
����������
�������

Citation: Kyriakos, A.;

Papatheofanous, E.-A.; Bezaitis, C.;

Reisis, D. Resources and Power

Efficient FPGA Accelerators for

Real-Time Image Classification . J.

Imaging 2022, 8, 114. https://

doi.org/10.3390/jimaging8040114

Academic Editor: Donald Bailey

Received: 25 February 2022

Accepted: 11 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Imaging

Article

Resources and Power Efficient FPGA Accelerators for Real-Time
Image Classification
Angelos Kyriakos , Elissaios-Alexios Papatheofanous , Charalampos Bezaitis and Dionysios Reisis *

Electronics Laboratory, Faculty of Physics, National and Kapodistrian University of Athens, 15772 Athens, Greece;
akyriakos@phys.uoa.gr (A.K.); eapapatheo@phys.uoa.gr (E.-A.P.); bezaitisc@phys.uoa.gr (C.B.)
* Correspondence: dreisis@phys.uoa.gr

Abstract: A plethora of image and video-related applications involve complex processes that impose
the need for hardware accelerators to achieve real-time performance. Among these, notable appli-
cations include the Machine Learning (ML) tasks using Convolutional Neural Networks (CNNs)
that detect objects in image frames. Aiming at contributing to the CNN accelerator solutions, the
current paper focuses on the design of Field-Programmable Gate Arrays (FPGAs) for CNNs of limited
feature space to improve performance, power consumption and resource utilization. The proposed
design approach targets the designs that can utilize the logic and memory resources of a single FPGA
device and benefit mainly the edge, mobile and on-board satellite (OBC) computing; especially their
image-processing- related applications. This work exploits the proposed approach to develop an
FPGA accelerator for vessel detection on a Xilinx Virtex 7 XC7VX485T FPGA device (Advanced Micro
Devices, Inc, Santa Clara, CA, USA). The resulting architecture operates on RGB images of size 80× 80
or sliding windows; it is trained for the “Ships in Satellite Imagery” and by achieving frequency
270 MHz, completing the inference in 0.687 ms and consuming 5 watts, it validates the approach.

Keywords: image processing; CNN; accelerator; FPGA; vessel detection

1. Introduction

The evolution of FPGAs with respect to the increased hardware resources and the
efficiency of their programming tools has significantly affected the applications with real-
time specifications. Image-processing tasks, especially those based on deep learning tech-
niques [1] and CNNs, benefit by the utilization of FPGAs as accelerators [2]. FPGAs are
advantageous for these tasks because of their ability to reconfigure and/or reprogram the
architectures; consequently, the designer can follow the continuous improvement of the
CNN algorithms and techniques. Among the aforementioned processes, those that are
destined for edge, mobile and on-board satellite (OBC) computing have to use accelerator
designs that are performance, power and resource efficient. Aiming at improving the
performance of these tasks, the current paper presents a design approach for real-time
image classification FPGA accelerators that can be implemented with the logic and memory
resources of a single FPGA device and it shows its advantages by developing a vessel
detection FPGA accelerator.

The proposed approach is effective for CNN applications with relatively low feature
space [3–5] such as the classification problems that share similar characteristics between
classes [6,7] and CNNs requiring few convolution layers, such as SAT-4/SAT-6 [8]. The
proposed FPGA design approach includes three phases with each phase targeting distinct
design and performance gains. The first phase introduces guidelines that lead the CNN
design process with TensorFlow to a model of reduced computational and memory require-
ments but of high classification accuracy. In the second phase, the model is transformed
into a fixed-point Bit-Accurate Model (BAM) simulating the hardware calculations and
allowing the designer to decide on the arithmetic representation of the model’s parameters

J. Imaging 2022, 8, 114. https://doi.org/10.3390/jimaging8040114 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8040114
https://doi.org/10.3390/jimaging8040114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-5090-0582
https://orcid.org/0000-0002-4286-0098
https://doi.org/10.3390/jimaging8040114
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8040114?type=check_update&version=2


J. Imaging 2022, 8, 114 2 of 18

that provide the optimal trade-off between bit-width reduction and accuracy losses. For the
third phase, we use a library of algorithm-specific blocks in Very High-Speed Integrated
Circuit Hardware Description Language (VHDL) implementing the CNN functions with
fixed-point arithmetic. These blocks, along with our proposed methodology for mapping
the CNN to the FPGA, provide the means to the FPGA designer to initiate the third phase
and implement a distinct module for each CNN layer. The completion of the third phase
places these modules in a pipeline fashion forming a streamline architecture, to result in
an efficient FPGA accelerator with respect to power consumption and resource utilization
while saving significantly on the development time.

Considering vessel detection as the target application, we exploit the proposed ap-
proach to design an accelerator within a single FPGA device, which decides whether there
is a vessel [7], in the input image. This image classification task utilizes a CNN trained
for the Planet’s “Ships in Satellite Imagery” dataset [9] and the resulting FPGA accelerator
using the resources of only the Xilinx Virtex 7XC7VX485T device (operating on a Xilinx
VC707 board) achieves almost 98% prediction accuracy and high throughput by classifying
an 80× 80 RGB 24 bits/pixel image in 0.68 ms. Moreover, the accelerator can be used in a
sliding window application for scenes up to 4 K. To compare the FPGA’s performance, we
executed our code on the low power Intel’s Myriad2 processor (Intel Corporation, Santa
Clara, CA, USA) [10] used for cameras and OBC [11,12] and the edge-computing NVIDIA’s
Jetson Nano (NVIDIA Corporation, Santa Clara, CA, USA) [13] either on the Jetson’s ARM
processor (Arm Ltd., Cambridge, UK) or the GPU.

The paper is organized as follows: the following section reports related results in the
literature; Section 3 provides the necessary background for the target application of the
paper, i.e., the vessel detection; Section 4 introduces the approach for designing the CNN
and mapping on the FPGA; Section 5 describes the proposed FPGA accelerator for the
vessel detection application; Section 6 details the corresponding FPGA and performance
results; finally, Section 7 concludes the paper.

2. Related Work

Researchers have studied and provided FPGA accelerator solutions for CNNs based
mainly on the automated software development tools such as the High-Level Synthesis
(HLS) [14–19], due to short development time and hardware abstraction. The approach
followed in [14] improves the time of the entire design process by parallelizing the CNN C
code with Pthreads and by optimizing the FPGA accelerator through software/constraint
changes only. The authors of [15] target feasibility at low cost by choosing inexpensive
FPGA devices and cores for their accelerator. The authors of [16] focus on optimizing the
accelerator’s performance by considering the architecture’s throughput combined with the
external memory’s throughput. The FPGA accelerator of [17] interfaces with a host PC and
it utilizes off-chip memories with the loading/storing of the intermediate results optimized
for higher bandwidth. The authors of [18] report an FPGA accelerator template with an HLS
FPGA architecture consisting of a cluster of Multiply Accumulate Processing Elements for
convolution acceleration; this work focuses on a design flow selecting processing schedules
that minimizes external memory accesses and buffer size by means of data reuse. The
authors in [19] present an accelerator based on a single-processing engine that targets
standard and depthwise separable convolution. In this work, the authors aim to reduce the
delay added by the off-chip memory data exchange by using a data stream interface and
ping-pong on-chip cache. All of the HLS design approaches, however, prevent experienced
designers from optimizing the HDL code towards a more efficient FPGA architecture with
respect to resource utilization, throughput and energy consumption [20]. The authors in [12]
present an on-board satellite FPGA accelerator for CNN inference, which utilizes a single
processing unit with external DRAM memory, developed with VHDL code. Note here
that the current work focuses on streamline architectures that implement the contiguous
CNN layers in a pipeline fashion and differs to the implementation of a systolic array that
is reconfigured each time it computes a CNN layer [16]. Hence, the advantages of the



J. Imaging 2022, 8, 114 3 of 18

proposed designs are to avoid idle computing and memory [21] resources, use only the
on-chip (FPGA) memory and extensive pipeline, features that lead to improved resources
utilization, reduced latency and power consumption [22,23].

Regarding the results related to vessel detection [24,25], which the current work has as
target application, most of the published results exploit algorithmic techniques to improve
the execution time. The widely known approaches are R-CNNs [26], Faster-RCNN [27],
You Only Look Once (YOLO) [28] and Single Shot MultiBox Detector (SSD) [29]. Another
approach in [30] recognizes the key parts of the vessel and classifies the ship’s identity by
using these key parts. These classification results are then voted on for the decision of the
ship’s identity, with the highest achieved accuracy being 92.63%. Hardware accelerators
developed solely for vessel detection are detailed in [31] but without CNNs: they propose a
technique based on statistical analysis, of the inspected and neighboring areas to distinguish
the “possible ship” to other objects and using the geometric features of the target, they
decide whether the target is a ship, achieving a 90% success rate. The large number of
approaches, algorithmic techniques and results related to the vessel detection is due to the
attention that vessel detection as a task has gained over the last two decades; the following
section provides background.

3. Background on Vessel Detection

Vessel detection is among the most important tasks of Maritime Domain Awareness [24,25]
including all the activities associated with maritime activities that could impact upon the
security, safety, economy or the environment and which are related to any navigable gate-
way and the associated infrastructure, people, cargo and vessels. For the corresponding
applications, vessel detection is the keystone because it has a very extended scope of
applications in the areas of maritime safety and rescue missions, marine traffic control,
sea pollution, maritime spatial planning, management of remote fisheries, area fishing
control, illegal migration, customs control, observation of naval borders, etc. Referring
to the ships and all floating manufactured objects as vessels, and given that it is rather
straightforward to distinguish an object in optical images produced either by space, drones
or harbor cameras, the processes that identify the vessel in the image frames play a key
role in the above applications.

Moreover, note that for ships greater than 300 tons, it is mandatory to use shipborne
transponders to report their position. Smaller ships though, do not have to own and use
these devices. Ships that engage in illegal operations either turn them off or they try to
deceive the authorities with false reports of their position. Hence, vessel detection can
effectively support maritime domain awareness. Consequently, the exploitation of images,
especially satellite imagery, plays a key role for locating vessels on the sea surface. A notable
example is satellite-based radar images most often, Synthetic Aperture Radar (SAR), which
are commonly used for maritime surveillance because they provide the ability to detect the
vessels either in the case of both clear or cloudy skies. The interest in using optical images
in the applications of maritime surveillance escalated significantly due to the availability of
optical-imaging satellites.

Considering the problem definition, vessel detection can be envisaged as a task of
detecting an object given that the background in most cases has the characteristics of the
surface of the water. Following the latter model, the researchers and the engineers focused
on providing solutions in terms of automated analytical methods for remote sensors. These
efforts are the consequence of the existence of the large number of Earth-orbiting sensors
and their ability to generate and transmit big volumes of data. Hence, the detection systems
have to process large volumes of sensor data and in many cases to conform to near-real
or real-time requirements. Accordingly, the limitations in the execution time, as well as
the restrictions in the power consumption and the resource utilization, call for power and
resource-efficient hardware accelerators [11]. A generic approach for the vessel detection
is to receive an input image of size k× k pixels, on which it will perform the calculations
of the trained CNN model, the convolution with the filters kernels, the max-pooling and



J. Imaging 2022, 8, 114 4 of 18

finally the classification with a fully connected neural network. This operation is repeated
on overlapping image patches extracted from a large image of size x × x pixels, where
x >> k, gathering the patches that contain vessels and discarding the remaining.

4. CNN Design Approach

The current section introduces the three distinct phases of the proposed image-
classification FPGA accelerator design approach. It begins by presenting the first phase
with the guidelines for the CNN model design. Then, for the second phase, it describes
the development of the fixed-point BAM representation of the CNN floating-point model
based on the factors that play a key role in the design of the entire FPGA accelerator. Finally,
the third phase introduces the configurable VHDL blocks and the mapping methodology
of the CNN layers to the FPGA by utilizing these blocks. The result is a map of the CNN
layers on a pipeline of modules, where each module is optimized to the corresponding
layer computations. The proposed streamline architecture designs save significantly on
the FPGA resources compared to the architectures that implement all the CNN layers on a
systolic array [16] and leave idle resources as the layers progress.

4.1. CNN Design Space Exploration

This work focuses on single FPGA device solutions for image recognition applications
and more specifically, binary and limited feature space classification tasks. Consequently,
the design process has to consider all the factors reducing the resources’ requirements. For
this purpose, in the first phase the designer uses the TensorFlow estimator API to design
the CNN’s model targeting to fit within a single FPGA’s resources. Focusing on all the key
factors of the images under consideration, the designer can develop the model by keeping
to the following guidelines for:

• Number of layers: the neural networks for the low-feature-space image-classification
applications can achieve a high accuracy rating even with a relatively small number
of convolution layers [8].

• Size of convolution kernels: considering the images that are relatively small, the
recognized objects tend to occupy a large portion of the image and hence, large and
medium-size convolution kernels suffice.

• Choosing the size of the pooling layers windows: the feature space is relatively limited
and hence, the use of 4× 4 pooling layers will not affect the accuracy, though it will
significantly improve the resources’ requirements of the succeeding layers.

• Padding avoidance: this is used throughout the CNN because: (a) it does not affect the
accuracy and (b) given that the majority of the target applications have objects located
at or close to the image center, we do not need to preserve the size of the feature maps.

• Divisibility: it refers to the divisibility of each convolution layer’s output size by
the kernel size of the succeeding pooling layer. If it is applied, it will: (a) allow the
omission of padding with no accuracy loss and (b) lead to an efficient pipeline for the
contiguous layers.

4.2. Bit-Accurate Model Development

During the second phase, the designer develops the BAM of the designed and trained
image classification CNN. The BAM emulates the exact same fixed-point calculations
that the hardware accelerator performs. For the BAM, we perform quantization of the
CNN model’s trainable parameters, starting from the 32-bit floating point representation
provided by TensorFlow to a desired Qm.n fixed-point representation. The number of bits
for the integer part m and fractional part n are accepted as input parameters to the BAM.
This allows the designer to perform a trade-off study between saving on FPGA resources
due to the reduced bit width of the CNN parameters and maintaining high classification
accuracy as a result of the reduced arithmetic precision.



J. Imaging 2022, 8, 114 5 of 18

4.3. VHDL Blocks

The proposed approach combines the VHDL advantages with an efficient, with respect
to the development time, design methodology for CNN accelerators. Multiple instances
of configurable and reusable VHDL blocks, each with different configurations, are used
for the development of each layer. The following subsections present the reusable VHDL
blocks developed in this work.

4.3.1. Input Block

This block consists of a Block RAM that stores one RGB channel of a full image and
a Window Generator as shown in Figure 1. The Window Generator formulates the input to
the following convolution layer as windows of size equal to the convolution layer’s n× n
kernel (e.g., 3 × 3, 5 × 5, etc.). It uses n shift registers with each register containing one
image row, in order to avoid the indexing of pixels and thus, lead to improved performance.
The Kernel Window Controller FSM of the Window Generator reads n rows from the Block
RAM and copies them into the first set of n Shifting Registers. The DSP Decoder formulates
the n× n window: the first n pixels (memory words) of each of the n Shifting Register, are
routed in parallel to the input of the following convolution layer. To create the next window,
we shift the n registers by one pixel. There are two sets of Shifting Registers forming a double
input buffer. If the following convolution layer uses n× n kernels, the n shift registers
forward an input n× n window per cycle to fully pipeline the two layers. The following
parameters are configurable: (a) image size, (b) the n registers, (c) the kernel n× n and (d)
pixel bit-depth.

Figure 1. Input block architecture.

4.3.2. Convolution Block

The Convolution Block (Figure 2) receives a single channel of the input image (or a
single feature map) in the format of kernel-sized windows (n× n) and it calculates the
convolution of a single filter’s kernel with the input. The Convolution Block includes n× n
multipliers; each multiplier has input one pixel of the n× n window and the corresponding
kernel weight. Different filter kernels are stored at the on-chip ROM of the Convolution Block.



J. Imaging 2022, 8, 114 6 of 18

To calculate the output of the Convolution Block, a tree of adders (of height dlog2(n× n)e)
completes the addition of all the products of the multipliers in a pipeline fashion.

Figure 2. Convolution block architecture (∗ refers to fixed-point integer multiplication, + refers to
fixed-point integer addition).

4.3.3. Pooling Block

The Pooling Block (Figure 3) receives the feature map produced by a preceding con-
volution layer: a k× k array forwarded one value at each cycle. The Pooling Block selects
the maximum value of each l × l window, for all the windows in the feature map with
stride l (e.g., 2× 2 or 4× 4 max pooling) and outputs the k/l × k/l array of the above
maximum values. In detail: first, from the k× k array, the sub-block Row Max Pooling FSM
obtains the maximum of each l-tuple of values of each row to provide a k× k/l array; l
registers are written in l consecutive cycles and we choose the maximum of the l registers.
There are l Pooling FIFOs: the Row Max Pooling FSM stores the result in the next available
FIFO and marks it as the active Pooling FIFO, i.e., the k/l results of the rows 0l, 1l, 2l, etc.,
will be stored in the first Pooling FIFO, those of the rows 0l + 1, 1l + 1, 2l + 1, etc., in the
second and so on. When l rows of the output feature map (l × k/l values) are stored at the
Pooling FIFOs, the Column Max Pooling FSM starts the vertical max pooling; it chooses the
maximum of l data (one from each Pooling FIFO) to produce the k/l × k/l array.

4.3.4. Vector Multiplier

The Vector Multiplier realizes a fully connected Layer neuron; it computes the dot
product of the 1-D input vector I (the flattened result of the preceding layer), which is
received one point at a time, with the corresponding row of the fully connected layer’s
weight matrix. The weight matrix W is stored in a ROM, where each memory word contains
the weight of every neuron for each input. At each cycle, the input value of I and the
corresponding row of W are multiplied and the block accumulates the result, which is
forwarded to the following blocks.



J. Imaging 2022, 8, 114 7 of 18

Figure 3. Pooling block architecture.

4.3.5. ReLU and Output Block

The ReLU Block is a 2-to-1 multiplexer. The select bit of the multiplexer is the Most
Significant Bit (MSB) of the input value. If the MSB/select is “1”, the input is a negative
number and the multiplexer outputs zero, otherwise it forwards the input to the output.

The Output Block is the CNN’s final fully connected layer. Its architecture is shown
in Figure 4. It executes the matrix multiplication of the flattened input array I with the
weights W of the output neurons and then adds the bias. In a pipeline fashion, it is executed
once for each output neuron/class.

Figure 4. Output block architecture (∗ refers to fixed-point integer multiplication, + refers to fixed-
point integer addition).



J. Imaging 2022, 8, 114 8 of 18

4.4. Methodology for Mapping the CNN on the FPGA

The current section describes the major considerations and recommendations for
mapping the CNN functionality on a VHDL architecture by utilizing the above blocks.

The proposed approach uses the mapping to result in a streamline architecture that
implements all the layers of the CNN as a pipeline of modules: each module implements
a CNN layer’s computations. This allows flexibility in the parallelization strategy of the
computations of each layer (implemented as a module); our proposed approach aims
at parallelizing the layers in a way that enables extensive pipelining between them and
minimizes the use of intermediate buffers. In more detail, for the acceleration of binary and
limited feature space classification tasks with shallow CNNs that this approach targets, the
streamline architectures and the proposed design approach have the following benefits:

(a) High efficiency in resource utilization and computing since all hardware is generated
specifically for each CNN layer (module) and the layers are pipelined.

(b) Significantly reduced memory requirements for the intermediate results and use of
buffers only on the on-chip memory. The extensive pipeline of the proposed approach
allows for succeeding layers (modules) to directly consume the data generated by the
preceding ones and thus minimize the buffering of the intermediate results.

(c) Reduced latency for shallow CNNs designed for the target limited feature space
classification tasks. This is achieved by the parallelization strategy, the pipelining
between the VHDL implemented layers (modules) and the use of only low-latency
on-chip RAM.

The resource utilization and power-efficient design approach has to focus on the
following characteristics. The key issue is to keep the memory and DSP requirements of
the CNN accelerator design within the limits of the target FPGA device. Consequently, the
objectives of CNN accelerator’s design are first, the minimization of the buffering between
consecutive layers; second, the required memory of each layer; and third, the real-time
performance of the accelerator. The methods for improving the key issues of the FPGA
accelerator are:

• Buffers between layers and speed-up: The effort is given to parallelize the N filters
in each convolution layer (except the first). Assuming that a convolution layer is
designed with N filters, then the accelerator can have K parallel Convolution Blocks to
complete the N convolution filters in N/K steps. The accelerator design with K = N
is preferable because first, it maximizes the speed-up; second, it allows the pipelining
of the input to every convolution block and avoids the buffer between this and its
preceding layer.

• Reduce the memory of each layer: each convolution layer produces N feature maps
and apart the first accumulates these in N memories. The size of each of these N memo-
ries depends on the size and the number of the preceding pooling layers. We denote by
(spi)

2 the dimensions of the (i + 1)th pooling layer. If the input image has size Q×Q
and there are p pooling layers of sizes sp0 × sp0, sp1 × sp1, . . . , spp−1 × spp−1 each

memory (of the N memories of the current layer) has size [Q×Q]/ ∏
i=p−1
i=0 (spi × spi).

Hence, higher-dimension pooling layers reduce the memory size and allow us to
implement N parallel filters with their individual memories.

• The First Convolution Layer. The proposed parallelization technique for this layer
leads to the balance of the speed-up against the available number of DSP blocks and
block RAMs of the target FPGA device. The key computational role is realized by a
parallel Structure consisting of one convolution block per channel; these blocks com-
pute the convolution of all the input image’s channels (3 channels and 3 corresponding
blocks in the case of RGB). Each block completes the convolution in real time and it
forwards each result to the following pooling layer without a buffer, a design feature
that significantly improves the memory requirements since the first convolution layer
operates on the full-size input image (without any downsampling). The use of one (1)
Structure to complete all the filters of the first convolution layer is resource efficient.



J. Imaging 2022, 8, 114 9 of 18

Depending on the target FPGA’s resources, we can use k instances (k ≤ (sp0)
2, where

(sp0)
2 the dimensions of the first pooling layer) of this Structure in parallel to improve

the speed-up by k. We note here that each additional parallel Structure: adds a set
of 3 convolution blocks, increasing the use of the FPGA DSP blocks; adds another
memory buffer at the interface between the first pooling layer and the second input
layer. However, the size of each additional input buffer is considerably reduced due
to the high dimensions of the first pooling layer. Using k such Structures and the k
buffers is limited by the available DSP blocks.

• Scalability. The aforementioned techniques lead to a scalable FPGA accelerator design.
The architecture of the first convolution layer enables the engineer to opt for more
performance or optimize the design for FPGA devices with limited resources. More-
over, the fully connected layers can use a Vector Multiplier per neuron: parallelizing
the neurons is advantageous leading to a layer design irrespective of the size and the
number of the feature maps produced by the preceding layer; more importantly, it
is scalable.

5. Vessel Detection CNN FPGA Accelerator

The following paragraphs employ the proposed design approach to develop a vessel
detection FPGA accelerator that can also be used in sliding window applications of large
images. The use of the proposed vessel detection FPGA accelerator can be realized in the
context of an FPGA system, in which the accelerator interfaced with a host processor/FPGA-
engine and is receiving windows of 80 × 80 for classification of a larger image stored
in central mass memory (e.g., 3081× 1597 in Planet’s dataset used) obtained from the
camera sensor.

5.1. Model Architecture and Training

The model was trained with the “Ships in Satellite Imagery” Kaggle dataset. It
contains 4000 80 × 80 RGB images in total, labeled with either “ship” or “no-ship” binary
classification: 3K images were selected for the training process and the remaining for model
validation.

A variety of training processes was performed with the TensorFlow Estimator API in
Python to create a CNN model close to optimal with respect to prediction accuracy, number
of operations and resources requirements. The CNN design space exploration (described
in Section 4.1) resulted in the final model architecture shown in Figure 5. The CNN model
consists of 84K weights optimized using the Adam optimizer with the cross-entropy loss
function; it achieves 97.6% accuracy after 50 epochs. It compares favorably to similarly
trained models due to the following results of the design study:

• Number of convolution layers: The proposed CNN with only two convolution layers
achieves an accuracy of 97.6%, which is close to that of CNNs with more, e.g., a CNN
with three convolution layers before any of the proposed optimizations achieved 98.5%
accuracy.

• Ship orientation: The ship orientation is limited and, along with the proportion of the
80 × 80 image that the ship occupies, it leads to the use of 32 filters per convolution
layer for achieving the best accuracy–computational cost trade-off.

• Max pooling layer: size 4× 4 achieved accuracy similar to that of size 2× 2.
• The kernel’s size for each convolution layer: the first achieved improved accuracy

with a 5× 5 kernel, while the choice for the second convolution layer is a 4× 4 kernel
because its output has to be divisible by the following max pooling layer. As a result
we did not use padding in the convolutions since this does not induce accuracy loss.

• Fully connected layer’s neurons: 128 neurons of the fully connected layer is the
minimum number to use in order to avoid prediction accuracy loss.



J. Imaging 2022, 8, 114 10 of 18

Figure 5. Model architecture.

5.2. Bit-Accurate Model (BAM)

The design flow, following the realization of the TensorFlow model for vessel detection,
develops a bit-accurate model (BAM) that represents the exact operations and calculations
in integer arithmetic that takes place in the FPGA. We note here that the input image
is represented in RGB with 8-bits per pixel and the BAM keeps (does not reduce), for
each pixel, the input bit-depth. Each parameter of the CNN model (weights, biases) is
represented as a fixed-point number with 1-bit for the sign, 1-bit integer part and 6-bit
fractional parts (Q2.6). Throughout the BAM, we preserved the 6-bit fractional part by
truncating the result of each multiplication. In order to avoid accuracy losses due to the
overflow after consecutive additions, the integer part is increased and the final results are
represented in Q11.6.

5.3. FPGA Accelerator

The proposed accelerator’s architecture consists of eight structural blocks on which we
map the functionality of the software model blocks: (a) the input layer, (b) the first convolu-
tion layer, (c) the first pooling layer, (d) the second input layer, (e) the second convolution
layer, (f) the second pooling layer, (g) the fully connected layer and (h) the output layer. The
overall architecture is illustrated in two figures, Figures 6 and 7. The proposed accelerator
exploits the parallelization of the CNN model in order to increase performance, minimize
buffering and improve the throughput via pipelining of its operations. The following
paragraphs present the significant details of the structure and operation of the proposed
accelerator’s blocks and their advantages.

Figure 6 depicts the four leading blocks of the architecture (input layer, first convo-
lution layer, first pooling layer and second input layer). The architecture uses the blocks
described in Section 4.3: the input layer with the Window Generators and the first convolu-
tion layer including three Convolution Blocks. Their output is forwarded to the ReLU and
the first pooling layer consisting of one pooling block configured for 4× 4 max pooling.
The second input layer includes a single input block. This design minimizes the memory
required by the proposed accelerator in two ways. The first convolution layer calculates
and adds in parallel the convolution of each input image channel with the corresponding
kernel producing one complete output feature map, pipelining each value to the first
pooling layer without buffer use. The calculations are repeated for the remaining 31 feature
maps, with the corresponding filter kernels. The second convolution layer calculates the
32 filter convolutions on each received feature map in parallel and buffers the 32 results for
accumulation. The required buffering at the output of this layer is reduced to 32 arrays of
16× 16 13-bit values, because at this stage we have already executed the first pooling layer
(4× 4 max pooling). The latter shows the advantage of the proposed approach when it
is used for shallow CNNs, because considering a systolic array accelerator for the same
task, it would require a total of 2.03 Mbit to store the intermediate result of the output



J. Imaging 2022, 8, 114 11 of 18

of the first convolution layer. In contrast, the proposed streamline architecture uses the
buffering of intermediate results only at the end of the second convolution layer, following
the downscale of the data by previous pooling operations: this is only 106.50 Kbit and
hence, it achieves a 19.1× reduction in the required memory.

Figure 6. FPGA Architecture of the input layer, first convolution and pooling layers and the second
input layer (+ refers to fixed-point integer addition).

Another key element of the proposed accelerator’s architecture is the input layer,
which is shown in Figure 6; its design is based on the FPGA’s features. The FPGA can
support a variety of interfacing methods with the host such as PCIe, Ethernet and USB
to receive the image. The input layer stores each channel (RGB) of the input image row
by row in the corresponding Channel Block RAM (on-chip memory), so that we can read a
whole row in a single clock cycle. These blocks, along with the three Window Generators of
the three Input Blocks, constitute the input layer. The Window Generators are configured to
accept one 80× 80 image (one image channel each) and generate all the windows of size
5× 5 of that image channel; they operate as described in Section 4.3.1. When the image is
stored in each Channel Block RAM, the three Window Generator blocks operating in parallel
load the three distinct channel windows of size 5× 5 in parallel to the three corresponding
Channel Convolution Blocks of the first convolution layer, as shown in Figure 6. Three distinct
RGB windows of size 5× 5 forwarded in parallel at each clock cycle to the Convolution
Blocks in a fully pipelined operation.

Figure 7 depicts the second half of the proposed accelerator’s architecture (the second
convolution and pooling layers, the fully connected layer and the final output layer). The
second convolution layer includes 32 Filter Convolution Blocks, each block configured for
4× 4 convolution kernels. The second convolution layer receives, one by one, the feature
maps of the previous layers and performs the 32 filter convolutions of this layer in parallel
with 32 Filter Convolution Blocks, each of which accumulates the result in a dedicated
Accumulator RAM of size 16× 16 words. Each Filter Convolution Block stores the kernel
weights associated with each input feature map in an internal Block RAM. The results
of this layer are complete when every feature map of the previous layer is received and
processed. At the final accumulation step, each filter’s bias is added and the Accumulator
RAM contents of each Filter Convolution Block are forwarded, in a continuous stream (in



J. Imaging 2022, 8, 114 12 of 18

filter order) to the second pooling layer. The second pooling layer is similar to the first
pooling layer, also configured for 4× 4 pooling, where memories act as a buffer in order to
provide an uninterrupted flow of data to the succeeding fully connected layer. Finally, the
fully connected layer uses 128 parallel Vector Multipliers, one for each neuron. When all the
multiply–accumulate steps are complete, the 128 parallel multipliers and a tree of adders
calculate the inference result.

Although the CNN vessel accelerator improves the performance of CPU, GPU and
edge processors, as is shown in Section 6.2, it is worth noting that the entire CNN vessel
accelerator architecture can be configured to operate on two distinct input frames in a
pipeline fashion. In that configuration, while the first frame processing will occupy the
fully connected layer, the two convolutional layers will be dedicated to the process of the
second (following the first) frame.

Figure 7. FPGA architecture of the second convolution and pooling layers, fully connected layer and
output layer (∗ refers to fixed-point integer multiplication, s refers to the “select” input pin of the
multiplexer, + refers to fixed-point integer addition).

6. Vessel Detection FPGA Accelerator Results and Comparison

This section presents the results of the proposed accelerator’s implementation on
the Xilinx VC707 board and a comparison with the corresponding performance of our
code executed on: (a) the low power Intel’s Myriad2 processor, (b) the edge-computing
NVIDIA’s Jetson Nano Jetson’s ARM processor and (c) the Jetson Nano GPU.

6.1. FPGA Implementation Results

The development and validation of the proposed accelerator targeted the Xilinx Virtex
7 Development board (XC7VX485T) with the use of the Vivado development tool. The
resource utilization of the FPGA on the Virtex 7 board is presented in Table 1. More
specifically, the proposed accelerator uses 9.37% of the FPGA’s BRAMs and 30.11% of the
available DSP blocks of the FPGA device. The proposed accelerator’s power requirements
are 5.001 W reported by the Vivado power estimator. Figure 8 presents the on-chip power
utilization per resource type.

The FPGA implementation of the proposed accelerator has achieved a maximum
operating frequency ( fmax) of 270 MHz. The number of operations per second of the accel-
erator is 52.8 GOP/s and the processing time for a single input image (or a 80× 80 sliding
window) is 0.687 ms. In order to showcase an indicative baseline evaluation result, Table 2
presents the execution time comparison of the proposed accelerator to the CPU and GPU
software implementations. The CPU and GPU software implementations are based on



J. Imaging 2022, 8, 114 13 of 18

the TensorFlow implementation of the model executed with a single image as input and
targeting the Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz and the NVIDIA GeForce RTX
3080 correspondingly. The CPU processes a single input image in 4.696 ms while the GPU
processes the same input image in 2.202 ms. The proposed accelerator achieves a speed-up
of 6.836 and 3.205 when compared to the CPU and GPU correspondingly.

Table 1. Resource utilization.

Resource Utilization Utilization %

LUT 50,743 16.71

LUTRAM 4228 3.23

FF 70,786 11.66

BRAM 96.5 9.37

DSP 843 30.11

Table 2. Performance comparison to CPU and GPU.

Execution Time (ms) FPGA Speed-Up

FPGA 0.687 -

CPU 4.696 6.836

GPU 2.202 3.205

Figure 8. Power utilization.

6.2. Comparison to Edge Devices and Low Power Processors

In order to evaluate the proposed approach, we compared the performance of the
vessel detection CNN FPGA accelerator to the other edge devices, which have high perfor-
mance at low-power consumption according to their specs. Notable representatives are the
NVIDIA’s Jetson Nano and the Intel’s Myriad2 processor. The Jetson Nano of 472 GFLOPS
(FP16) at 10 W includes an ARM processor and an 128-core Maxwell GPU targeting com-
puter vision and deep learning applications. The Myriad2 processor is being utilized for
on-board satellite computing applications in missions [32] and research projects [11] due
to the fact that it has undergone extensive radiation characterization [33] in order to be
deemed suitable for space applications. It has two Leon and 12 SHAVE processors and it is
optimized for machine learning applications, which can aggregate 1000 GFLOPS (FP16)
with at most 1W consumption. Moreover, it includes a multicore on-chip memory subsys-
tem (2 MB), called the connection matrix (CMX) memory and low-power DDR3 DRAM
(512 MB).

The comparison is based on a sequential C code for vessel detection. This was executed
on a single core of the Jetson’s Nano ARM CPU and measured at 440 ms. From this point,



J. Imaging 2022, 8, 114 14 of 18

we developed a custom CUDA-accelerated application taking advantage of the 128 CUDA
cores. The mapping of calculations to the grids of thread blocks optimizes the scheduling of
warps on the 128 CUDA cores. The shared memory is used to store global data in a thread
block and the intermediate results. The execution time of the CUDA application is 20.3 ms.

The development on the Myriad2 starts with the optimization of the sequential C
code, using the CMX, DDR and cache memories efficiently; this single core application took
56.27 ms with less than 0.5 W. The parallel Myriad2 code uses the 12 SHAVES, by dividing
the CMX memory between them, minimizing the required memory of each SHAVE by
pipelining the operations of each processor, the parallel code takes 14.6 ms at 1 W.

The detailed results are presented in Table 3. The proposed FPGA accelerator achieves
the highest performance, regarding execution time and median power consumption; how-
ever, the highest performance per Watt was found among the other two devices. The
Myriad2 is the most power efficient by consuming 1 W, while its performance is one order
of magnitude lower than the FPGA accelerator. The Jetson Nano falls short in either metric
with a consumption of 10 W and execution time in the same order of Myriad2, but it
provides the most developer-friendly platform, which is an advantage leading to short
development time and effort. The proposed FPGA accelerator has the highest performance
per Watt, followed by the Myriad2 and in the last place is the Jetson Nano.

Table 3. Performance and power comparison to edge devices.

Execution Time (ms) Speed-Up Power (W)

Jetson Nano CPU 440 - 10

Jetson Nano GPU 20.3 21.7 10

Myriad2 1 SHAVE 56.27 7.8 0.5

Myriad2 12 SHAVE 14.59 30.1 1

FPGA Accelerator 0.687 640.5 5

6.3. Comparison to Other FPGA Accelerators

This subsection aims to provide more context to the proposed approach by showcasing
where the proposed accelerator stands in the field of FPGA accelerators in the literature. A
straightforward comparison of the resulting accelerator to FPGA-based CNN accelerators
is a challenging task [16] because:

(a) The same metrics between different FPGA accelerators may not be suitable for direct
comparisons due to different FPGA platforms, benchmarking methodologies, etc.

(b) While the majority of related works focus on accelerators for well-known CNN models,
this work proposes a design approach that includes guidelines for designing CNN
models from scratch, resulting in a custom model for vessel detection application.

(c) This work focuses on accelerator designs for shallow CNNs suitable for binary and
low feature space classification tasks while most works in the literature study complex
and larger CNN models and result in substantially different architectures.

Regarding these architectural differences, the proposed streamline architectures in
this work use contiguous modules for each layer of the CNN in a pipeline fashion. These
architectures have particular benefits for our target applications (described in Section 4.4)
and are further highlighted in the comparisons with other FPGA-based accelerators and
the corresponding analysis below.

Taking into account the aforementioned considerations, Table 4 presents notable works
on FPGA-based CNN accelerators, their most important features and the corresponding
metric results. Note that the proposed accelerator achieves the highest operating frequency
of 270 MHz; this advantage is due to the custom VHDL design of the proposed approach,
especially when compared to the 100 MHz of the HLS generated designs of [16,19]. More-
over, the advantage of the streamline architecture as well as the utilization of only the
on-chip memory is observed when compared to the 156 MHz of the single processing



J. Imaging 2022, 8, 114 15 of 18

unit VHDL design of [12]. Regarding the performance, the accelerator of [16], targeting a
much larger CNN model, exhibits a slightly larger performance of 61.62 GOP/s compared
to the 52.80 GOP/s of the proposed accelerator; however, considering that both use the
same FPGA device, the current work achieves this performance by utilizing only 843 DSPs,
compared to the 2240 DSPs of [16] and hence, it results in a significantly higher DSP ef-
ficiency of 0.062 GOP/s/DSP. The reason for this improvement in hardware efficiency is
the proposed mapping methodology that produces a streamline architecture with multiple
layers operating at the same time with extensive pipelining, in contrast to the systolic array
architecture implementing a single layer at a time [16]. Considering power consumption,
the authors of [12] report 3.4 Watts while our proposed accelerator consumes 5.001 Watts;
however, in that work there is no report of several features of the design that play a role in
power consumption, such as CNN size and performance. The accelerator in [19] reports
power consumption of 4.083 Watts but achieves lower performance per Watt compared
to the proposed accelerator. Finally, the power measurements in [16] follow a different
methodology by measuring the power consumption of the entire FPGA board rather than
on-chip power consumption that we report and thus their measurement is not suitable for
direct comparisons.

Table 4. Reporting the features of related results.

[16] [19] [12] Proposed Accelerator

Precision fl. point fl. point fixed-point fixed-point
32 bits 32 bits 16 bits 17 bits

Frequency (MHz) 100 100 156 270

FPGA Xilinx Virtex Xilinx Zynq Xilinx Zynq Xilinx Virtex
VC707 7100 ZCU106 VC707

CNN Size 1.33 GFLOP N/A N/A 18.122 MMAC

Performance (GOP/s) 61.62 17.11 N/A 52.80

Power (Watt) 18.61 4.083 3.4 5.001

Perf./Watt 3.31 4.19 N/A 10.56(GOP/s/Watt)

DSPs 2240 1926 1175 843

DSP Efficiency 0.027 0.008 N/A 0.062(GOP/s/DSP)

7. Conclusions

The current paper presented a design approach for FPGA accelerators for image classi-
fication CNNs with limited feature space targeting the edge, mobile and on-board satellite
computing applications. The objective of this work was to achieve real-time performance
by placing all the inference task computations and memory within a single FPGA device.
The benefits of the resulting architecture are the low-power consumption, the higher oper-
ating frequency and the improved resources utilization. These advantages are shown by
the FPGA accelerator for vessel detection that compared favorably to the performance of
notable edge and low-power processors. Finally, the benefit of introducing the approach for
the image classification on a single FPGA device, whenever this is feasible, can be shown by
the vessel detection accelerator performance and compared to the optimized FPGA CNN
accelerators and also to low cost ones.

Author Contributions: Conceptualization, A.K. and E.-A.P.; methodology, A.K., E.-A.P. and D.R.;
software, A.K., E.-A.P. and C.B.; validation, A.K., E.-A.P. and C.B.; investigation, A.K., E.-A.P. and C.B.;
writing—review and editing, A.K., E.-A.P. and D.R. supervision, D.R.; project administration, D.R.;
funding acquisition, D.R. All authors have read and agreed to the published version of the manuscript.



J. Imaging 2022, 8, 114 16 of 18

Funding: This study was funded in part by the Hellenic Foundation for Research and Innovation
(HFRI) under the HFRI Ph.D. Fellowship grant (Fellowship No.: 29). The research work was
supported in part by the Hellenic Foundation for Research and Innovation (HFRI) under the 3rd Call
for HFRI Ph.D. Fellowships (Fellowship Number: 6220). The publication fees were covered by the
National and Kapodistrian University of Athens internal project No. 15684.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Planet’s “Ship in Satellite Imagery” dataset used for the vessel
detection CNN FPGA Accelerator can be accessed via Kaggle through the following link https:
//www.kaggle.com/rhammell/ships-in-satellite-imagery (accessed on 13 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
BAM Bit-accurate Model
BRAM Block Random Access Memory
CMX Connection Matrix
CNN Convolutional Neural Network
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DDR Double Data Rate
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FF Flip-Flop
FIFO First-In First-Out
FPGA Field-programmable Gate Array
FSM Finite-State Machine
GFLOPS Giga Floating Point Operations Per Second
GOPS Giga Operations Per Second
GPU Graphics Processing Unit
GTX Giga Texel Shader
HLS High-level Synthesis
LUT Lookup Table
LUTRAM Lookup Table Random Access Memory
ML Machine Learning
OBC On-board Computing
PCIe Peripheral Component Interconnect Express
RAM Random Access Memory
R-CNN Region-based CNN
ReLU Rectified Linear Unit
RGB Red Green Blue
ROM Read-Only Memory
SHAVE Streaming Hybrid Architecture Vector Engine
SSD Single Shot MultiBox Detector
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
YOLO You Only Look Once

References
1. Mordvintsev, A.; Olah, C.; Tyka, M. Inceptionism: Going Deeper into Neural Networks. 2015. Availabel online: https:

//research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html (accessed on 13 April 2022).
2. Abdelouahab, K.; Pelcat, M.; Sérot, J.; Berry, F. Accelerating CNN inference on FPGAs: A Survey. arXiv 2018, arXiv:1806.01683.
3. Lei, F.; Liu, X.; Dai, Q.; Ling, B. Shallow convolutional neural network for image classification. SN Appl. Sci. 2020, 2, 97. [CrossRef]

https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://doi.org/10.1007/s42452-019-1903-4


J. Imaging 2022, 8, 114 17 of 18

4. Kyriakos, A.; Kitsakis, V.; Louropoulos, A.; Papatheofanous, E.A.; Patronas, G. High Performance Accelerator for CNN
Applications. In Proceedings of the 2019 29th International Symposium on Power and Timing Modeling, Optimization and
Simulation, Rhodes, Greece, 1–3 July 2019; pp. 135–140. [CrossRef]

5. Li, H.; Lin, Z.; Shen, X.; Brandt, J. A convolutional neural network cascade for face detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, Boston, MA, USA, 7–12 June 2015; pp. 5325–5334. [CrossRef]

6. Sermanet, P.; LeCun, Y. Traffic sign recognition with multi-scale Convolutional Networks. In Proceedings of the 2011 International
Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2809–2813. [CrossRef]

7. Airbus Ship Detection Challenge. 2019. Available online: https://www.kaggle.com/c/airbus-ship-detection (accessed on
13 April 2022).

8. Gorokhovatskyi, O.; Peredrii, O. Shallow Convolutional Neural Networks for Pattern Recognition Problems. In Proceedings of
the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018.
[CrossRef]

9. Planet: Ships-in-Satellite-Imagery. 2019. Available online: https://www.kaggle.com/rhammell/ships-in-satellite-imagery
(accessed on 13 April 2022).

10. Barry, B.; Brick, C.; Connor, F.; Donohoe, D.; Moloney, D.; Richmond, R.; O’Riordan, M.; Toma, V. Always-on Vision Processing
Unit for Mobile Applications. IEEE Micro 2015, 35, 56–66. [CrossRef]

11. España Navarro, J.; Samuelsson, A.; Gingsjö, H.; Barendt, J.; Dunne, A.; Buckley, L.; Reisis, D.; Kyriakos, A.; Papatheofanous, E.A.;
Bezaitis, C.; et al. High-Performance Compute Board—A Fault-Tolerant Module for On-Boards Vision Processing. In Proceedings
of the 2nd European Workshop on On-Board Data Processing (OBDP 2021), Online, 14–17 June 2021.

12. Rapuano, E.; Meoni, G.; Pacini, T.; Dinelli, G.; Furano, G.; Giuffrida, G.; Fanucci, L. An FPGA-Based Hardware Accelerator for
CNNs Inference on Board Satellites: Benchmarking with Myriad 2-Based Solution for the CloudScout Case Study. Remote Sens.
2021, 13, 1518. [CrossRef]

13. Nvidia Jetson Nano. Available online: https://developer.nvidia.com/embedded/jetson-nano-developer-kit (accessed on
13 April 2022).

14. Kim, J.H.; Grady, B.; Lian, R.; Brothers, J.; Anderson, J.H. FPGA-based CNN inference accelerator synthesized from multi-
threaded C software. In Proceedings of the 2017 30th IEEE International System-on-Chip Conference (SOCC), Munich, Germany,
5–8 September 2017; pp. 268–273. [CrossRef]

15. Solovyev, R.A.; Kalinin, A.A.; Kustov, A.G.; Telpukhov, D.V.; Ruhlov, V.S. FPGA Implementation of Convolutional Neural
Networks with Fixed-Point Calculations. arXiv 2018, arXiv:1808.09945v1. Available online: https://arxiv.org/abs/1808.09945v1
(accessed on 13 April 2022).

16. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; ACM: New York, NY, USA, 2015; pp. 161–170. [CrossRef]

17. Sankaradas, M.; Jakkula, V.; Cadambi, S.; Chakradhar, S.; Durdanovic, I.; Cosatto, E.; Graf, H.P. A Massively Parallel Coprocessor
for Convolutional Neural Networks. In Proceedings of the 2009 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors, Boston, MA, USA, 7–9 July 2009; pp. 53–60. [CrossRef]

18. Peemen, M.; Setio, A.A.A.; Mesman, B.; Corporaal, H. Memory-centric accelerator design for Convolutional Neural Networks. In
Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013;
pp. 13–19. [CrossRef]

19. Liu, B.; Zou, D.; Feng, L.; Feng, S.; Fu, P.; Li, J. An FPGA-Based CNN Accelerator Integrating Depthwise Separable Convolution.
Electronics 2019, 8, 281. [CrossRef]

20. Pelcat, M.; Bourrasset, C.; Maggiani, L.; Berry, F. Design productivity of a high level synthesis compiler versus HDL. In
Proceedings of the 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), Agios Konstantinos, Greece, 17–21 July 2016; pp. 140–147. [CrossRef]

21. Zhao, Y.; Gao, X.; Guo, X.; Liu, J.; Wang, E.; Mullins, R.; Cheung, P.Y.K.; Constantinides, G.; Xu, C.Z. Automatic Generation
of Multi-Precision Multi-Arithmetic CNN Accelerators for FPGAs. In Proceedings of the 2019 International Conference on
Field-Programmable Technology (ICFPT), Tianjin, China, 9–13 December 2019; pp. 45–53. [CrossRef]

22. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017,
105, 2295–2329. [CrossRef]

23. Lamoureux, J.; Luk, W. An Overview of Low-Power Techniques for Field-Programmable Gate Arrays. In Proceedings of the
2008 NASA/ESA Conference on Adaptive Hardware and Systems, Noordwijk, The Netherlands, 22–25 June 2008; pp. 338–345.
[CrossRef]

24. Dekker, R.; Bouma, H.; den Breejen, E.; van den Broek, B.; Hanckmann, P.; Hogervorst, M.; Mohamoud, A.; Schoemaker, R.; Sijs, J.;
Tan, R.; et al. Maritime situation awareness capabilities from satellite and terrestrial sensor systems. In Proceedings of MAST
(Maritime Systems and Technology) Europe Conference 2013, Gdansk, Poland, 4–6 June 2013.

25. Kanjir, U.; Greidanus, H.; Oštir, K. Vessel detection and classification from spaceborne optical images: A literature survey. Remote
Sens. Environ. 2018, 207, 1–26. [CrossRef] [PubMed]

26. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
CoRR 2013, abs/1311.2524. Available online https://arxiv.org/abs/1311.2524 (accessed on 14 April 2022).

http://dx.doi.org/10.1109/PATMOS.2019.8862166
http://dx.doi.org/10.1109/CVPR.2015.7299170
http://dx.doi.org/10.1109/IJCNN.2011.6033589
https://www.kaggle.com/c/airbus-ship-detection
http://dx.doi.org/10.1109/DSMP.2018.8478540
 https://www.kaggle.com/rhammell/ships-in-satellite-imagery
http://dx.doi.org/10.1109/MM.2015.10
http://dx.doi.org/10.3390/rs13081518
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
http://dx.doi.org/10.1109/SOCC.2017.8226056
https://arxiv.org/abs/1808.09945v1
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1109/ASAP.2009.25
http://dx.doi.org/10.1109/ICCD.2013.6657019
http://dx.doi.org/10.3390/electronics8030281
http://dx.doi.org/10.1109/SAMOS.2016.7818341
http://dx.doi.org/10.1109/ICFPT47387.2019.00014
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/AHS.2008.71
http://dx.doi.org/10.1016/j.rse.2017.12.033
http://www.ncbi.nlm.nih.gov/pubmed/29622842
https://arxiv.org/abs/1311.2524


J. Imaging 2022, 8, 114 18 of 18

27. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. CoRR
2015, abs/1506.01497. Available online: https://arxiv.org/abs/1506.01497 (accessed on 14 April 2022). [CrossRef] [PubMed]

28. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. CoRR 2015,
abs/1506.02640. Available online: https://arxiv.org/abs/1506.02640 (accessed on 14 April 2022).

29. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. CoRR 2015,
abs/1512.02325. [CrossRef]

30. Zhao, H.; Zhang, W.; Sun, H.; Xue, B. Embedded Deep Learning for Ship Detection and Recognition. Future Internet 2019, 11, 53.
[CrossRef]

31. Yu, J.-Y.; Huang, D.; Wang, L.-Y.; Guo, J.; Wang, Y.-H. A real-time on-board ship targets detection method for optical remote
sensing satellite. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China,
6–10 November 2016; pp. 204–208. [CrossRef]

32. Giuffrida, G.; Fanucci, L.; Meoni, G.; Batič, M.; Buckley, L.; Dunne, A.; van Dijk, C.; Esposito, M.; Hefele, J.; Vercruyssen, N.; et al.
The Φ-Sat-1 Mission: The First On-Board Deep Neural Network Demonstrator for Satellite Earth Observation. IEEE Trans. Geosci.
Remote Sens. 2022, 60, 5517414. [CrossRef]

33. Furano, G.; Meoni, G.; Dunne, A.; Moloney, D.; Ferlet-Cavrois, V.; Tavoularis, A.; Byrne, J.; Buckley, L.; Psarakis, M.; Voss, K.O.;
et al. Towards the Use of Artificial Intelligence on the Edge in Space Systems: Challenges and Opportunities. IEEE Aerosp.
Electron. Syst. Mag. 2020, 35, 44–56. [CrossRef]

https://arxiv.org/abs/1506.01497
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://arxiv.org/abs/1506.02640
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.3390/fi11020053
http://dx.doi.org/10.1109/ICSP.2016.7877824
http://dx.doi.org/10.1109/TGRS.2021.3125567
http://dx.doi.org/10.1109/MAES.2020.3008468

	Introduction
	Related Work
	Background on Vessel Detection 
	CNN Design Approach
	CNN Design Space Exploration
	Bit-Accurate Model Development
	VHDL Blocks
	Input Block
	Convolution Block
	Pooling Block
	Vector Multiplier
	ReLU and Output Block

	Methodology for Mapping the CNN on the FPGA 

	 Vessel Detection CNN FPGA Accelerator
	Model Architecture and Training
	Bit-Accurate Model (BAM)
	FPGA Accelerator

	Vessel Detection FPGA Accelerator Results and Comparison
	FPGA Implementation Results
	Comparison to Edge Devices and Low Power Processors
	Comparison to Other FPGA Accelerators

	Conclusions
	References

