average of them. In face
attribute estimation, each attribute is estimated regarding whether the input face image
includes it or not. The estimation accuracy of each attribute is calculated by estimating the
attribute for all face images in the test dataset and comparing the estimation results to the
ground-truth labels in the test dataset. Note that the average of the estimation accuracy is
an average of the estimation accuracy for each attribute after rounding to the third decimal
place. In the experimental results, the average of the estimation accuracy is presented
except when the estimated accuracy for an attribute index is presented.

5.3. Evaluation of Merging Functions and CPR in MM-CNN

We first evaluate the impact of the merging functions and CPR in MM-CNN for each
hyperparameter c. Table 5 summarizes the accuracy of face attribute estimation and the
number of weight parameters for each dataset when changing the merging functions, c,
and CPR. “N/A” means that attribute estimation cannot be done due to exceeding the
maximum memory size of GPU. Figure 7 shows the trade-off plot between estimation
accuracy for CelebA and the number of parameters when varying the merging function, c,

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://talhassner.github.io/home/projects/lfwa/
https://www.python.org
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
https://www.nvidia.com/en-us/geforce/10-series/
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and CPR used in MM-CNN. The horizontal axis indicates the number of weight parameters,
and the vertical axis indicates the average of the estimation accuracy for CelebA, where the
estimation accuracy is the average of the estimation accuracy of the 40 attributes. In MM-
CNN without CPR, Mean and Add exhibit higher parameter efficiency than Concat. In
MM-CNN with CPR, the number of parameters is much smaller than that without CPR.
Surprisingly, CPR slightly improves the accuracy of face attribute estimation in MM-CNN.
This result suggests that a classifier with many weight parameters, such as fully connected
layers, is not effective for a simple binary classification task. CPR is extremely effective in
improving the parameter efficiency of MM-CNN, and it also makes optimization easier
by reducing the complexity of MM-CNN. In particular, CPR can improve the parameter
efficiency of MM-CNN using Concat, since most of the weight parameters are in the
fully connected layers, as shown in Table 4. The balance between the number of weight
parameters and accuracy of MM-CNN can be adjusted by changing the combination of
merging functions, c, and CPR. MM-CNN using {Mean, c = 20, CPR} and {Concat, c = 4,
CPR} achieve high-parameter efficiency for CelebA and LFW-a, respectively.

Table 5. Accuracy of face attribute estimation and the number of parameters on both datasets
when changing the merging functions, c, and CPR of MM-CNN, where “N/A” means that attribute
estimation cannot be done due to exceeding the maximum memory size of GPU. Best accuracy is
shown with underline.

Merging Function c w/o CPR w/ CPR
CelebA LFW-a Params CelebA LFW-a Params

Concat

1 91.30% 84.90% 29.12 M 91.25% 85.85% 0.26 M
2 91.53% 85.90% 58.51 M 91.48% 86.10% 0.91 M
3 91.55% 85.50% 88.30 M 91.53% 86.15% 1.95 M
4 N/A N/A 118.48 M 91.50% 86.33% 3.27 M

Mean

5 90.40% 81.70% 3.87 M 90.53% 78.80% 0.16 M
10 91.15% 82.65% 7.87 M 91.30% 84.48% 0.56 M
20 91.45% 83.45% 16.60 M 91.58% 85.28% 2.10 M
30 91.53% 84.95% 26.30 M 91.60% 85.10% 4.62 M
60 N/A N/A 61.26 M 91.68% 85.54% 18.02 M

Add

5 90.53% 78.55% 3.87 M 90.68% 83.35% 0.16 M
10 91.15% 82.60% 7.87 M 91.30% 83.45% 0.56 M
20 91.45% 82.98% 16.60 M 91.55% 85.25% 2.10 M
30 91.50% 82.58% 26.30 M 91.60% 85.05% 4.62 M
60 N/A N/A 61.26 M 91.70% 85.15% 18.02 M
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Figure 7. Comparison of the parameter efficiency of MM-CNN with different merge functions and c.
The numbers near each point in the graph indicate the hyperparameter c.
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5.4. Evaluation of the Number of Parallels in MM-CNN

As mentioned in Section 4.1. MM-CNN consists of the combination of single-task
CNNs. Although the number of single-task CNNs in MM-CNN is set to 40, which is the
same as the number of face attributes, the number of parallel networks can be changed.
Through this experiment, we verify the number of parallels with high parameter efficiency
in MM-CNN. Note that regardless of the number of parallels, the network architecture
from Conv5 to FC in Figure 4b is not changed to output 40 scores. The accuracy of face
attribute estimation for CelebA and the number of parameters when changing the number
of parallels and c are summarized in Table 6 and Figure 8, where we use Mean and CPR
for all the settings. Note that “N/A” in Table 6 indicates that attribute estimation is not
performed, since the maximum memory size of the GPU is exceeded. The parameter
efficiency for MM-CNN with 20 and 30 parallels is almost the same as 40 parallels. The
above results indicate that the performance of MM-CNN can be maximized with a simple
criterion that the number of parallels of MM-CNN is set to be the same as the number of face
attributes. On the other hand, the parameter efficiency becomes lower for MM-CNNs with
more than 60 parallels. In MM-CNN with Mean and Add, the feature maps extracted from
each convolution block are added in each channel. As the number of parallels increases,
the information is compressed by the addition of feature maps, resulting in a decrease
in estimation accuracy. The estimation accuracy in MM-CNN with Concat will also be
reduced, since the next convolution block after merging compresses the information in a
similar way.

Table 6. Estimation accuracy of MM-CNN with Mean and CPR under varying the number of parallels
for CelebA.

# of Parallels c Accuracy Params

20
10 91.18% 0.29 M
20 91.45% 1.06 M
40 91.60% 4.06 M

30
10 91.28% 0.43 M
20 91.55% 1.58 M
40 91.63% 6.08 M

40
10 91.30% 0.57 M
20 91.58% 2.10 M
40 91.60% 8.10 M

60
10 91.25% 0.85 M
20 91.50% 3.15 M
40 91.65% 12.14 M

80
10 91.25% 1.13 M
20 91.53% 4.20 M
40 N/A 16.18 M
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Figure 8. Comparison of the parameter efficiency of MM-CNN using Mean and CPR with the
different number of parallels for CelebA. The numbers near each point in the graph indicate the
hyperparameter c.

5.5. Comparison with Multi-CNN

We compare the accuracy of face attribute estimation using Multi-CNN and MM-CNN
to verify the effectiveness of the merging layer. Multi-CNN uses independent CNNs to
estimate each attribute as shown in Figure 4a. Table 7 shows the results of evaluating
the estimation accuracy of Multi-CNN and MM-CNN for CelebA by changing c and
with/without CPR, where we use Mean for MM-CNN. Note that the existence of the
merging layers has little effect on the number of weight parameters, except for MM-CNN
with Concat. The experimental results show that MM-CNN has higher estimation accuracy
than Multi-CNN in all settings. The merging layers can improve the multi-task performance
of CNNs with little increase in the number of weight parameters.

Table 7. Estimation accuracy Multi-CNN and MM-CNN with Mean for CelebA. Xshows that CPR
is used. Best accuracy is shown with underline.

CPR c Multi-CNN MM-CNN

5 89.73% 90.40%
10 90.33% 91.15%
20 90.80% 91.45%
30 90.90% 91.53%

X

5 90.00% 90.53%
10 90.45% 91.30%
20 90.95% 91.58%
30 91.03% 91.60%
60 91.15% 91.68%

5.6. Comparison with Conventional Methods

We compare the performance of MM-CNN with ten conventional methods: LNets +
ANet [9], FaceNet [10], MT-RBMs [28], MCNN-AUX [2], ATNet_GT [13], PS-MCNN-LC [15],
AlexNet + CSFL [14], ABN [21], VGG16 + Auglabel [23], and DeepID2 + CLMLE [27]. In this
experiment, we use MM-CNN with Mean and focus on the three patterns exhibiting high param-
eter efficiency from Table 5. We also use MM-CNN with Concat and CPR, which exhibited the
highest estimation accuracy for LFW-a in Table 5. Tables 8 and 9 show the experimental results for
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CelebA and LFW-a, respectively. Figure 9 shows the parameter efficiency of each method in face
attribute estimation. Note that some conventional methods are listed and plotted only on one side
in Tables 8 and 9 and Figure 9. The accuracy of the conventional methods is referred to those
described in the paper. If the accuracy for each attribute was not listed or the accuracy for
one dataset was not listed such as ABN [21] and DeepID2 + CLMLE [27], the accuracy for
those methods is not listed in Tables 8 and 9. Since SVM-based methods such as LNets + ANet [9]
and MT-RBMs [28] cannot evaluate the number of weight parameters, only methods without SVM
are plotted in Figure 9.

In CelebA, the accuracy of MCNN-AUX [2] and MM-CNN (Mean, c = 10, CPR) is
comparable, while the number of parameters of MM-CNN is 1/70 that of MCNN-AUX.
Comparing ATNet_GT [13] and MM-CNN (Mean, c = 10, CPR), MM-CNN (Mean, c = 10,
CPR) has 1% higher accuracy and 1/3 of the number of parameters. The accuracy of
PS-MCNN-LC [15] and AlexNet + CSFL [14] is higher than MM-CNN, while the number
of parameters of MM-CNN with CPR is much smaller than those of them. As mentioned
above, MM-CNN exhibited the best parameter efficiency among the compared methods. In
addition, since MM-CNN is a network architecture for multi-task processing, the architec-
ture and CPR of MM-CNN can be used in combination with multi-label methods such as
concatenating multiple attribute labels.
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Figure 9. Comparison of the parameter efficiency of face attribute estimation methods. The numbers
near each point in the graph indicate the hyperparameter c.
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Table 8. Estimation accuracy of face attribute estimation methods for CelebA. Best accuracy is shown
with underline.

Method Attribute Index
1 2 3 4 5 6 7 8 9 10

LNet + ANet [9] 91 79 81 79 98 95 68 78 88 95
FaceNet [10] 89 83 82 79 96 94 70 79 87 93
MT-RBMs [28] 90 77 76 81 98 88 69 81 76 91
MCNN-AUX [2] 95 83 83 85 99 96 71 85 90 96
ATNet_GT [13] 92 81 81 84 99 96 71 83 89 95
PS-MCNN-LC [15] 97 86 84 87 99 98 73 86 92 98
AlexNet + CSFL [14] 95 86 85 99 99 96 88 92 85 91

MM-CNN (Concat, c = 4, CPR) 94 84 83 85 99 96 72 85 90 96
MM-CNN (Mean, c = 60, CPR) 95 84 83 86 99 96 72 85 91 96
MM-CNN (Mean, c = 30, CPR) 95 84 83 86 99 96 72 85 90 96
MM-CNN (Mean, c = 10, CPR) 95 84 83 86 99 96 71 84 90 96

Method Attribute Index
11 12 13 14 15 16 17 18 19 20

LNet+ANet [9] 84 80 90 91 92 99 95 97 90 87
FaceNet [10] 87 79 87 88 89 99 94 95 91 87
MT-RBMs [28] 95 83 88 95 96 96 96 97 85 83
MCNN-AUX [2] 96 89 93 96 96 100 97 98 92 88
ATNet_GT [13] 96 87 92 94 96 99 97 98 90 86
PS-MCNN-LC [15] 98 91 95 98 98 100 98 99 93 89
AlexNet + CSFL [14] 96 96 85 97 99 99 98 96 92 88

MM-CNN (Concat, c = 4, CPR) 96 89 93 96 97 100 97 98 92 88
MM-CNN (Mean, c = 60, CPR) 96 90 93 96 97 100 98 98 92 88
MM-CNN (Mean, c = 30, CPR) 96 90 93 96 97 100 97 98 92 88
MM-CNN (Mean, c = 10, CPR) 96 89 93 96 97 100 97 98 92 88

Method Attribute Index
21 22 23 24 25 26 27 28 29 30

LNet + ANet [9] 98 92 95 81 95 66 91 72 89 90
FaceNet [10] 99 92 93 78 94 67 85 73 87 88
MT-RBMs [28] 90 82 97 86 90 73 96 73 92 94
MCNN-AUX [2] 98 94 97 87 96 76 97 77 94 95
ATNet_GT [13] 97 93 97 86 94 76 97 75 93 95
PS-MCNN-LC [15] 99 96 99 89 98 77 99 79 96 97
AlexNet+CSFL [14] 98 94 97 90 97 78 97 78 94 96

MM-CNN (Concat, c = 4, CPR) 98 94 97 88 96 76 97 78 94 95
MM-CNN (Mean, c = 60, CPR) 98 94 97 88 96 77 97 78 94 96
MM-CNN (Mean, c = 30, CPR) 98 94 97 88 96 76 97 78 94 96
MM-CNN (Mean, c = 10, CPR) 98 94 97 88 96 76 97 77 94 95

Method Attribute Index
31 32 33 34 35 36 37 38 39 40 Ave.

LNet + ANet [9] 96 92 73 80 82 99 93 71 93 87 87.3
FaceNet [10] 95 92 73 79 82 96 93 73 91 86 86.6
MT-RBMs [28] 96 88 80 72 81 97 89 87 94 81 87.0
MCNN-AUX [2] 98 93 84 84 90 99 94 87 97 88 91.3
ATNet_GT [13] 97 92 80 82 89 99 93 86 96 88 90.2
PS-MCNN-LC [15] 98 95 86 86 93 99 96 89 99 91 93.0
AlexNet + CSFL [14] 98 94 85 87 91 99 93 89 97 90 92.6

MM-CNN (Concat, c = 4, CPR) 98 93 84 84 91 99 94 88 97 89 91.5
MM-CNN (Mean, c = 60, CPR) 98 93 84 84 91 99 94 88 97 89 91.7
MM-CNN (Mean, c = 30, CPR) 98 93 84 84 91 99 94 88 97 89 91.6
MM-CNN (Mean, c = 10, CPR) 98 93 83 83 90 99 94 87 97 88 91.3
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Table 9. Estimation accuracy of face attribute estimation methods for LFW-a. Best accuracy is shown
with underline.

Method Attribute index
1 2 3 4 5 6 7 8 9 10

LNet + ANet [9] 84 82 83 83 88 88 75 81 90 97
FaceNet [10] 77 83 79 83 91 91 78 83 90 97
MCNN-AUX [2] 77 82 80 83 92 90 79 85 93 97
PS-MCNN-LC [15] 88 84 82 87 93 91 83 86 93 98
AlexNet + CSFL [14] 80 86 84 92 93 77 81 80 83 91

MM-CNN (Concat, c = 4, CPR) 78 81 81 83 93 92 79 84 92 97
MM-CNN (Mean, c = 60, CPR) 77 80 80 82 93 91 77 83 92 97
MM-CNN (Mean, c = 30, CPR) 76 80 80 82 92 90 76 83 92 97
MM-CNN (Mean, c = 10, CPR) 76 79 80 81 92 90 74 83 92 97

Method Attribute Index
11 12 13 14 15 16 17 18 19 20

LNet + ANet [9] 74 77 82 73 78 95 78 84 95 88
FaceNet [10] 88 76 83 75 80 91 83 87 95 88
MCNN-AUX [2] 85 81 85 77 82 91 83 89 96 88
PS-MCNN-LC [15] 87 82 86 78 87 93 84 91 97 89
AlexNet + CSFL [14] 75 97 82 78 92 86 88 89 95 89

MM-CNN (Concat, c = 4, CPR) 85 82 85 76 82 92 84 89 95 87
MM-CNN (Mean, c = 60, CPR) 85 82 83 76 80 91 83 89 95 87
MM-CNN (Mean, c = 30, CPR) 85 82 83 75 80 90 83 89 95 86
MM-CNN (Mean, c = 10, CPR) 84 81 82 74 79 89 82 88 94 86

Method Attribute Index
21 22 23 24 25 26 27 28 29 30

LNet + ANet [9] 94 82 92 81 79 74 84 80 85 78
FaceNet [10] 94 81 94 81 80 75 73 83 86 82
MCNN-AUX [2] 94 84 93 83 82 77 93 84 86 88
PS-MCNN-LC [15] 95 85 94 84 82 78 95 88 87 89
AlexNet + CSFL [14] 93 86 95 82 81 75 91 84 85 86

MM-CNN (Concat, c = 4, CPR) 94 82 94 82 81 79 91 85 87 87
MM-CNN (Mean, c = 60, CPR) 93 80 93 79 79 76 91 83 86 88
MM-CNN (Mean, c = 30, CPR) 93 79 93 78 80 76 90 83 87 87
MM-CNN (Mean, c = 10, CPR) 93 79 93 75 80 75 90 82 86 85

Method Attribute Index
31 32 33 34 35 36 37 38 39 40 Ave.

LNet + ANet [9] 77 91 76 76 94 88 95 88 79 86 83.9
FaceNet [10] 82 90 77 77 94 90 95 90 81 86 84.7
MCNN-AUX [2] 83 92 79 82 95 90 95 90 81 86 86.3
PS-MCNN-LC [15] 84 93 80 83 96 91 96 91 82 87 87.4
AlexNet + CSFL [14] 80 92 79 80 94 92 93 91 81 87 86.0

MM-CNN (Concat, c = 4, CPR) 84 91 79 82 94 91 95 90 83 85 86.3
MM-CNN (Mean, c = 60, CPR) 83 90 79 81 94 90 94 89 82 85 85.5
MM-CNN (Mean, c = 30, CPR) 82 90 78 80 94 90 94 89 81 84 85.1
MM-CNN (Mean, c = 10, CPR) 82 89 75 80 94 90 94 89 81 84 84.5

6. Conclusions

In this paper, we proposed a face attribute estimation method using Merged Multi-
CNN (MM-CNN), which consists of multiple CNNs in parallel with the merging layers.
We also proposed a parameter reduction method called Convolutionalization for Parameter
Reduction (CPR), which removes all fully connected layers from MM-CNNs. Through a
set of experiments to evaluate the performance on CelebA [9] and LFW-a [16], we demon-
strated that MM-CNN can estimate face attributes with high accuracy using CNN with
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fewer weight parameters than conventional methods. Although the MM-CNN discussed
in this paper was based on simple networks, the approach can be applied to recent complex
networks. Future work will include extending and improving the accuracy of MM-CNN,
applying it to practical applications, and comparing its performance other than face at-
tribute estimation with general multi-task learning methods.
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