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Abstract: Dimensionality reduction techniques are often used by researchers in order to make high
dimensional data easier to interpret visually, as data visualization is only possible in low dimensional
spaces. Recent research in nonlinear dimensionality reduction introduced many effective algorithms,
including t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation
and projection (UMAP), dimensionality reduction technique based on triplet constraints (TriMAP),
and pairwise controlled manifold approximation (PaCMAP), aimed to preserve both the local and
global structure of high dimensional data while reducing the dimensionality. The UMAP algorithm
has found its application in bioinformatics, genetics, genomics, and has been widely used to improve
the accuracy of other machine learning algorithms. In this research, we compare the performance of
different fuzzy information discrimination measures used as loss functions in the UMAP algorithm
while constructing low dimensional embeddings. In order to achieve this, we derive the gradients
of the considered losses analytically and employ the Adam algorithm during the loss function
optimization process. From the conducted experimental studies we conclude that the use of either the
logarithmic fuzzy cross entropy loss without reduced repulsion or the symmetric logarithmic fuzzy
cross entropy loss with sufficiently large neighbor count leads to better global structure preservation
of the original multidimensional data when compared to the loss function used in the original UMAP
algorithm implementation.

Keywords: dimension reduction; data visualization; entropy; cross-entropy; fuzzy logic

1. Introduction

Research in artificial intelligence and machine learning introduced plenty of algorithms
that are now widely used in the automation of processes that earlier required human
intervention. Such algorithms include neural networks [1], extreme learning machines [2],
support vector machines [3,4], and other algorithms that are often used by researchers and
practitioners in order to solve classification, regression and clustering problems. These
algorithms often work with objects represented by high dimensional vectors, and high
dimensional data, as well as the decisions made by a trained machine learning algorithm,
which might be hard or barely possible to interpret.

Dimension reduction algorithms address the described problem by making high
dimensional data visually interpretable. A typical dimensionality reduction algorithm
accepts a dataset with objects represented as high dimensional vectors, and outputs a new
dataset, containing low dimensional vectors representing the same objects from the original
dataset. Data visualization is only possible in two- or three-dimensional spaces. Hence,
if a dimensionality reduction algorithm reduces the number of components in vectors
representing objects from the original dataset to either two or three, then one will be able to
easily visualize the dataset as a scatter plot.
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Dimensionality reduction methods are commonly divided into linear and nonlinear
approaches [5]. An example of a linear dimensionality reduction algorithm is Principal
Component Analysis (PCA) [6], which seeks a linear projection of data to low dimensional
space maximizing the variance. Nonlinear dimensionality reduction methods include Sam-
mon’s mapping [7], Laplacian eigenmaps [8], t-distributed Stochastic neighbor embedding
(t-SNE) [9], Uniform Manifold Approximation and Projection (UMAP) [10], dimensionality
reduction technique based on triplet constraints (TriMAP) [11] and others. Both t-SNE and
UMAP are widely used effective nonlinear manifold learning techniques that construct a
weighted graph representing pairwise object similarities, and then embed high dimensional
objects into low dimensional space based on the weighted graph.

Since the first mention of UMAP in [10], the algorithm has been applied to many differ-
ent domains, including physical and genetic interactions visualization [12], single-cell data
visualization [13], and spatio-temporal hydrological gridded datasets visualization [14].
Except for high dimensional data visualization, known UMAP applications include the
improvement of different clustering algorithms by reducing the dimensionality of the
original dataset [15,16]. In [16], a UMAP-assisted K-means algorithm was used to solve the
clustering problem of large-scale SARS-CoV-2 mutation datasets, and the hybrid UMAP-
based algorithm showed superior clustering accuracy and performance. In addition, the
authors compared the visualizations of the datasets obtained after performing dimensional-
ity reduction with PCA, t-SNE, and UMAP, and the latter algorithm managed to maintain
more of the global structure of the data. In [17], UMAP was used in conjunction with
the hierarchical density-based spatial clustering of applications with noise (HDBSCAN)
algorithm, and this allowed for the significant enhancement of the silhouette score in time
series clustering. In [18], a new semi-supervised approach based on UMAP was introduced
and applied to minimal residual disease quantification.

UMAP has the potential to preserve more of the global structure of a high dimensional
dataset after performing dimensionality reduction when compared to t-SNE [10]. The
TriMAP algorithm can preserve global structure even better [11], but according to [16] the
algorithm sometimes struggles with local structure preservation. In [19], a novel algorithm
named PaCMAP was proposed as a result of a comprehensive comparative study of t-SNE,
UMAP, and TriMAP. The authors of [19] show that the choice of loss function drastically
affects the performance of a nonlinear manifold learning algorithm.

According to [10], the traditional UMAP algorithm uses fuzzy cross entropy [20,21] as
a loss function. The reference implementation of the considered dimensionality reduction
algorithm incorporates a sampling-based approach while performing gradient descent for
the sake of performance, and this allows UMAP to process large datasets at a reasonable
time. However, this feature also makes the incorporation of custom losses into the con-
sidered dimensionality reduction algorithm overly complex. As a result, loss functions
other than the sampling-based fuzzy cross entropy that is described in [10] are yet to be
studied. According to [19], the choice of a loss function greatly influences a manifold
learning algorithm’s performance, so the incorporation of different loss functions other
than the default one that is described in [10] could possibly lead to different, and potentially
improved, low dimensional embeddings and their visualizations.

Recent research by [22] shows that the incorporation of a sampling-based approach
while performing gradient descent leads to the weight constants of the loss used in the
original UMAP implementation [10] being a bit different when compared to the well-known
fuzzy cross entropy loss defined in [20,21]. In [22], the authors experimentally prove that
UMAP significantly reduces repulsive weight in the original fuzzy cross entropy formula.
The authors of [22] derive the true loss function formula that is used in the UMAP algorithm.
Aside from the weighted fuzzy cross entropy with reduced repulsion that is actually used
in the original UMAP algorithm, different measures of information discrimination between
two fuzzy sets exist. Such measures include the original logarithmic fuzzy cross entropy
that is based on Shannon entropy [23], symmetric fuzzy cross entropy [21], and modified
fuzzy cross entropy [23,24].
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In this research, we reimplement the UMAP algorithm from scratch without using
the sampling-based approach during the loss function optimization process. This allows
us to incorporate custom loss functions into the UMAP algorithm, and to investigate the
performance of different fuzzy information discrimination measures optimized during
low dimensional embedding construction that is performed by the UMAP algorithm. We
employ the state-of-the-art Adam algorithm [25] during the optimization process. The
Adam algorithm is a first-order optimization method. First-order optimization methods
exploit information on values and gradients of an optimized function. Hence, we have
to derive the gradients of the considered loss functions analytically. After deriving the
gradients of the losses, we compare the visualizations obtained while using different losses
with different UMAP hyperparameters.

Based on the findings described in [19], the use of loss functions other than the default
sampling-based one [10] could possibly lead to different low dimensional embeddings,
that potentially better preserve the original structure of a multidimensional dataset. This
might simplify the visual interpretability of the data in different domains [12,14], as well as
positively affect the accuracy of clustering algorithms based on the preliminary evaluation
of the UMAP algorithm.

The results of the study show that the use of either the original logarithmic fuzzy cross
entropy or symmetric fuzzy cross entropy leads to better global structure preservation of
the original dataset, in case the nearest neighbor count is sufficiently large.

2. Materials and Methods
2.1. Fuzzy Weighted Undirected Graph Construction in the UMAP Algorithm

The UMAP algorithm has the potential to better preserve both the local and global
structure of high dimensional data while performing nonlinear dimensionality reduction,
when compared to algorithms such as PCA, multidimensional scaling (MDS), t-SNE,
and LargeVis [10].

Recent findings show that the original UMAP implementation optimizes fuzzy cross
entropy with drastically reduced repulsion [22], but not the original fuzzy cross entropy
as defined in [20,21]. According to [19], the choice of loss function drastically affects the
performance of a nonlinear manifold learning algorithm. The reference implementation
of the UMAP algorithm uses a sampling-based approach for the sake of performance [10],
and this complicates the extensibility of the UMAP with custom losses. Therefore, we
reimplement the UMAP algorithm from scratch with an intention to investigate the perfor-
mance of the considered nonlinear dimensionality reduction technique with different fuzzy
information discrimination measures [21,23,24] used as loss functions while constructing
low dimensional embeddings.

In this section, we briefly describe the considered manifold learning algorithm. The
UMAP algorithm consists of two phases, a fuzzy weighted undirected graph is constructed
during the first phase of the nonlinear dimensionality reduction process, and the loss
function is optimized during the second phase.

The UMAP algorithm accepts a dataset X =
{→

x 1,
→
x 2, . . . ,

→
x n

}
, which contains n

objects. Every object
→
x i ∈ X is represented by an h-dimensional vector containing real

numbers. In order words, ∀→x i ∈ X :
→
x i ∈ Rh. First, the algorithm searches for k nearest

neighbors Ti =
{→

t i1, . . . ,
→
t il , . . . ,

→
t ik

}
for every object

→
x i ∈ X, assuming ∀

→
t il ∈ Ti :

→
t il ∈ X. The k nearest neighbor search is performed using the approach proposed in [26].
For every found neighbor from the Ti set, the scalar distance value dil between

→
x i and

→
t il ∈ Ti is computed using a distance metric. The distance metric used for this step is the
hyperparameter of the UMAP algorithm. In the case that one uses the Euclidean distance
metric, the scalar dil value is computed as follows:

dil =
∣∣∣→x i −

→
t il

∣∣∣ = √(xi,1 − til,1)
2 + · · ·+ (xi,h − til,h)

2, (1)



J. Imaging 2022, 8, 113 4 of 22

where i is the number of an object from the X set; l is the number of one of the k nearest
neighbors of the i-th object; h denotes the dimensionality of the

→
x i ∈ X vector representing

the i-th object, the dimensionality of
→
x i is equal to the dimensionality of its l-th nearest

neighbor
→
t il ∈ Ti; Ti is a subset of the original dataset X containing nearest neighbors of

the i-th object; and dil ∈ R is the scalar distance value between the i-th object and its l-th
nearest neighbor from the Ti set.

As a result, for every object
→
x i ∈ X the dimensionality reduction algorithm determines

a set Di = {di1, . . . , dil , . . . , dik} containing the distances between
→
x i and each of its k

nearest neighbors.
After computing the distances to each of the k nearest neighbors of

→
x i, a fuzzy simpli-

cial set is constructed, represented as a vector
→
µ i ∈ Rn, where n denotes the object count

in the original high dimensional dataset. In order to construct the
→
µ i vector for every i-th

object, the algorithm searches for ρi ∈ Di, such that ∀dil ∈ Di : ρi ≤ dil . After that, a binary
search is performed in order to find σi, which satisfies the following condition:

∑k
l=1 e(

ρi−dil
σi

)
= log2 k, (2)

where i is the number of an object from the X set; l is the number of one of the nearest
neighbors of the i-th object; k denotes nearest neighbor count; σi ∈ R is the target variable;
ρi ∈ Di is the distance between the object

→
x i and its nearest neighbor from the Ti set

containing k neighbors; and dil ∈ Di denotes the distance between the object
→
x i and its l-th

neighbor from the Ti set.
After determining ρi and finding σi satisfying (2) for every i-th object

→
x i from the

original multidimensional dataset X, a sparse vector
→
µ i ∈ Rn is constructed. Every j-th

scalar component of the
→
µ i vector is represented by a fuzzy value indicating how similar

the i-th and j-th objects from the X set are. Assuming i = {1, 2, . . . n} and j = {1, 2, . . . , n},
where n denotes object count in the multidimensional X set, if the two objects,

→
x i and

→
x j,

are not neighbors, then the j-th component µij from the
→
µ i vector is set to 0.

If the two objects,
→
x i and

→
x j, are neighbors, then µij is computed according to:

µij = e(
ρi−dij

σi
), (3)

where i is the object number for which the
→
µ i vector is being constructed; j is the number of

a possible neighbor of the i-th object from the X set, and also the number of a component
of the

→
µ i vector, j = {1, 2, . . . , n}; ρi is the minimum distance from the Di set; dij is the

distance between
→
x i and

→
x j; and the dimensionality of the

→
µ i vector is n, where n denotes

object count in the multidimensional dataset X; µij ∈ [0, 1].

As a result, for every object
→
x i ∈ X a sparse vector

→
µ i ∈ Rn is obtained, which encodes

fuzzy similarities between the i-th object and every j-th object belonging to the original
high dimensional dataset X. Given that i = {1, 2, . . . n}, the algorithm constructs a sparse
weighted adjacency matrix M ∈ Rn×n, where n rows are represented by n sparse fuzzy
vectors

→
µ i. The weighted adjacency matrix M represents a fuzzy weighted oriented graph

encoding pairwise similarities of objects from X, M is not symmetric.
On the next step, the asymmetric matrix M is symmetrized using probabilistic t-

conorm according to the following formula:

µij ← µij + µji − µijµji, (4)

where i and j are numbers of rows and columns in the M matrix, respectively, noting that
µii and µjj are equal to 0. As a result, the adjacency matrix M becomes symmetric.
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2.2. Loss Function Optimization in the UMAP Algorithm

The initial low dimensional representations of high dimensional objects given by
h-dimensional vectors from the X set in the Rm space are computed using spectral em-
bedding [8], assuming m ≤ h. After applying spectral embedding to the X set, the matrix
Y ∈ Rn×m is obtained, where n denotes object count in the original dataset X, and m
denotes the dimensionality of the target low dimensional space. After computing the
initial locations of objects from X in the Rm space, the algorithm starts the loss function
optimization process. According to [22], the original UMAP algorithm implementation
uses weighted fuzzy cross entropy with reduced repulsion as the loss function:

L1(M, Y) = ∑n
i=1 ∑n

j=1

(
µij ln

µij

νij
+

∑n
k=1 µik

2n
ln

(
1− µij

1− νij

))
, (5)

where M ∈ Rn×n denotes the symmetric adjacency matrix, containing fuzzy values, en-
coding pairwise similarities of high dimensional objects from the X set (see Section 2.1);
Y ∈ Rn×m denotes representations of n objects in the low dimensional space Rm; µij ∈ [0, 1]
denotes a scalar value representing fuzzy similarity of i-th and j-th high dimensional objects
from the original X set; and νij ∈ [0, 1] denotes a scalar value representing fuzzy similarity
of i-th and j-th objects in low dimensional space Rm.

In order to determine the pairwise similarity νij of i-th and j-th objects represented by
i-th and j-th rows of the Y ∈ Rn×m matrix in the low dimensional space Rm the following
formula is used:

νij =
(

1 + ad2b
ij

)−1
, (6)

where dij denotes the scalar distance value between the i-th and j-th objects,
→
y i and

→
y j,

represented by rows in the Y matrix, the dij value can be computed using the Euclidean

distance Formula (1), assuming
→
x i and

→
t il vectors in (1) are replaced with

→
y i and

→
y j

respectively, and h is replaced with m in (1); a and b are the coefficients that are chosen by
non-linear least squares fitting of (6) against the following curve:

ψij =

{
1, dij ≤ dmin

e(dmin−dij), dij > dmin
, (7)

where dij denotes the scalar distance value between the i-th and j-th objects,
→
y i and

→
y j,

represented by rows in the Y matrix, dmin is the hyperparameter of the UMAP algorithm,
the recommended values of dmin belong to (0, 1] and affect the density of the clusters
formed during the loss function (5) optimization process in the low dimensional space Rm

by the objects contained in the Y matrix.
In the UMAP algorithm, the optimization of the loss (5) is performed using stochastic

gradient descent [10]. The locations of objects that are represented by rows in the matrix
Y ∈ Rn×m are modified on every iteration of the stochastic gradient descent algorithm in
order to minimize the loss function.

Stochastic gradient descent is a first-order optimization method that exploits the
information on values and gradients of a function being optimized. In order to apply a
gradient-based algorithm, the gradients of a loss function have to be determined either
analytically or numerically. In this paper, we analytically derive the gradients of all of
the considered loss functions, this allows us to save the computational time required to
determine the gradients numerically.

In order to derive the gradients, the loss (5) can be transformed into:

L1(M, Y) = ∑n
i=1 ∑n

j=1

(
µij ln µij − µij ln νij +

∑n
k=1 µik

2n
ln
(
1− µij

)
− ∑n

k=1 µik

2n
ln
(
1− νij

))
, (8)
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The terms that do not depend on the Y matrix in Equation (8) are constant on every
iteration of the optimization algorithm. After removing the constant terms and replacing
νij according to (6), Equation (8) is transformed into the following shape:

L∼1 (M, Y) = −∑n
i=1 ∑n

j=1

µij ln
1(

1 + ad2b
ij

) +
∑n

k=1 µik

2n
ln

1− 1(
1 + ad2b

ij

)
, (9)

After splitting the function (9) into attractive component L∼a and repulsive component
L∼b that can be independently differentiated, we get the following equation:

L∼1 = L∼a + L∼b = −∑n
i=1 ∑n

j=1

µij ln
1(

1 + ad2b
ij

)
−∑n

i=1 ∑n
j=1

∑n
k=1 µik

2n
ln

1− 1(
1 + ad2b

ij

)
, (10)

The first order partial derivative of L∼a (10) with respect to dij is given by:

δL∼a
δdij

= −
n
∑

i=1

n
∑

j=1

(
µij ln

(
1

1+ad2b
ij

))
δ

δdij

= −
n
∑

i=1

n
∑

j=1

(
µij

(
1 + ad2b

ij

)((
1

1+ad2b
ij

)
δ

δdij

))
= −

n
∑

i=1

n
∑

j=1

(
µij

(
1 + ad2b

ij

)(
−1(

1+ad2b
ij

)2

)((
1 + ad2b

ij

)
δ

δdij

))
=

n
∑

i=1

n
∑

j=1

(
µij

(
2abd2b−1

ij

1+ad2b
ij

))
(11)

The first order partial derivative of L∼b (10) with respect to dij is given by:

δL∼r
δdij

= −
n
∑

i=1

n
∑

j=1

(
∑n

k=1 µik
2n ln

(
1− 1

1+ad2b
ij

))
δ

δdij

= −
n
∑

i=1

n
∑

j=1

(
∑n

k=1 µik
2n

(
1+ad2b

ij

ad2b
ij

)((
1− 1

1+ad2b
ij

)
δ

δdij

))
= −

n
∑

i=1

n
∑

j=1

(
∑n

k=1 µik
2n

(
1+ad2b

ij

ad2b
ij

)(
1(

1+ad2b
ij

)2

)((
1 + ad2b

ij

)
δ

δdij

))

= −
n
∑

i=1

n
∑

j=1

(
∑n

k=1 µik
2n

(
2abd2b−1

ij

ad2b
ij

(
1+ad2b

ij

)
))

= −
n
∑

i=1

n
∑

j=1

(
∑n

k=1 µik
2n

(
2b

dij

(
1+ad2b

ij

)
))

.

(12)

Hence, the first order partial derivative of L∼1 with respect to dij is given by:

δL∼1
δdij

=
δL∼a
δdij

+
δL∼r
δdij

=
n

∑
i=1

n

∑
j=1

µij

2abd2b−1
ij

1 + ad2b
ij

− ∑n
k=1 µik

2n

 2b

dij

(
1 + ad2b

ij

)
. (13)

During the optimization process of the loss function (5) using the gradient (13) the
original UMAP implementation also respects the derivative of the dij Euclidean distance
metric. UMAP uses a sampling-based approach, meaning that on every iteration of the
original UMAP algorithm, the attractive force LUMAP

attr is applied to every pair of objects
from the Y set in case the objects are neighbors, with probability determined by the fuzzy
value µij ∈ [0, 1] indicating the similarity of the two objects. If the two objects are not
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nearest neighbors, then they are spread away from each other by applying repulsive force
LUMAP

rep to the objects. The forces are given by [10]:

LUMAP
attr =

−2abd2(b−1)
ij(

1 + ad2b
ij

) (→y i −
→
y j

)
, LUMAP

rep =
2b

d2
ij

(
1 + ad2b

ij

)(→y i −
→
y j

)
(14)

The signs of the forces in (14) differ from the signs of the terms in (13) due to the fact
that during loss function minimization using gradient descent the algorithm is moving
towards the negative gradient of the loss function.

2.3. Fuzzy Cross Entropy Loss

Other fuzzy information discrimination measures exist [20,21], except the weighted
fuzzy cross entropy loss with reduced repulsion (5), that is optimized in the original
UMAP implementation, using gradient descent with a sampling-based approach. In this
study, we investigate the applicability of other information discrimination measures in the
UMAP algorithm. One such measure is fuzzy cross entropy [20,21], the simplest measure
of information discrimination between two fuzzy sets, this measure was derived from
Shannon entropy [23].

Fuzzy cross entropy can be used in UMAP while estimating how similar high di-
mensional objects from X and their low dimensional representations given by rows in Y
are. In UMAP, high dimensional objects are first transformed into a weighted adjacency
matrix M ∈ Rn×n, the transformation process is described in Section 2.1. The initial low
dimensional representations Y ∈ Rn×m of objects from the X set are computed by applying
spectral embedding [8] to X, assuming m is the dimensionality of the target low dimen-
sional space. Similar to (5), fuzzy cross entropy used to measure information discrimination
between the weighted adjacency matrix M and low dimensional representations Y is given
by the following equation:

L2(M, Y) = ∑n
i=1 ∑n

j=1

(
µij ln

µij

νij
+
(
1− µij

)
ln

(
1− µij

1− νij

))
, (15)

where M ∈ Rn×n denotes the symmetric weighted adjacency matrix, where every i-th
row represents the i-th object from the X set and contains fuzzy values describing how
similar the i-th object is to every other object from the X set; n denotes object count in the
original dataset X; Y ∈ Rn×m denotes low dimensional representation of n objects from X;
m denotes the dimensionality of the target low dimensional space; µij ∈ M denotes the
fuzzy value describing the similarity of the i-th and j-th objects in high dimensional space
X; and νij denotes the fuzzy value describing the similarity of the i-th and j-th objects in
low dimensional space Rm, νij value is computed according to (6).

Similar to (5) and (8), Equation (5) can be transformed using the properties of the
logarithmic functions, and the constants that do not depend on Y can be ignored during
the optimization process. Similar to (9), replacing νij according to (6) transforms (15) into
the following equation:

L∼2 (M, Y) = −∑n
i=1 ∑n

j=1

µij ln
1(

1 + ad2b
ij

) +
(
1− µij

)
ln

1− 1(
1 + ad2b

ij

)
, (16)

where a and b denote the coefficients selected before the optimization process starts by
non-linear least squares fitting of (6) against the curve (7), and dij denotes the distance
between i-th and j-th objects in the low dimensional space Rm.
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While the only difference between (9) and (16) is in the repulsive component weight,
the first-order partial derivative of (16) with respect to dij, similar to (13), is given by:

δL∼2
δdij

= ∑n
i=1 ∑n

j=1

µij

2abd2b−1
ij

1 + ad2b
ij

− (1− µij
) 2b

dij

(
1 + ad2b

ij

)
, (17)

2.4. Symmetric Fuzzy Cross Entropy Loss

Symmetric fuzzy cross entropy [20,21] is a symmetric modification of (15) and can
also be used to quantify the similarity of the graph M ∈ Rn×n and the matrix Y containing
n objects belonging to the low dimensional space Rm. Similar to (15), in the considered
problem, symmetric fuzzy cross entropy is given by:

L3(M, Y) = ∑n
i=1 ∑n

j=1

((
µij − νij

)
ln

(
µij
(
1− νij

)
νij
(
1− µij

))), (18)

where M ∈ Rn×n denotes the symmetric weighted adjacency matrix, where every i-th
row represents the i-th object from the X set and contains fuzzy values µij describing how
similar the i-th object is to every other j-th object from the X set; n denotes object count
in X; Y ∈ Rn×m denotes the low dimensional representation of n objects from X; and νij
denotes a fuzzy value representing i-th and j-th object similarities in Rm.

After the replacement of νij in (18) according to (6), the transformation of (18) using
the properties of the logarithmic functions gives the loss the following shape:

L3(M, Y) =
n
∑

i=1

n
∑

j=1

(µij − 1
1+ad2b

ij

)
ln

 µij

(
1− 1

1+ad2b
ij

)
1

1+ad2b
ij
(1−µij)




=
n
∑

i=1

n
∑

j=1

((
µij − 1

1+ad2b
ij

)
ln
(

µijad2b
ij

1−µij

))
=

n
∑

i=1

n
∑

j=1

(
µij ln

(
µijad2b

ij

)
− µij ln

(
1− µij

)
−

ln
(

µijad2b
ij

)
1+ad2b

ij
+

ln(1−µij)
1+ad2b

ij

)
.

(19)

After excluding terms that do not depend on dij, Equation (19) transforms into:

L∼3 (M, Y) =
n

∑
i=1

n

∑
j=1

µij ln
(

µijad2b
ij

)
−

ln
(

µijad2b
ij

)
1 + ad2b

ij
+

ln
(
1− µij

)
1 + ad2b

ij

. (20)

The obtained function (20) can be then split into three terms L∼a , L∼b , and L∼c :

L∼3 =
n

∑
i=1

n

∑
j=1

(
µij ln

(
µijad2b

ij

))
−

n

∑
i=1

n

∑
j=1

 ln
(

µijad2b
ij

)
1 + ad2b

ij

+
n

∑
i=1

n

∑
j=1

(
ln
(
1− µij

)
1 + ad2b

ij

)
. (21)

The first order partial derivative of L∼a with respect to dij is given by:

δL∼a
δdij

=
n

∑
i=1

n

∑
j=1

(
µij ln

(
µijad2b

ij

)) δ

δdij
=

n

∑
i=1

n

∑
j=1

(
2bµijd−1

ij

)
. (22)
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The first order partial derivative of L∼b with respect to dij is given by:

δL∼b
δdij

= −
n
∑

i=1

n
∑

j=1

(
ln
(

µijad2b
ij

)
1+ad2b

ij

)
δ

δdij

=
n
∑

i=1

n
∑

j=1

(
−

2bµijad2b−1
ij

µijad2b
ij

(
1+ad2b

ij

) − −2abd2b
ij ln

(
µijad2b

ij

)
dij

(
1+ad2b

ij

)2

)

=
n
∑

i=1

n
∑

j=1

(
2b
(
−ad2b

ij −1+ad2b
ij ln

(
µijad2b

ij

))
dij

(
1+ad2b

ij

)2

)
.

(23)

The L∼c term of (21) can be differentiated trivially:

δL∼c
δdij

=
n

∑
i=1

n

∑
j=1

(
ln
(
1− µij

)
1 + ad2b

ij

)
δ

δdij
=

n

∑
i=1

n

∑
j=1

−2bad2b
ij ln

(
1− µij

)
dij

(
1 + ad2b

ij

)2

. (24)

The summation of the obtained derivatives (22), (23), and (24), leads to the following
form of the derivative of (21) after several polynomial transformations:

δL∼3
δdij

=
n

∑
i=1

n

∑
j=1

2b
((

ad2b
ij + 1

)(
aµijd2b

ij + µij − 1
)
− ad2b

ij ln
(
1− µij

)
+ ad2b

ij ln
(

µijad2b
ij

))
dij

(
1 + ad2b

ij

)2

. (25)

2.5. Modified Fuzzy Cross Entropy Loss

The modified fuzzy cross entropy measure of information discrimination between two
sets was proposed in [23]. Modified fuzzy cross entropy is an asymmetric measure. Similar
to the considered losses (5), (15), and (18), the modified fuzzy cross entropy loss applied to
low dimensional embedding construction in UMAP is given by:

L4(M, Y) =
n

∑
i=1

n

∑
j=1

(
µij ln

µij
1
2 µij +

1
2 νij

+
(
1− µij

)
ln

(
1− µij

1− 1
2
(
µij + νij

))), (26)

where M ∈ Rn×n denotes the symmetric weighted adjacency matrix, every i-th row of
M represents the i-th object from the X set and contains fuzzy values µij describing how
similar the i-th object is to every other j-th object from the X set; n denotes object count
in X; Y ∈ Rn×m denotes the low dimensional representation of n objects from X; and νij
denotes a fuzzy value representing i-th and j-th object similarities in Rm.

The transformation of (26) in a fashion similar to (5), (15), and (18), by using the
properties of logarithmic functions and removing the constant terms, leads to the following:

L∼4 (M, Y) = −
n

∑
i=1

n

∑
j=1

(
µij ln

(
1
2

µij +
1
2

νij

)
+
(
1− µij

)
ln
(

1− 1
2
(
µij + νij

)))
, (27)

After replacing νij with (6) and splitting (27) into two terms, (27) transforms into:

L∼4 (M, Y) = −
n

∑
i=1

n

∑
j=1

µij ln

1
2

µij +
1

2
(

1 + ad2b
ij

)
− n

∑
i=1

n

∑
j=1

(1− µij
)

ln

1− 1
2

µij −
1

2
(

1 + ad2b
ij

)
, (28)

First-order partial derivative of the first term L∼a in (28) with respect to dij is given by:
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δL∼a
δdij

= −
n
∑

i=1

n
∑

j=1

(
µij ln

(
1
2 µij +

1
2

(
1 + ad2b

ij

)−1
))

δ
δdij

= −
n
∑

i=1

n
∑

j=1

(
µij

(
1
2 µij +

1
2+2ad2b

ij

)−1((
1
2

(
1 + ad2b

ij

)−1
)

δ
δdij

))

=
n
∑

i=1

n
∑

j=1

((
µij

(
1+ad2b

ij

)
(

µij+µijad2b
ij +1

)
)(

2abd2b−1
ij(

1+ad2b
ij

)2

))

=
n
∑

i=1

n
∑

j=1

(
2µijabd2b−1

ij(
µij+µijad2b

ij +1
)(

1+ad2b
ij

)
)

.

(29)

First-order partial derivative of the second term L∼b in (28) with respect to dij is:

δL∼r
δdij

= −
n
∑

i=1

n
∑

j=1

((
1− µij

)
ln
(

1− 1
2 µij − 1

2

(
1 + ad2b

ij

)−1
))

δ
δdij

= −
n
∑

i=1

n
∑

j=1

(1− µij
)(

1− 1
2 µij − 1

2
(

1+ad2b
ij

)
)−1((

− 1
2

(
1 + ad2b

ij

)−1
)

δ
δdij

)
= −

n
∑

i=1

n
∑

j=1

((
(1−µij)

(
1+ad2b

ij

)
2+2ad2b

ij −µij−µijad2b
ij −1

)(
1(

1+ad2b
ij

)2

)(
2abd2b−1

ij

))

=
n
∑

i=1

n
∑

j=1

(
2(1−µij)abd2b−1

ij(
µijad2b

ij −2ad2b
ij +µij−1

)(
1+ad2b

ij

)
)

.

(30)

Hence, the first order partial derivative of (28) with respect to dij is given by:

δL∼4
δdij

=
n

∑
i=1

n

∑
j=1

2abd2b−1
ij

1 + ad2b
ij

 µij(
µijad2b

ij + µij + 1
)
+

 (
1− µij

)(
µijad2b

ij − 2ad2b
ij + µij − 1

)
. (31)

2.6. Adam Optimization Algorithm

First-order partial derivatives (13), (17), (25), (31) of the considered loss functions (5),
(15), (18), (26) were obtained analytically. Hence, the locations of high dimensional objects
from X in the low dimensional target space Rm can be optimized by applying first-order
optimization methods to the discussed fuzzy losses. The Algorithm 1 [25] optimization
algorithm is often used while training neural networks [27,28]. The pseudocode of the
gradient-based Adam optimization algorithm is given by:

Algorithm 1 Adam

Input: s0—initial solution, η, β1, β2—learning step sizes, f

1. set iteration number t to 0
2. initialize the c0 and v0 tensors filled with zeros
3. set ε = 10−8

4. while the stop condition is not met do:
5. t = t + 1
6. ct = β1 × ct−1 + (1− β1)×∇ f (st−1)
7. vt = vt−1 − (1− β2)×

(
vt−1 −∇ f 2(st−1)

)
8. st = η × ct × (

√
vt + ε)−1

9. end loop
10. return st

The parameters of the Adam optimization algorithms β1 and β2 are often set to 0.9
and 0.999 respectively, the ε parameter is used to avoid division by zero, and the step size
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η is set depending on the considered domain. The dimensionality of the ct and vt vectors is
equal to the dimensionality of the candidate solution s0.

In the low dimensional embedding construction problem in UMAP, the Adam algo-
rithm is applied to one of the considered loss functions. During the optimization process,
the algorithm uses the weighted adjacency matrix M ∈ Rn×n as the first argument in func-
tions (5), (15), (18), (26) and n defines object count in the original high dimensional dataset
X. The process of weighted adjacency matrix construction was described in Section 2.1. As
the second argument in (5), (15), (18), (26), the algorithm uses the Y ∈ Rn×m matrix, where
m denotes the dimensionality of the target space.

Given that, the matrix Y is used as a candidate solution st in Adam on every iteration t,
the initial solution s0 is constructed from the original high dimensional X set using spectral
embedding [8]. The optimization process is stopped when the specified iteration limit
is reached.

3. Numerical Experiment
3.1. Fuzzy Weighted Adjacency Matrix Construction

In order to compare the performance of the considered loss functions in the UMAP
algorithm, we used datasets generated by the sklearn library [29]. The generated datasets
contained 1500 points belonging to R2, separated into several noisy clusters of different
shapes and sizes. Applying UMAP to datasets containing objects belonging to R2 allows
one to get more context regarding the mutual displacement of objects in the original dataset,
as the objects from R2 can be visualized as is. This allows one to compare the positions of
objects from the original dataset with the positions of objects obtained after applying UMAP
transformations using different loss functions. Visualizations of the original locations of
the generated points in R2 are shown in Figure 1.
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Figure 1. Locations of 1500 points belonging to the datasets generated by sklearn [29] in R2: (a) blobs;
(b) moons, noise level is set to 0.05; (c) circles, noise level is set to 0.05, inner circle radius is equal to
one half of the outer circle radius.

In addition, we considered the dataset [30] containing 1797 images of handwritten
digits from zero to nine, the images were represented as matrices of shape R8×8. Every
cell in such a matrix is characterized by color, encoded as an integer belonging to the
[0, 16] interval. Every image from this dataset can be represented by a vector of shape R64,
components of which are integers belonging to [0, 16]. The visualization of handwritten
digits from the [30] dataset created with sklearn [29] is shown in Figure 2.
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Figure 2. The visualization of 10 handwritten digits randomly chosen from the [30] dataset.

The UMAP algorithm was implemented in the Python programming language us-
ing such libraries as numpy [31] and numba [32], as described in Section 2.1. First, the
UMAP algorithm searches for k nearest neighbors for every object in the original high
dimensional dataset, and then computes distances to the k nearest neighbors. The k value
is the hyperparameter of the UMAP algorithm. As we see later, choosing bigger k values
might improve dataset global structure preservation while reducing the dimensionality.
After finding the nearest neighbors and computing the distances to them, the M ∈ Rn×n

weighted adjacency matrix is built, representing a weighted unoriented graph, describing
pairwise object similarities in the original dataset X, as described in Section 2.1.

For 30 randomly chosen hand-written digits from the dataset [30] with nearest neigh-
bor count k set to two, the neighborhood graph was built by the UMAP algorithm. The
graph was represented by a weighted adjacency matrix M ∈ R30×30, as shown in Figure 3.
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Figure 3. Graph represented by the weighted adjacency matrix M ∈ R30×30 that was built by the
UMAP algorithm for 30 randomly chosen images from the [30] dataset with neighbors count k set to
2. The visualization was obtained using the graphviz tool [33].

For the datasets that were generated with the sklearn library and contain 1500 points
belonging to the R2 space, UMAP computed distances to the k nearest neighbors, and
constructed a weighted adjacency matrix M ∈ R1500×1500. For the dataset containing 1797
hand-written digits represented by 64-dimensional vectors, UMAP computed distances to
the k nearest neighbors and constructed a weighted adjacency matrix M ∈ R1797×1797.

3.2. Coefficients Fitting

After constructing the fuzzy weighted undirected graph for each of the considered
datasets, UMAP performs a search for a and b coefficients in function (6). The coefficients
are chosen by least squares fitting of (6) against the curve (7). The shape of the curve (7)
depends on the parameter dmin. The plot illustrating how the dmin variable affects the curve
(6) shape is shown in Figure 4.
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3.3. Weighted Fuzzy Cross Entropy Loss Optimization

Using the weighted adjacency matrices obtained for each of the considered datasets
with nearest neighbor count set k set to 10, and the a and b coefficients selected by least
squares fitting of (6) against (7) with dmin = {0.1, 1}, the weighted fuzzy cross entropy
with reduced repulsion (5) was minimized using the Adam gradient-based optimization
algorithm. The first-order partial derivative of (5) with respect to pairwise distances dij is
given by (13), so the gradients were computed on every iteration according to:

δL∼1
δ
→
y i

=
n

∑
j=1

µij

2abd2b−1
ij

1 + ad2b
ij

− ∑n
k=1 µik

2n

 2b

dij

(
1 + ad2b

ij

)
(→y i −

→
y j

). (32)

where
→
y i and

→
y j denote the i-th and j-th R2 representations of objects from the original

dataset X; dij denotes the distance between
→
y i and

→
y j in the R2 space, computed according

to (1) on every iteration of the Adam algorithm; µij ∈ M denotes pairwise similarity of the
original i-th and j-th objects from the X dataset; and a and b denote the coefficients chosen
by least squares fitting of (6) against (7) with a specified dmin value.

The parameters of the Adam optimization algorithm are listed in Table 1. For the
dataset containing hand-written digits, each digit was assigned with its own color. The
colors and the corresponding digits are listed in Figure 5.

Table 1. Parameters of the Adam optimization algorithm.

η β1 β2 Iteration Limit

1 0.9 0.999 150
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Figure 5. Colors and the corresponding digits.

The obtained visualizations for all of the considered datasets are shown in Figures 6 and 7.
Figure 6 contains visualizations for dmin = 1, Figure 7 contains visualizations for dmin = 0.1.
According to Figures 6 and 7, the weighted fuzzy cross entropy measure with reduced repul-
sion the UMAP algorithm successfully separates objects into several clusters. With dmin = 1,
the clusters in R2 are less dense, compared to the clusters obtained with dmin = 0.1.
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Figure 7. Locations of objects in ℝଶ  with dimensionality reduction performed by applying the 
UMAP algorithm, with low dimensional embedding optimized by the Adam algorithm and the 
gradient (32) with 𝑑௠௜௡ set to 0.1 for: (a) blobs, 𝑘 = 10; (b) moons, 𝑘 = 10; (c) circles, 𝑘 = 10; (d) 
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(h) handwritten digits, 𝑘 = (𝑛 − 1). 

Figure 6. Locations of objects in R2 with dimensionality reduction performed by applying the UMAP
algorithm, with low dimensional embedding optimized by the Adam algorithm and the gradient (32)
with dmin set to 1 for: (a) blobs, k = 10; (b) moons, k = 10; (c) circles, k = 10; (d) handwritten digits,
k = 10; (e) moons, k = (n− 1); (f) blobs, k = (n− 1); (g) circles, k = (n− 1); (h) handwritten digits,
k = (n− 1).
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Figure 7. Locations of objects in R2 with dimensionality reduction performed by applying the UMAP
algorithm, with low dimensional embedding optimized by the Adam algorithm and the gradient (32)
with dmin set to 0.1 for: (a) blobs, k = 10; (b) moons, k = 10; (c) circles, k = 10; (d) handwritten digits,
k = 10; (e) moons, k = (n− 1); (f) blobs, k = (n− 1); (g) circles, k = (n− 1); (h) handwritten digits,
k = (n− 1).
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According to Figure 6d,h and Figure 7d,h, the loss (5) works best when the nearest
neighbor count k is set to a relatively small value. This happens due to the fact, that in this
case the first term in (5) is equal to zero for all objects that are not nearest neighbors, as
µij = 0 for non-neighbors, as described in Section 2.1. On the one hand, this allows one
to separate the objects into more dense clusters, by applying the attractive force only to
the nearest neighbors on every iteration. On the other hand, with relatively small k values
the information of the global structure of a high dimensional dataset might be lost. For
example, the handwritten digits two and seven are similar, but their clusters, as shown in
Figures 6d and 7d, are separated from each other. The handwritten digits one and zero
are less similar, however their clusters with dmin set to one are rendered relatively close to
each other.

With the sufficient increase of nearest neighbor count k by setting k = (n− 1), where
n denotes object count in the considered dataset, to preserve more of the global structure of
high dimensional data, the algorithm sometimes struggles with local structure preservation,
as shown in Figures 6h and 7h. The first term in (32) stops being equal to zero for non-
neighbors and the attractive force gets applied to every object in the dataset, but with
different weighting terms µij.

3.4. Fuzzy Cross Entropy Loss Optimization

The fuzzy cross entropy loss is given by (15), and the first-order partial derivative of
(15) with respect to dij is given by (17). Using the obtained weighted adjacency matrices
for the considered datasets with nearest neighbor count k set to 10 and (n− 1), where n
denotes object count in the original high dimensional dataset, and the a and b values in (6)
obtained by nonlinear least squares fitting of (6) against (7) with dmin ∈ {0.1, 1}, the fuzzy
cross entropy loss was minimized using Adam. The parameters of the Adam algorithm are
listed in Table 1. The gradient of fuzzy cross entropy (15) with derivative given by (17) was
computed on every iteration of Adam according to:

δL∼2
δ
→
y i

=
n

∑
j=1

µij

2abd2b−1
ij

1 + ad2b
ij

− (1− µij
) 2b

dij

(
1 + ad2b

ij

)
(→y i −

→
y j

). (33)

where
→
y i and

→
y j denote the i-th and j-th R2 representations of objects from the original

dataset X; dij denotes the distance between
→
y i and

→
y j in the R2 space, computed according

to (1) on every iteration of the Adam algorithm; µij ∈ M denotes pairwise similarity of the
original i-th and j-th objects from the X dataset; and a and b denote the learned coefficients
in (6) for a particular dmin value in (7).

The visualizations of the considered datasets in the target low dimensional space R2

are shown in Figures 8 and 9. The visualizations with dmin set to 1 are shown in Figure 8,
the visualizations with dmin set to 0.1 are shown in Figure 9.
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Figure 9. Locations of objects in ℝଶ  with dimensionality reduction performed by applying the 
UMAP algorithm, with low dimensional embedding optimized by the Adam algorithm, fuzzy cross 
entropy loss, and the gradient (33) with 𝑑௠௜௡ set to 0.1 for: (a) blobs, 𝑘 = 10; (b) moons, 𝑘 = 10; (c) 
circles, 𝑘 = 10; (d) handwritten digits, 𝑘 = 10; (e) moons, 𝑘 = (𝑛 − 1); (f) blobs, 𝑘 = (𝑛 − 1); (g) 
circles, 𝑘 = (𝑛 − 1); (h) handwritten digits, 𝑘 = (𝑛 − 1). 

Figure 8. Locations of objects in R2 with dimensionality reduction performed by applying the UMAP
algorithm, with low dimensional embedding optimized by the Adam algorithm, fuzzy cross entropy
loss, and the gradient (33) with dmin set to 1 for: (a) blobs, k = 10; (b) moons, k = 10; (c) circles, k = 10;
(d) handwritten digits, k = 10; (e) moons, k = (n− 1); (f) blobs, k = (n− 1); (g) circles, k = (n− 1);
(h) handwritten digits, k = (n− 1).
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Figure 9. Locations of objects in R2 with dimensionality reduction performed by applying the UMAP
algorithm, with low dimensional embedding optimized by the Adam algorithm, fuzzy cross entropy
loss, and the gradient (33) with dmin set to 0.1 for: (a) blobs, k = 10; (b) moons, k = 10; (c) circles,
k = 10; (d) handwritten digits, k = 10; (e) moons, k = (n− 1); (f) blobs, k = (n− 1); (g) circles,
k = (n− 1); (h) handwritten digits, k = (n− 1).
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According to Figures 8 and 9, with nearest neighbors count k set to (n− 1), where
n denotes object count in the original high dimensional dataset, the loss function (15)
successfully separates objects into non-overlapping clusters. The global structure of the
high dimensional datasets is preserved better when using (15) when compared to (5).
According to the locations of clusters in Figures 8h and 9h, the three and nine handwritten
digits are similar, as well as two and seven, four and six, and their clusters are rendered
close to each other. The zero and one digits are less similar, and their clusters are spread
away from each other. According to Figures 8 and 9, it is better to use the (15) loss with
k = (n− 1). With k = 10 the algorithm might struggle to preserve global distances.

3.5. Symmetric Fuzzy Cross Entropy Loss Optimization

The symmetric fuzzy cross entropy is given by (18), and the first-order partial deriva-
tive of (18) with respect to dij is given by (25). For the symmetric fuzzy cross entropy loss,
the nearest neighbor count k was also set to 10 and (n− 1), where n denotes object count.
In the case of symmetric fuzzy cross entropy, we also expected that setting k = (n− 1)
would help to preserve the global structure of the data. The parameters of Adam were
set according to Table 1, the gradient of (18) was computed based on its derivative (25) on
every iteration according to the following formula:

δL∼3
δ
→
y i

=
n

∑
i=1


2b

((
ad2b

ij + 1
)(

aµijd2b
ij + µij − 1

)
− ad2b

ij ln
(
1− µij

)
+ ad2b

ij ln
(

µijad2b
ij

))
dij

(
1 + ad2b

ij

)2

(→y i −
→
y j

). (34)

where
→
y i and

→
y j denote the i-th and j-th R2 representations of objects from the original

dataset X; dij denotes the distance between
→
y i and

→
y j belonging to the R2 space computed

according to (1) on every iteration of the Adam algorithm; µij ∈ M denotes pairwise
similarity of the original i-th and j-th objects from the X dataset; and a and b denote the
learned coefficients in (6) for a particular dmin value in (7).

The obtained visualizations are shown in Figures 10 and 11. According to the visu-
alizations, the use of (18) with k = (n− 1) also allows one to separate objects into dense
clusters. The positions of the clusters shown in Figures 10 and 11 are similar to the positions
of clusters shown in Figures 8 and 9. Larger k values lead to more dense and large clusters.
Smaller k values lead to many small clusters, as shown in Figures 10a–c and 11a–c.
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Figure 11. Locations of objects in ℝଶ with dimensionality reduction performed by applying the 
UMAP algorithm, with low dimensional embedding optimized by the Adam algorithm, symmetric 
fuzzy cross entropy loss, and the gradient (34) with 𝑑௠௜௡ set to 0.1 for: (a) blobs, 𝑘 = 10; (b) moons, 𝑘 = 10; (c) circles, 𝑘 = 10; (d) handwritten digits, 𝑘 = 10; (e) moons, 𝑘 = (𝑛 − 1); (f) blobs, 𝑘 =(𝑛 − 1); (g) circles, 𝑘 = (𝑛 − 1); (h) handwritten digits, 𝑘 = (𝑛 − 1). 

Figure 10. Locations of objects in R2 with dimensionality reduction performed by applying the
UMAP algorithm, with low dimensional embedding optimized by the Adam algorithm, symmetric
fuzzy cross entropy loss, and the gradient (34) with dmin set to 1 for: (a) blobs, k = 10; (b) moons,
k = 10; (c) circles, k = 10; (d) handwritten digits, k = 10; (e) moons, k = (n− 1); (f) blobs, k = (n− 1);
(g) circles, k = (n− 1); (h) handwritten digits, k = (n− 1).
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Figure 11. Locations of objects in R2 with dimensionality reduction performed by applying the
UMAP algorithm, with low dimensional embedding optimized by the Adam algorithm, symmetric
fuzzy cross entropy loss, and the gradient (34) with dmin set to 0.1 for: (a) blobs, k = 10; (b) moons,
k = 10; (c) circles, k = 10; (d) handwritten digits, k = 10; (e) moons, k = (n− 1); (f) blobs, k = (n− 1);
(g) circles, k = (n− 1); (h) handwritten digits, k = (n− 1).
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3.6. Modified Fuzzy Cross Entropy Loss Optimization

The modified fuzzy cross entropy proposed in [23] is given by (26), the derivative of
(26) is given by (31). The preliminary experiments have shown that with relatively small
nearest neighbor k, the loss suffers with both local and global structure preservation of the
original dataset. Hence, we set the k value to (n− 1), where n denotes object count in X.
The parameters of the Adam algorithm were set according to Table 1. The gradients of (26)
were computed on every iteration according to the following formula:

δL∼4
δ
→
y i

=
n

∑
i=1

n

∑
j=1

2abd2b−1
ij

1 + ad2b
ij

 µij(
µijad2b

ij + µij + 1
)
+

 (
1− µij

)(
µijad2b

ij − 2ad2b
ij + µij − 1

)
(→y i −

→
y j

). (35)

where
→
y i and

→
y j denote the i-th and j-th R2 representations of objects from the original

dataset X; dij denotes the distance between
→
y i and

→
y j in the R2 space, computed according

to (1) on every iteration of the Adam algorithm; µij ∈ M denotes pairwise similarity of the
original i-th and j-th objects from the X dataset; and a and b denote the coefficients chosen
by least squares fitting of (6) against (7) with a specified dmin value.

The obtained visualizations with dmin = 0.1 are shown in Figure 12.
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weighting of fuzzy cross entropy terms [22] when compared to traditional fuzzy cross 
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Figure 12. Locations of objects in R2 with dimensionality reduction performed by applying the
UMAP algorithm, with low dimensional embedding optimized by the Adam algorithm, modified
fuzzy cross entropy loss, and the gradient (35) with dmin set to 0.1 for: (a) blobs, k = 10; (b) moons,
k = (n− 1); (c) circles, k = (n− 1); (d) handwritten digits, k = (n− 1).

According to Figure 12, the modified fuzzy cross entropy that is given by (26) is also
able to find clusters in high dimensional space and embed the clusters into R2. The locations
and shapes of the clusters are similar to the locations obtained by using other losses, as
shown in Figures 8–11. However, as we see in Figure 12c,d, there is plenty of objects which
do not belong to any of the clusters. The loss (26) did not manage to discover the clusters
of handwritten digits such as five and eight.

4. Discussion

In this research, we considered different loss functions used during the low dimen-
sional embedding construction process in the UMAP algorithm applied to multidimen-
sional data visualization. In order to achieve this, we reimplemented the UMAP algorithm
from scratch [10], with an intention to make the incorporation of custom losses into the
original algorithm possible. The original implementation of the considered dimensionality
reduction technique uses a sampling-based approach inspired with stochastic gradient
descent while performing loss function optimization, and this leads to a different weighting
of fuzzy cross entropy terms [22] when compared to traditional fuzzy cross entropy defined
in [20,21]. Based on the findings published in [22], we explicitly defined the fuzzy cross
entropy loss with reduced repulsion weight, derived the gradients analytically ignoring
the normalization, and optimized the obtained loss using the first-order gradient-based
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Adam algorithm, without using the sampling-based approach. Other considered loss
functions include the original fuzzy cross entropy without term weighting [20,21], symmet-
ric fuzzy cross entropy [20,21], and modified fuzzy cross entropy, proposed in [23]. The
gradients for all of the considered losses were determined analytically in order to make
optimization possible using the first-order Adam algorithm without the need for numerical
gradient computation.

During the numerical experiment, we considered both multidimensional and two-
dimensional datasets. Mutual displacements of objects belonging to R2 can be easily
visualized (see Figure 1), and then their positions can be compared with the embeddings
obtained after applying UMAP-based transformations (see Figures 6–12). This allows one
to visually determine how good a manifold learning algorithm is at preserving the local
and global structure of the original dataset when performing dimensionality reduction.

The obtained visualizations confirm that the fuzzy cross entropy loss with or without
reduced repulsion, as well as the symmetric fuzzy cross entropy loss, is able to discover
clusters in the original datasets and map them into the target space, preserving the structure
of the original datasets. The visualizations of embeddings obtained by applying UMAP to
datasets containing objects belonging to R2 show that the choice of a loss function greatly
affects the result. The fuzzy cross entropy with reduced repulsion that is used in the original
UMAP algorithm [22] works best with small nearest neighbor count values k, and is very
good at preserving local structure (see Figure 6a–c). Other considered losses perform best
with sufficiently large k values. For example, when k is set to (n− 1), where n denotes
object count in the original dataset, the algorithm preserves most of the global structure
(see Figures 8 and 10).

The visualizations of high dimensional handwritten digits show that the weighted
fuzzy cross entropy loss with reduced repulsion is able to separate data into non-overlapping
clusters only for relatively small neighbor counts k. With sufficiently large k values
UMAP struggles to preserve local structure of the original high dimensional dataset (see
Figures 6h and 7h). Losses such as fuzzy cross entropy and symmetric fuzzy cross entropy
with nearest neighbor count k set to (n− 1), where n denotes object count in the original
dataset, successfully preserve both the local and global structure of the original datasets.
With k = (n− 1), the symmetric fuzzy cross entropy loss (18) produces clusters with objects
packed more densely, as shown in Figures 10h and 11h, and the fuzzy cross entropy loss (15)
distributes objects more uniformly in R2, while preserving the shape and mutual arrange-
ment of the clusters, as shown in Figures 8h and 9h. The use of the modified fuzzy cross
entropy (26) leads to the inability of the algorithm to visualize non-overlapping clusters of
some types of objects, as shown in Figure 12d.

5. Conclusions

The obtained results show that the use of fuzzy cross entropy without reduced repul-
sive weight, as well as symmetric cross entropy with sufficiently large nearest neighbor
count k, can enhance the global structure preservation of the original dataset. This could be
useful for the visual interpretation of high dimensional data in many different domains,
such as medical diagnosis [34] or single cell RNA sequences clustering [35]. Dimensionality
reduction algorithms also find their applications in data preprocessing [36] in order to
enhance clustering or classification algorithm accuracy.

Further research could cover performance investigation of other fuzzy cross entropies
used as loss functions in the UMAP algorithm, such as Tsallis divergence [37,38], fuzzy
exponential cross entropy [39] and other divergence measures between two fuzzy sets.
Additionally, further work could focus on deriving losses based on the principles high-
lighted in [19]. The approach to multidimensional data visualization presented in this
paper, however, is not sampling-based, so further research could focus on developing
sampling-based iterative schemes for the considered losses, similar to the scheme used
in the UMAP reference implementation [10], aimed to improve the speed and reduce the
computational complexity of the iterative loss function optimization process.
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