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Abstract: Identity tracking and instance segmentation are crucial in several areas of biological re-
search. Behavior analysis of individuals in groups of similar animals is a task that emerges frequently
in agriculture or pharmaceutical studies, among others. Automated annotation of many hours of
surveillance videos can facilitate a large number of biological studies/experiments, which otherwise
would not be feasible. Solutions based on machine learning generally perform well in tracking and
instance segmentation; however, in the case of identical, unmarked instances (e.g., white rats or mice),
even state-of-the-art approaches can frequently fail. We propose a pipeline of deep generative models
for identity tracking and instance segmentation of highly similar instances, which, in contrast to most
region-based approaches, exploits edge information and consequently helps to resolve ambiguity in
heavily occluded cases. Our method is trained by synthetic data generation techniques, not requiring
prior human annotation. We show that our approach greatly outperforms other state-of-the-art
unsupervised methods in identity tracking and instance segmentation of unmarked rats in real-world
laboratory video recordings.

Keywords: multi-object tracking; segmentation; edge enhancement; deep generative networks;
computer vision; synthetic data generation

1. Introduction

There are several fields with the need for automatic analysis of visual data. The
breakthrough of deep learning methods is the most promising for this purpose. However,
there is still a gap between human and machine vision precision in several image processing
tasks. The handling of hardly visible contours is one of the challenging issues. Contours
may be hardly visible due to the similarities of adjacent regions. The similarity between
background and foreground objects may be due to animal camouflage, a disguise in nature
to help animals hide in the surroundings. In addition, multiple nearly identical instances
may occlude each other, which is another frequent scenario in diverse applications. There
are many applications (including tasks in medicine and agriculture) where the observation
of individual instances is required. Thus, accurate tracking is essential.

In medical and pharmaceutical research, visual tracking of treated animals is used
for behavior analysis to detect the effects of drugs or other treatments. Rats and mice
are commonly used as animal models [1,2]. There is a wide range of available strains
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with differences in needs (feeding, etc.), structural or physiological parameters [3] and in
behavior patterns, and each study should choose the most appropriate strain model. We
focus on data where mice/rats are very similar without any markers but may have received
different medical treatments, and individual patterns should be analyzed. In typical
setups, the camera is fixed, and the foreground segmentation from the background is
feasible, which simplifies the segmentation process. However, handling the changes in body
configurations and the heavy occlusions between the objects poses a significant challenge.

Identity (ID) tracking for behavior analysis can be further specified, introducing task-
specific constraints on requirements and providing valuable assumptions. In medical
research, the environment setup aims to ensure that instances are unable to leave the
scene or hide behind obstacles because proper ID re-assignment cannot be guaranteed on
re-entering. While avoiding ID switches (track switches) is crucial, the fixed number of
instances can be exploited. We aim to avoid human annotation of hundreds of images, be-
cause it is time-consuming. In addition, automatic annotation-based learning methods are
easy and fast to train and can be applied to new animals or data if they are slightly different.

In the demonstration footage, the setup contains two adult female Wistar rats, which
have identical white colors without any marker (Figure 1). The recording is from a single,
downward-looking camera, and instance size changes are negligible. Our approach is
to build a pipeline inspired by “Composite AI” [4,5], to provide reliable segmentation
for identity tracking. Composite AI combines different learning architectures to achieve
superior results and exploits human knowledge for improving the evaluations. In our
case, for example, we use information about the number of components to be detected,
among others.

(a) (b) (c) (d) (e)

Figure 1. Images of the processing for two frames with occluding instances, with joint body seg-
mentation using the Mask R-CNN [6] based method. From left to right: (a) input frame (b) original
edge image (c) components from body part detection based on Mask R-CNN (d) our edge prediction
giving rise to (e) our segmentation prediction exploiting information from body part tracking.

In this paper, two main categories of contributions and procedures are presented.

1. We train edge detection deep networks based on synthetic data:

• We propose a method for generating a synthetic dataset fully automatically (based
on only frames with non-occluding instances), without any human annotation
to train an edge detection network to detect the separating boundary between
occluding identical objects, with a static background.

• We extend the occlusion dataset to generate training data for edge enhancement
by applying an unpaired CycleGAN, a well-known generative adversarial net-
work (GAN) [7]. It is trained to learn the characteristics of the inner edges in
overlapping instances in the output images of an edge detection step, where
detected inner contours are discontinuous.

• We train an inpainting network starting from the extended automatically anno-
tated dataset. To improve the “continuity” of the boundary edges for precise
segmentation, we generate inputs by occluding the separating edges of the highly
similar instances.

2. We propose a combination of unsupervised deep networks to exploit edge information
in addition to region-based methods.
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• For highly similar objects, we propose an instance segmentation method that
combines the results of edge detection and the region-based approach presented
in [8].

• The propagation approach presented in [9] is used to track instances without
switching in the test video.

The code will be publicly available at https://github.com/g-h-anna/sepaRats.

2. Related Works

Multiple methods address the problem of processing visual data of biomedical research
of rodents, with computer vision. Deep Ethogram [10] identifies social interaction types,
but cannot track identities; therefore, no individual patterns are available. DeepLabCut [11]
utilizes keypoints and tracklet stitching methods in multi-object pose estimation and
tracking. For a demonstration of identity prediction and tracking, they use a dataset of
marmosets, with two animals in a cage, and a light blue dye is applied to the tuft of one of
them, which is a distinctive visual marker. Moreover, for training, they used 7600 human-
annotated frames, each containing two animals and 15 keypoints per animal. Currently, no
pre-trained model is available on rodents.

Diverse approaches [12–14] are based on a module of DeepLabCut utilizing heavily
prior human annotations of several frames, with multiple keypoints and keypoint con-
necting edges per animal. SLEAP uses the so-called human-in-the-loop method to achieve
the necessary accuracy for pose estimation over the frames, which becomes continuous
annotation in the prediction phase.

Idtracker, idtracker.ai, and ToxID [15–17] do not require prior data annotation; there-
fore, they are similar approaches as our proposed pipeline. However, for idtracker.ai the
used C57BL/6J mice have a homogeneous black color, except their ears, which are visible
in all poses, therefore representing a strong visual marker that may be utilized in feature
learning of deep networks. On the other hand, idtracker.ai requires that the areas of the in-
dividuals barely change, a severe restriction for segmentation and separation of non-shape
preserving instances. Rats are flexible and may take different forms in 3D, e.g., during an
interaction or rearing [18] that introduce a large range of pixel-wise size variations.

We applied idtracker, idtracker.ai, and ToxID on our data with various parameter
settings. We found that several ID switches occur even for relatively simple videos. We
show two such switches in Figure 2 for idtracker.

Figure 2. Two track switching examples using “ idtracker ” on our test data (cropped from the frames
of the video). Ground truth labels are colored disks: blue (label 1), red (label 2). Predicted labels are
within the squares. During occlusion, frame labels are lost (label 0), IDs and ground truth labels differ.

https://github.com/g-h-anna/sepaRats
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ToxID method [17] segments individuals from the background and stitches traces
across all frames. ToxID needs optimal illumination conditions, and along with idtracker.ai,
it utilizes the fact that body shape and appearance do not change much. In addition, the
similarity-based probabilistic texture analysis is not reliable for videos longer than about
20 min [19]. For ToxID an implementation is available, called ToxTrac [20]. We show a
segmentation on a sample from our videos in Figure 3. ToxTrac does not aim to track the
individuals without identity switches, but all tracks are saved for further statistical analysis,
which would possibly be useful for joint behavior analysis.

Figure 3. ToxTrac, which requires no preliminary annotation, was applied on our test sequences.
Non-occlusion instances are usually well detected, but instances are not separated during occlusions:
a single mask is provided.

The method in Lv et al. [21] is built on YOLO and Kalman filter-based prediction for
tracking bounding boxes of multiple identical objects (three white rats). In this method,
human annotation is reduced by training on an automatically pre-calculated annotation
of 500 frames, and requiring only some correction. However, the training dataset focuses
mainly on non-occluding positions and the model is not prepared to track identities over
episodes of significant overlaps. Object ID-s are switched often in the video (accessed
on 16 October 2021, CC BY 4.0) provided by the authors, see a small illustration of a few
frames in Figure 4.

Figure 4. Some examples for frames selected from a demonstration video attached to [21] where
ID tracking fails. The numbers 1 and 2 correspond to instance IDs. During episodes of significant
overlaps multiple ID changes occur.

In the past few years, there has been high interest and extensive research in deep
networks [6,11,22–27] to improve instance segmentation over the combination of tradi-
tional image processing methods. When instances are highly similar and have few or no
features and similar colors, regions are of little help, whereas edges still may be detected.
In this paper, we utilize deep learning-based edge enhancement for instance segmentation.

When applied to complex scenes with multiple objects, basic edge detection methods
such as Sobel [28] or Canny [29] use threshold values as parameters for balancing between
being detailed enough, but not too noisy. When it comes to highly similar and occluding
objects, these methods fail to detect crucial edges for instance separation.

There have been various attempts in deep learning instance segmentation under
occlusion. Lazarow [30] proposed to build upon a Mask R-CNN [6] based architecture, but
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utilizes the differences of the objects. This approach achieves good results on benchmarks
but fails to differentiate highly similar instances, such as the task of tracking rats.

In the case of highly similar and occluded objects, instance separation is often not
possible using regional information only. When dealing with instances that have the same
visual appearance (e.g., two white rats) edge information can help the segmentation of the
overlapping instances. The deep DexiNed network [31] provides promising results for both
inner and external edges. This architecture is based on the holistically-nested edge detection
(HED) scheme [32], and with the fusion of the network layers, the produced output balances
low and high-level edges. DexiNed was trained on the Barcelona Images for Perceptual
Edge Detection (BIPED) database [31]. DexiNed predicts well-defined outer boundaries for
instances, but the inner edges in overlapping positions are discontinuous. Deep generative
networks can be exploited in such situations, that are capable of filling in the missing edge
fractions. For filling in the missing parts of the edges inside the overlapping instances, we
were inspired by the edge generation network called Edge-Connect [33]. Edge-Connect
uses two GANs in tandem. It masks the images and trains an edge generator to estimate the
edges in the masked regions. The second stage of the tandem learns the image completion
task building upon the structure information of edges detected in the first stage. For our
purpose the first stage of this double GAN is useful as our interest is in the separation of the
animals. In the case of highly similar and occluded objects, accurate boundary information
is hard to acquire.

Additional regional information such as the recognition of body parts may be invoked
to find missing edges and to decrease the errors. Kopácsi et al. [8] proposed a method to
detect body parts of rodents without the need for hand-annotated data. They used (i) vari-
ous computer vision-based methods to find keypoints and body parts from foreground-
background masks, (ii) synthetic data generation, and trained a Mask R-CNN [34] for
keypoint detection and body part segmentation on unseen images. They applied the me-
dial axis transformation and determined the head region, the body region, and the tail
region using the geometrical properties of the rats.

3. Methods

The goal is high-quality instance tracking, i.e., the minimization of the number of
erroneous switches. We overview our algorithm selection method. The individual compu-
tational steps are detailed in the main part of this section.

3.1. Overview of the Algorithm Selection Procedure

The optimization of segmentation is the first step of our heuristics. It is followed by a
propagation algorithm.

We have tested multiple edge detection algorithms: the Sobel [28], the Canny [29]
methods, and the trained BIPED model of the DexiNed [31] network. We dropped Sobel
due to its low performance. We evaluated Canny and the BIPED model using F-score,
precision and recall metrics [35]. Canny and the BIPED model produced similar results
(see later). In turn, we decided on using the trainable method, i.e., DexiNed, as it had a
greater potential.

We trained the Edge Detection in two ways: from scratch and with transfer learning
starting from the BIPED model [31]. We used different ground truth edge thicknesses and
the epoch number of the training procedure.

Selection was based on the performance on those frames where instances overlapped
and the foreground mask was not connected. The model that had the lowest number of
frames with a single connected foreground region was chosen. We refer to this model for
the scratch and the transfer learning cases as SEPARATS and BIPED-TL, respectively.

We used the selected models as follows. We estimated the foreground mask and gen-
erated edge images. If it was a single connected region then algorithm of Edge Completion
was invoked. If the foreground mask had more than one regions then we combined it with
the results of the body parts method [8] by means of higher level knowledge, the number
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of bodies (see later). In case of a single connected foreground region only the body parts
method was used. The outcome is the per-frame segmentation. Per-frame segmentations
were connected by a propagation algorithm [9].

Below, we elaborate on the sub-components of our heuristics that give rise to the final
evaluation pipeline. The overview of the main steps is depicted in Figure 5.

Figure 5. Sketch of the test pipeline for a single frame. Our aim is to maximize the segmentation
precision within the frame to provide a strong basis for tracking. Body parts and edges are predicted
and edge completion methods are invoked. A pre-processing provides the foreground masks and
removes the background from the frame. A post-processing module combines the information and
predicts the segmentation of the instances separately to enable identity tracking. Note the error in the
last subfigure: the head of one of the animals is mislabeled. However, tracking remains error-free.

3.2. Pre-Processing

There are two animals in the scene. They are neither allowed to leave the cage nor
able to hide, but while they are interacting, they can heavily occlude each other, making
tracking challenging.

Thus, we differentiate between frames with disjoint and occluding object instances
based on the foreground segmentation. For the latter case, i.e., frames with a single con-
nected foreground region, for a given instance segmentation method we will differentiate
between frames with separated and with unseparated occluding object instances.

We apply the DexiNed model (BIPED model), which was pre-trained on the first
version of the BIPED dataset, as this performed better than later models (downloaded from
https://github.com/xavysp/DexiNed accessed on 21 March 2021). In what follows, we use
interchangeably the following words: contour, edge, and boundary. These—in contrast to
the geometric definitions—represent here the set of pixels marked as edges by DexiNed or
other edge detection methods. We distinguish two types of boundaries: external boundary
separates the background from the rest, i.e., from the occluding or non-occluding two
animals. Inner boundary refers to the boundary within the foreground mask. This inner
boundary may separate the animals, as seen later. During pre-processing, we use (a) the
original frames, (b) the edge images predicted by BIPED model, and (c) the foreground
masks as inputs.

As the background is static in our case, we can estimate the background by taking the
mode of 2000 frames. Then, we can get the foreground via background subtraction. We also
incorporate intensity histograms in the foreground estimation process to make it robust
against slight illumination changes and reflections, the reflections on the cage parts, and
the shiny urine the animals add to the scene occasionally. The drawback of this method is
that parts of the tails might be lost. However, we can neglect the tails, as the rodent’s tail
movement is not considered as a factor for tracking the rats. For frames with separated
object instances the disjoint foreground masks are labeled with index values, which we
define as ID values of the instances. The edges predicted by the BIPED model are outside

https://github.com/xavysp/DexiNed
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the foreground mask. We define the edge-masks for each frame as the foreground mask
and the instance contours detected by the BIPED model. The output of pre-processing
are the foreground masks, the masks of the instances, the masked RGB instances, and the
edge masks.

3.3. Augmentation

The automatic generation of annotated images is inspired by the idea in [36]. We
used frames with occlusion-free samples for constructing overlapping instances. For the
training of edge detection network, we also set the generating parameters to allow some
non-overlapping positions, for the sake of comprehensive learning and to avoid overfitting
on the significantly overlapping samples.

For each input frame, we generated five rotated samples evenly distributed along with
adding a random correction.

We added two translated copies to each of them. The amplitude of translation was set
according to a heuristic using the resolution of the frame, the sizes of the rats relative to the
frame aspect ratio.

We applied these transformations to the RGB instances (region defined by the fore-
ground mask) and for the masked edges, to create augmented RGB (aRGB) images and
augmented ground truth (aGT) respectively. Unfortunately, if we put two correctly seg-
mented single rats huddling or overlapping with each other for aRGB images, the shadows
are different from the true occluding cases. Note that in 3D, the unoccluded instance is
above the other one. This unoccluded instance will be called the upper instance. In particular,
the shadow of the upper rat on the lower one is missing and it is the very relevant part,
i.e., at the separating boundary. The foreground mask size for rats in RGB frames has a
high impact. If it is small and excludes the shadows, then the shape is strongly damaged
and becomes unrealistic. If it is large for an instance, then the shadow at the silhouette
introduces an artifact that will be picked up by the deep network giving rise to failures on
the real frames. The compromise is to minimize the damage to the shape while eliminating
the artifacts by removing the unrealistic shadow from the RGB image with inpaint-based
blur, as follows:

We define the separating boundary as the 1-pixel wide contour section of the upper
rat within the mask of the overlapping instances, excluding the joint external boundary
pixels. We use the inpaint function with the Telea algorithm [37] of the OpenCV package.
Inpainting is invoked for the separating boundary, with a window radius of 7 pixels, to
create a blur.

There is another pitfall that one needs to overcome: towards the external boundary,
the blur is biased by the background pixels. We mitigated this by using an auxiliary
background, we change the background to a rat-like one. We crop a region from the rats in
a hand-picked frame of side-to-side contact. The cropped rat texture is resized to exceed
the joint size of the overlapping instances and forms the background for us. This single
resized image used for the augmentation of all RGB frames minimizes unrealistic artifacts
for our case. Note that this particular approach is exploited only during inpainting the
augmented RGB frames. Otherwise, the background is set to zero.

In aGT edge images only the edge pixels of the rats are non-zero. This is to mini-
mize the influence of background prediction on the loss. To reduce the large number of
background pixels, the area of the augmentations is set to a small, but sufficiently large
square to enclose the overlapping instances. In our experiments, we used a square of
256 × 256 pixels.

The generated synthetic dataset of augmented inputs and aGT edge images are used
in the training of all three networks presented in Sections 3.4 and 3.5.

3.4. Training Edge Detection

We trained the network architecture presented in [31] with our synthetic dataset,
described in Section 3.3. We present the illustration of this step in the Training I column of
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Figure 6. We used 73,328 input images with corresponding augmented ground truth edges.
This trained model is the first deep network in the prediction pipeline. We trained multiple
models for edge detection. We evaluated the models as described later, in Section 4.1 and
picked the best in terms of separating the instances. This best model is called SEPARATS .

Figure 6. Illustration of the training and prediction pipelines. Three main blocks of the training
pipeline: I. synthetic data generation and training Edge Detection model; II. training the Feature
Model; III. extending synthetic dataset and training the Edge Completion model. Training is built
upon the synthetic data generation. Overlapping inputs and augmented ground truth data are
constructed from pre-processed frames with non-occluding instances. Trained Edge Detection
network is applied on frames with occluding instances. The unpaired CycleGAN [7] generates
training data on the synthetic dataset for training the Edge Completion network. The prediction
pipeline applies the Edge Detection model on the foreground of the frames. If the detected edges are
not separating the instances, the foreground mask is a single connected region and the trained Edge
Completion network “extends” the edges inside the foreground mask. The segmentation algorithm
predicts the final segmentation for each frame. The edge regions and the body regions detected by a
pre-trained model [8] are combined to provide a reliable segmentation for identity tracking of the
highly similar and markerless instances including during heavy overlaps. The proposed pipeline is
completely automatic, no human annotation is required. For more details, see text.

3.5. Training the Edge Completion

In frames with occluding instances the foreground mask, apart form the tails, is a
single connected region. The inner boundary as defined before separates the two instances.
In what follows we refer to this part of the edge structure as the separating edge. If the
separating edge is continuous, the upper instance has a closed contour corresponding to its
mask boundary. We call the frames with overlapping instances frames with unseparated



J. Imaging 2022, 8, 109 9 of 20

occluding object instances if the inner edge is discontinuous. Hence, in this case, there are
less than two disjoint regions within the foreground mask.

We train an inpainting network to connect the edge endings in imperfect edge images
(i.e., with unseparated object instances). For this step, we extend the augmented data
(aGT and aRGB images) with corresponding imperfect edge images by transforming the
continuous separating edges in the aGT edge images to non-continuous sections.

It is hard to formalize the characteristics of edge endings of missing contour parts for
Edge Detection prediction with basic image processing methods and we use the unpaired
CycleGAN proposed in [7] instead. To train a CyleGAN model, we apply our trained
SEPARATS Edge Detection model to frames with occluding instances of the training set. We
randomly select 2200 predictions where the instances are unseparated, and an additional
2200 aGT edge images. We generate edge images with discontinuous separating edges
using the trained CycleGAN model (denoted as Feature Model in Figure 6) for each aGT
edge image, which provides input and desired output pairs for training an edge inpainting
network, the Edge Completion Model illustrated in Figure 6, column Training II.

To train the edge completion network we use the same synthetic dataset as in the
training of the Edge Detection network but extended with the imperfect edge images. We
build our method on the generative adversarial network (GAN) proposed in [33]. This
network uses three inputs: an RGB image, an inpaint mask that defines the area of missing
edges, and the edge map to be completed. As opposed to [33], we do not apply masks to the
RGB input of the generator network, because the aRGB image is always fully observable.
We generate the inpaint mask in a way to ensure that no information is lost: it must cover
the complete region of missing edges and at the same time exclude known boundaries: both
the external contours, and the inner boundaries predicted by the CycleGAN Feature Model.
We determine the mask of boundary pixels B by applying a threshold to the boundary
image. Thus, the formula for calculating the inpaint maskM is as follows:

M = F \ B

where F denotes the foreground mask, and the operator \ stands for set difference. We
note that in the prediction the inpaint mask can be generated in an analogous way, with the
difference that the boundary image is provided by the Edge Detection model.

Because the primary goal of the edge completion model is to make the separating edge
continuous for overlapping instances, this region needs to have a higher weight in the loss
function than the non-boundary regions of the inpainting mask. Thus, we define the loss L
of the discriminator for each frame as

L = BCELoss(M◦ Epred, M◦ EaGT) + BCELoss(S ◦ Epred, S ◦ EaGT)

where BCELoss stands for adversarial loss with Binary Cross Entropy [38,39] objective, and
the operator ◦ denotes the Hadamard product [40], Epred and EaGT are the predicted edge
image of the inpainting generator and the corresponding aGT edge image, respectively,
andM denotes the inpaint mask. S is the mask of the separating edge. This mask of the
separating edge consists of the missing part of the edge that we want to complete and
is dilated to include a few pixel environment next to the edge. The Hadamard product
restricts Epred and EaGT to the mask region while keeping the grey values [33].

For the discriminator, we modified the input with a re-scaling on the output of the
generator as follows. The separating edges belong to the upper rat’s mask by construction,
so we apply a heuristic: those edges that belong to the upper rat were given a weight of 1,
whereas those that belong to the lower (occluded) rat, i.e., boundaries not related to the
upper rat and thus containing only external boundary pixels of the overlapping instances
are given a weight of 0.5. This weighting emphasizes the upper rat’s boundary in the
discrimination procedure being critical for the closedness of this contour. We illustrate the
training of the Edge Completion Model in column III of Figure 6.
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3.6. Segmentation

See pseudocode for segmentation in Algorithm 1. The segmentation is the last step of
the first stage of processing single frames. It is the post-processing of the information from
body parts and edges. We focus on the occlusion of bodies and remove tails with a binary
opening from the foreground mask of the input frame. The tails are not useful for the
segmentation of the bodies and even represent a noise due to the various possible shapes.

Algorithm 1: Segmentation

Input: Grayscale edge image (G ∈ [0, 255]H×W), foreground mask
(M ∈ {0, 1}H×W), array of predicted body region masks (B = {B1, B2},
where Bj ∈ {0, 1}H×W (j = 1, 2))

Output: Segmented image with labels (I ∈ {0, ID1, ID2}H×W)
1 Find edge regions (L and R) using Algorithm 2.
2 if L = 1 then
3 Split edge region R1 into multiple regions based on the predicted body masks

B.
4 if L ≥ 2 then
5 Assign edge regions to the most appropriate bodies based on overlap (A)

using Algorithm 3.
6 Get the final instances (I) from the assigned edge regions A by applying

watershed, bounded by the foreground mask M.

7 else
8 In the final segmentation I fill each pixel of the foreground mask M with a flag

value denoting unseparated instances.

The combination of the information from edge and body parts detection consists of two
main subroutines, as follows. First, we determine the regions corresponding to the detected
edges. We use thresholding and binary morphological operations to transform predicted
grayscale edges to a binary edge image. We used a randomly chosen subset of the training
samples to select the threshold value. The output of the edge detection network is an
intensity map, with higher intensities denoting higher certainty of the presence of an edge.
The algorithm has two types of pitfalls (limiting factors). For high threshold values weak
edges, such as the edge between the instances, get eliminated. In this case the foreground
is made of a single connected region. For low threshold values two or more regions may
appear. In addition, edge regions can cover considerable areas including a large part of the
foreground, giving rise to high noise for the analysis following this thresholding. Upon
visual inspection and considering the two limiting factors we set the threshold value θ to
approximately 25% of the maximum (θ = 60 in the [0, 255] range) and set pixel values above
(below) this threshold to 1 (0). This value is somewhat arbitrary and could be optimized if
needed. We apply further transformation for thinning, and to reduce the noise introduced
by this limit value, as follows. We call the resulting non-zero regions within the binary
edge image edge stripes. The edge stripes are assumed to cover the contours and they can
be up to 10 pixels wide depending on the output of Edge Complete and the parameters of
the algorithm. To thin the stripes, we apply medial axis skeletonization of the scikit-image
package [41] and calculate a midline (thresholded skeleton) of the edge stripes. The midline
approximates the contour of the instance shapes. We add a dilation step for eliminating
potential pixel errors and have a single connected region that splits the foreground mask
into regions. Each region is labeled uniquely.

We provide the pseudocode in Algorithm 2.
Second, we combine this information with the predicted body regions from parts

detection, using the method proposed in [8]. In Figure 7 we illustrated the components
of the creation of initial labeling for a frame. This approach is a Mask R-CNN-based [6]
method, trained on synthetic data, without any human annotation. From the detected
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labeled regions (head, body, and tail), we use the predicted body regions in our combined
method, while ignoring any heads and tails. Bodies may overlap, or have irregularities
in the shapes due to outlier contour points. This would bias our method; therefore, a
correction is needed, as follows. We filter this type of noise by formalizing the knowledge
of the shape of the instances. We calculate the geometric center (centroid) for both bodies
by taking the mean for the row and column coordinates. Pixels from the intersection area
of the bodies are assigned to the closest center of gravity. See Figure 8 for our illustration.

Algorithm 2: Find edge regions

Input: Grayscale edges (G ∈ [0, 255]H×W)
Output: Edge-based labeling for regions (Ri ∈ {0, 1}H×W) (i = 1, 2, . . . , L),

number of edge regions (L)
1 Threshold the grayscale edges G with θ = 60
2 Apply morphological closing to get binary edges (B).
3 Apply medial axis transformation to the binary edges B to get its midline (M).
4 Find distinct regions (R) (L pieces labeled with 1 . . . , L) bounded by the midline M.

(a) (b) (c) (d)

Figure 7. Initial labeling. (a) Grayscale input image (b) Dilated midline of the detected edges (c) Body
parts prediction with initial labels shown by different colors (d) initial labels from (b). (c,d) are used
for further segmentation steps in Algorithm 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Due to identical appearances without any markers, region-based segmentation is often
erroneous. If two bodies are predicted (shown in red and green), they are often overlapping, with
non-realistic outlier contour points. We apply a centroid based method as a correction. (a) input;
(b) first predicted body region; (c) second predicted body region; (d) both predicted body regions,
yellow marks overlap, blue marks centroids; (e) after correction (each point in the intersection is
assigned to the closest center of gravity); (f) edge midline Algorithm 2; (g) initial region labeling
based on (f) and dilation; (h) region labeling combines (e,g) using Algorithm 3.

For cases when rats heavily occlude each other, the separation of the bodies is hard,
often a single joint body region is predicted only. In Figure 7 the main components are
illustrated for calculating the labeled image for a frame. We assign predicted body regions
and edge regions to each other, based on the ratio of overlap. If a single predicted body
region is assigned to all edge regions, then body information is ignored, and initial labeling
is created using only in the edge regions.
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If two predicted body regions are detected, each edge region is unioned with the
belonging body mask, and unique labels are set for united regions. Details can be found
in Algorithm 3. We have no information about instance identities within a single frame;
therefore, for simplicity, we label the bigger region with label 1, the smaller one with label
2. For any pixel which would have both labels, we set the label of the background, Lbg = 0.
These labels form the initial markers for a watershed algorithm [41,42] to fill the foreground
mask and return the instance segmentation.

Algorithm 3: Assign edge regions to bodies

Input: Edge regions (Ri ∈ {0, 1}H×W (i = 1, 2, . . . , L)), array of predicted body
region masks (B = {B1, B2}, where Bj ∈ {0, 1}H×W (j = 1, 2))

Output: Initial labeling for regions (A = {A1, A2}, where Aj ∈ {0, 1}H×W

(j = 1, 2))
1 To get the initial labeling (A1), assign the edge regions Ri to B1 based on the

overlap: A1 =
⋃{

Ri|0.5 ≤ Ri∩B1
Ri∪B1

}
.

2 if all edge regions were assigned then
3 Ignore body masks, and use edge regions R1 and R2 as initial labeling A1 and

A2, respectively.

4 else
5 Assign the remaining edge regions Ri to B2: A2 =

⋃{
Ri| Ri∩A1

Ri∪A1
< 0.5

}
.

6 Improve the assigned regions A based on the body masks B.

If the segmentation map contains only a single instance ID then the pixels of the
foreground region are marked by a flag indicating that Algorithm 2 was not able to separate
the instances. This flag may be used for further processing either using information
propagation methods, such as in [9] or to call a human annotator to examine and correct.

3.7. Frame Sequence Propagation

Our main concern is to avoid ID switches during tracking. To improve the prediction
for a single frame, we use the information from neighboring frames. We used the prop-
agation approach presented in RATS [9], with slight modifications. Due to the different
characteristics in appearance between the predictions of the Mask R-CNN model used by
RATS and our proposed instance segmentation method, the parameters had to be tuned.
We also incorporated optical flow (OF) [43] in the propagation to improve its reliability. We
propagated the frames which were preserved by the rule-based method of [9], by shifting
the pixels with the corresponding OF. However, this works well for short sequences, but
the successive application of pixel-wise OF transformation can smear instances masks
for longer timeframes. For this reason, we only used the propagated masks to guide the
bipartite matching process [44] and used the original predictions for the final output.

4. Results and Discussion

We used 15,400 frames for training from a sample video. These frames correspond to
about an 11-min video, which is very short when compared to the length of the necessary
recordings needed for pharmaceutical studies.

We used a hand-annotated representative subset of 3600 frames from the surveillance
video recorded during biological research aiming at measuring animal behavior under
medical treatments. This is the ground truth data for the evaluation. These images were
not used for training. The ratio of images with heavily occluding instances is around 15% ,
and the distribution of these subsequences in the complete sequence is nearly uniform.

For medical research, it is crucial to reliably maintain the identity of the instances.
Therefore, to evaluate the performance of the tracking, we use the track switches (TS) metric
from [9], which measures the number of instance ID switches during tracking. When only
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trajectories were available, such as in the case of ToxTrac [17] and idtracker [15], the track
switch evaluation was conducted by human observers.

To evaluate segmentation quality we use Intersection over Union IoU, also known
as the Jaccard index [45]. This metric gives us information about the amount of misla-
beled pixels. For a prediction P and a ground truth G, IoU is calculated as IoU = P

⋂
G

P
⋃

G .
For benchmark measures (F Mean, F Recall), we used the same ones as in [9], with the
implementation taken from the Davis Challenge [46].

We compare our results to previously published literature methods, which are de-
signed for tracking without human annotation: idtracker [15], idtracker.ai [16], and the
ToxTrac [17] implementation of ToxID.

As ToxTrac and idtracker do not provide per-frame segmentation masks, we relied on
the GUIs and output videos by the authors and the output videos we generated. In the case
of idtracker.ai, we used the codes published on the web (https://gitlab.com/polavieja_
lab/idtrackerai_notebooks/-/tree/master/ (accessed on 28 October 2021)) to export the
segmentation masks and compared the pixels numerically to our automatically predicted
segmentation. For all methods, we determined the number of identity switches using the
videos. Results are presented in Table 1. An illustrative comparison is shown Figure 9.

To
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Figure 9. Illustrative visualization of methods compared. We use the track switches (TS) metric
from [9], which measures the number of ID switches during tracking. Errors are shown for ToxTrac,
idtracker, idtracker.ai in the first three rows. The results of our method (with SEPARATS) for the most
challenging frames are given in the last row showing no errors. The small circles denote the ground
truth IDs (blue for instance with ID 1 and red for instance with ID 2), the squares denote the predicted
ID labels. Gray denotes “lost ID”, missing ID predictions.

https://gitlab.com/polavieja_lab/idtrackerai_notebooks/-/tree/master/
https://gitlab.com/polavieja_lab/idtrackerai_notebooks/-/tree/master/


J. Imaging 2022, 8, 109 14 of 20

Table 1. Comparison of segmentation-based trajectory tracking of methods which do not require
prior data annotation, on our test data of 3600 frames. TS denotes the track switches metric from [9],
which measures the number of ID switches during tracking. Lost ID: there are less than two different
foreground labels in the frame. For ToxTrac and idtracker, per frame segmentation masks are not
available. Superscript 1 marks that the result is computed by means of the GUIs of the cited method,
the best we could do for comparisons. Gray highlight: Mean of the IoU values for all frames. For
benchmark measures, we used the same ones as in RATS [9].

ID Tracking Results

Approach Num. of TS. Num. of Frames
with Lost IDs IoU Mean IoU & F Mean IoU Recall F Mean F Recall

ToxTrac [17] 9 267 1 N/A N/A N/A N/A N/A
idtracker [15] 8 1055 1 N/A N/A N/A N/A N/A

idtracker.ai [16] 10 1485 0.5556 0.604 0.59 0.652 0.746
BIPED & Parts 4 2 0.833 0.871 0.978 0.908 0.985

SEPARATS & Parts 0 0 0.846 0.883 0.994 0.921 1.000
BIPED-TL & Parts 0 0 0.845 0.883 0.994 0.921 0.999

The mean IoU values are similar for the last three methods of Table 1 and are consider-
ably higher than that of the idtracker.ai method, the third row in the table. The methods
may predict a single connected foreground region (column number of frames with lost IDs).
While the BIPED & Parts approach produces only two such frames, still the number of track
switches is higher. This is due to discontinuities in the separating edge: BIPED can produce
uneven (smaller and larger) regions and that noise can spoil the propagation algorithm.
This demonstrates that track switches, the primary failure of ID tracking, may occur even
with a relatively high IoU, 0.833 in this case.

For the sake of completeness, in the following subsections, we present the evalua-
tions of the edge detection modules and the combined segmentation algorithm of our
proposed pipeline.

4.1. Edge Detection and Completion

We trained the Edge Detection network with the augmented dataset with transfer
learning on the original BIPED model, named BIPED-TL, and also from scratch, named
SEPARATS. We trained these two models for 15 epochs on the 73,328 images using about
10% of the images for validation. The aGT method (described in Section 3.2) performed the
best from a set of different augmentations that we created. For example, we used one pixel
wide (aGT1px) and two pixel wide (aGT2px) contours of the foreground masks, but their
performances were lower. For evaluating Edge Detection and Edge Completion we used the
frames with occluding instances and neglected the easy non-occluding cases. In Figure 10,
we show illustrative edge detection results for three frames with occluding instances.

The two most promising models (SEPARATS and BIPED-TL) are in a close range, which
means that the model exploited the training data to learn the main characteristics of the
input, which is significantly different from the original, BIPED dataset.

The task of identity tracking is highly tolerant to distortions and shifts of the estimated
edges as opposed to the gaps in the edges. Traditional measures treat the precision of the
pixels of the edges instead of their continuity. Continuity is most important in the inner
part of the boundary for separation and tracking. Figure 11 illustrates the significance of
continuity. Therefore, to compare edge detection methods in terms of the addressed task,
we apply both direct and indirect evaluation approaches, similarly to [47].
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Figure 10. Edge detection results. (Top row): three different RGB frames. (Middle row): corre-
sponding edge detection with BIPED DexiNed. (Bottom row): our Edge Detection results, with
SEPARATS model. Our Edge Detection predicts well-defined grayscale edges in the inner sections of
the boundaries that can be thresholded.

(a)

ground truth
2px wide edges

predicted
grayscale edges

midlines of edges
with Algorithm 2

(b)

Figure 11. Illustration for the edge measurements. The F-score of the predicted grayscale edges
in (a) (F = 0.6069) is better than the F-score of (b) (F = 0.5610). The predicted edges for (b) are
distorted, but the extracted midline allows segmentation for both instances separately, as described
in Algorithm 1.

To select the most promising approaches, we consider the traditional measures (recall,
precision, and F-score). F-score is calculated as 2PR

P+R , where P stands for precision, R for
recall between the ground truth and predicted contours. We show the results of the edge-
related methods for F-score, precision, and recall [35] values using the implementation of
the DAVIS challenge [45].

Edge error measures are instructive in selecting promising approaches. Both BIPED-TL
and SEPARATS improved the edge prediction of inner edges, compared to the pre-trained
BIPED model and the Canny algorithm. The results are presented in Table 2. F-score and
recall increased to 0.4362 and 0.4781, respectively, using Edge Completion after SEPARATS.

Although an edge prediction that exactly matches the ground truth is a sufficient
condition for instance segmentation, it is not definitely necessary. As opposed to a non-
distorted separating edge that does not close the contour of the instance (with higher
F, P, and R), a closed but distorted contour of the “upper rat” (with lower F, P, and R
values) is sufficient for segmentation and reliable identity tracking. Therefore, as an indirect
evaluation of the edge detection methods we rely on the results in Table 1 (the segmentation
and tracking quality of the combined algorithm using the parts based regions and the
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regions from the edge detection models). The most important evaluation method is the
number of track switches. The results are in line with the ones in Table 2.

Table 2. Evaluation of different edge detection methods on our test sequence of 3600 frames, on the
inner part of the overlapping objects. F-score is a support value for our decision, for more details, see
text. Bold fonts indicate the results for the proposed models.

Edge Detection

Approach Deep Learning Epoch Transfer Learning F Mean Recall Mean

Canny N - - 0.3614 0.3838
BIPED Y 24 No 0.3510 0.3033
BIPED-TL Y 8 Y 0.4526 0.4902
SEPARATS Y 4 N 0.4328 0.4676

In addition, we evaluated the segmentation quality for all three models. There is only
a slight difference between the results of SEPARATS and BIPED-TL models when used for
segmentation and tracking. This indicates that the training had sufficient data to achieve
optimal weights not only by transfer learning from the BIPED model but also from scratch.

We calculated the mean values for the 471 frames with occluding instances. When
evaluating per frame segmentation quality, the IDs of the segments are not yet known: the
ID assignment happens in a later stage of the processing pipeline. The segmentation step
only considers information from a given frame. Thus, for the case of two instances, we can
compare them to the ground truth in different ways and compute the corresponding IoU
values. We take the maximum of these values.

If only tails occlude, the method presented in Algorithm 1 provides a reliable seg-
mentation since the bodies have disjoint contours. Therefore we evaluate IoU values for
the complete instance masks and also with leaving the tails using the body part detection
method, if available. We present the calculated recall, precision, and F-score in Table 3.

The BIPED model requires the complete input frame, not only the foreground. In the
prediction, the background elements and noises are significantly present. To compare the
methods we apply the dilated foreground mask on the BIPED edge images .

Table 3. Evaluation of the segmentation method, combining edge based regions (from the trained
models SEPARATS and BIPED-TL, and the baseline BIPED) and regions from body part detection.
The 471 frames of the test dataset with occluding instances were used for evaluation. IoU is calculated
without tails. Mean values over the instances are shown for each metric. For all 471 frames there are
at least two connected foreground regions with different labels, i.e., both ID labels are present on
each prediction.

Segmentation

Edge Detection Model IoU Mean Recall Mean Precision Mean F Mean

SEPARATS 0.8087 0.8870 0.9025 0.8888
BIPED-TL 0.7872 0.8779 0.8883 0.871

BIPED 0.7455 0.8320 0.8359 0.8247

Results in Table 3 show that for critical frames with overlapping instances trained
models perform better .

4.2. Ablation Analysis

Key components of the segmentation compute (a) the edge based regions and (b) the
parts based regions. We evaluated the combined segmentation method of Algorithm 1 with
both components (edges and parts) in the prediction. For comparisons we also evaluated
the two components separately using all three edge models, i.e., SEPARATS and BIPED-TL ,
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and BIPED as a baseline. Table 4 shows the Jaccard index (IoU) [45], the average values of
recall, precision, and F-score for the predicted segmentations.

We evaluate per-frame segmentation in these ablation studies without using any
information from the neighbouring frames and for those frames when the method could
separate the instances. The number of frames with unseparated object instances was
between 84 and 106 for the ablated methods with the models trained on synthetic rodent
datasets (cca. 17–22% of occluding frames), but the frames were different for each method.

Since dropped frames are critical, the aim of this evaluation is to show the precision of
the segmentation for the frames with successfully separated object instances . Results are
shown in Table 4. We have seen in Section 4.1 that although SEPARATS is slightly weaker in
terms of edge precision than BIPED-TL, it performs better in the segmentation quality of
frames with successfully separated object instances.

Table 4. Comparison of per-frame segmentation on the 471 frames with occluding instances. In lines
(1), (2), and (3) we present the results for the combined segmentation method with both modules:
Edge Detection and body parts regions. In (4), (5), (6), and (7) we show the quality of the segmentation
for the modules separately. These values are marked by * to indicate that evaluation is only performed
for the frames where two different foreground labels were predicted. Right-most column: number of
dropped frames for the different methods.

Segmentation

Method IoU Mean Recall Mean Precision Mean F Mean Num. of Frames with
Unseparated Instances

(1) SEPARATS& parts 0.7991 0.8895 0.8897 0.8830 0
(2) BIPED-TL & parts 0.7872 0.8779 0.8883 0.8710 0
(3) BIPED & parts 0.7456 0.832 0.8359 0.8247 0

(4) parts 0.8295 * 0.9147 * 0.9008 * 0.9047 * 85
(5) SEPARATS 0.7603 * 0.8657 * 0.8689 * 0.8559 * 84
(6) BIPED-TL 0.7826 * 0.8725 * 0.8915 * 0.8694 * 106
(7) BIPED 0.7925 * 0.8653 * 0.8920 * 0.8722 * 384

5. Conclusions

Instance tracking algorithms are relevant in diverse fields as they have a broad range
of applications from the improvement of detection to prediction. We address the problem of
avoiding trajectory switches in tracking identical, markerless instances. This is a frequently
emerging need in biological research when doing automatic behavior analysis of two
individuals, e.g., when they have different medical treatments.

Our algorithm consists of a carefully designed algorithmic pipeline that selects isolated
instances followed by an augmentation step serving several deep learning methods. Deep
learning tools of the pipeline detect the whole body, parts of the body, the motions of
the bodies using optical flow, and in particular, the edges of the bodies: the detected
and enhanced boundaries are combined with predicted body region information of the
method presented in [8]. We also applied the propagation algorithm presented in [9] on the
segmented frames to improve the reliability of tracking.

Algorithms with the intent of completely avoiding human annotation exist in the
biological domain. We used our algorithm on close-to-white colored rats without any
specific keypoints. We compared our algorithm to three state-of-the-art identity tracking
methods of similar kinds. We showed that no trajectory switches occurred for our method,
whereas the competitive methods made several mistakes. We showed that the prediction
masks of our pipeline outperform single frame segmentation of idtracker.ai—the only
method that provides such information out of the three that we investigated—in the critical
occluding situations.
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The robustness of our method could be increased by augmentation on illumination
and changes in the foreground. These extensions should also increase the robustness of the
method for other datasets.
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