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Abstract: The continuous advances in the technology of Convolutional Neural Network (CNN) and
Deep Learning have been applied to facilitate various tasks of human life. However, security risks
of the users’ information and privacy have been increasing rapidly due to the models’ vulnerabilities.
We have developed a novel method of adversarial attack that can conceal its intent from human
intuition through the use of a modified QR code. The modified QR code can be consistently scanned
with a reader while retaining adversarial efficacy against image classification models. The QR
adversarial patch was created and embedded into an input image to generate adversarial examples,
which were trained against CNN image classification models. Experiments were performed to
investigate the trade-off in different patch shapes and find the patch’s optimal balance of scannability
and adversarial efficacy. Furthermore, we have investigated whether particular classes of images are
more resistant or vulnerable to the adversarial QR attack, and we also investigated the generality of
the adversarial attack across different image classification models.

Keywords: adversarial QR; adversarial attack; deep learning; Convolutional Neural Networks

Key Contribution: Extension of an adversarial patch concept to the form of scan-ready QR code.
Investigation of the optimal brightness values and shapes to enhance the adversarial QR patch’s
scannability while retaining its adversarial efficacy. Experiments demonstrated the diverged sensitiv-
ities of adversarial QR perturbations over images of various categories, and we discovered the image
patterns that were mostly or least influenced by the adversarial QR patch.

1. Introduction

Deep Learning (DL) is one of the most powerful technologies adopted by multiple
commercial and scientific applications. It surpasses human performance in various tasks,
including image recognition. However, as Deep Learning models develop in effectiveness
and efficiency, the vulnerabilities of such models also become important to study and
improve. Adversarial examples, a term to describe modified inputs that can manipulate the
results of image classifier models [1,2], present a serious security challenge [3] for image
classifier implementations, especially the models implemented for high-risk tasks such as
facial recognition and autonomous driving systems. Various research studies have also
proven that adversarial examples can be successfully used to attack models implemented
in the physical world [4].

This research studies the efficacy and conspicuousness of adversarial examples against
Convolutional Neural Networks (CNN)-based classification models by using an adversarial
patch in the form of altered QR code images patched onto input images, creating adversarial
examples that can deviate the weights of the machine learning model. On the one hand,
there are existing research studies that displayed the adversarial examples’ effectiveness
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against object detection [5] and object classification [6] models. However, the adversarial
patches in such research were obvious to human perception. This research will focus not
only on improving the adversarial efficacy of the QR patches against various models but
also on making the created QR patch scannable using a QR scanner to hide its true purpose
as an adversarial example from human intuition. “Deep Learning” (DL) refers to a subset
of machine learning techniques that make use of large volumes of data to create models
that can identify useful patterns and their high-level semantics. Deep Learning, along with
its subset Convolutional Neural Networks (CNNs), addresses the limitations of bottlenecks
in computation [7] and high-dimensional input data processing [8] by creating a connection
of multiple artificial neurons layers to describe the connection between multiple simple
visual features, representing the whole object. Each neuron also maps high-dimensional
inputs to output values using an activation function. A neural network can be generally
described as follows:

f (x) = f (k)( f (2)( f (1)(x))) (1)

where x is an input image, and f (i) is a function of the ith network layer where i = 1, 2, . . . , k.
Research on adversarial examples usually simulate attacks against existing deep learn-

ing models such as Inception [9–11], ResNet [12], VGG [13], LeNet [14], and AlexNet [15].
Furthermore, such research make use of established computer vision datasets, including
handwritten digits such as MNIST [16], image classification datasets such as CIFAR [17] and
ImageNet [18]. The ImageNet dataset is also involved in the experiments of most adversar-
ial approaches due to the enormous volume of the dataset, consisting of 14,196,122 images
with 1000 classes.

The discussion of adversarial examples against machine learning models has been
ongoing for over a decade, with previous targets often having handcrafted features such as
intrusion detection and spam filters. Dalvi et al. [19] created a game simulating an adversary
against a classifier in which both entities utilized cost-sensitive learning. Szegedy et al. [2]
also proposed the L-BFGS method to adversarial examples using linear search, which was
considered computationally expensive and impractical. Goodfellow et al. [1] then proposed
the Fast Gradient Sign Method (FGSM) that adds a gradient sign to the cost function on
each pixel, resulting in adversarial example training speed increases. The perturbations
can be expressed as:

η = εsign(∇x J(θ, x, y)) (2)

where η is the magnitude of the perturbation computed by using gradients from the back-
propagation. Given an original image x, the generated adversarial example x′ can be
calculated by adding perturbation η on the original image x′ = x + η.

Sharif et al. [20] proposed printed adversarial eyeglasses as a method to attack facial
recognition systems, where the attacker put on printed eyeglasses and presented their
faces on a facial recognition system. However, the printed eyeglasses are considered
inconspicuous to human intuition and can only be used against facial recognition scenarios
where the testing environment had little variation in lighting scale and camera angles.

Eykholt et al. [5] also proposed perturbations to mimic graffiti on road signs with
the focus on the conspicuousness of real-world adversarial attacks. The authors manually
masked images of the target physical object in different angles, distances, and lighting
conditions to increase the robustness of the adversarial example graffiti against varying
distances and orientations. However, the applicability of this method in the physical
world is limited, as the adversarial examples were generated with a series of individual
graffiti pieces.

The concept of universal, real-world adversarial patch attacks against image classifiers
was first introduced by Brown et al. [6], and it is based on the principle that image classifier
models will output the image class based on the most salient patterns of the input. The
adversarial patch was trained by applying the patch at a random position and scale to the
input scene, which resulted in the input being detected as the trained patch’s target class.
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Xu et al. [21] also implemented the adversarial patch method by proposing a T-shirt pattern
that will allow the person wearing it to evade a real-time person detector.

In this paper, we are interested in the conspicuousness to human intuition on the
employment of the adversarial patches. We believe that making the adversarial patch
readable by a QR scanner would alleviate the suspicions of its primary function as an
adversarial tool.

There are studies on edge sensors with edge intelligence, which can scan images,
conduct pre-processing such as edge detection, then use biological vision systems to reduce
unnecessary areas of an image [22], and then apply complicated CNN on the sensors [23].
These edge sensors when used in conjunction with IR might be able to remove traditional
adversarial patches from the scene. Due to the inherent nature of the QR code, removing
the patch will also remove data contained in the QR code as well.

The integration of an adversarial example on a QR code can be viewed as an analogy
to the watermarking concept, which is a very popular approach to hiding the information
on the target signal. The method is very effective in inserting information while evading
human perception. The concept of watermarking was applied with an adversarial attack by
dispersing the adversarial pixels all over the target image, resulting in a successful attack
with less noticeable patterns [24]. However, it is difficult to apply the method in practice
due to the necessity of perturbing the pixels in specific locations all over the target image
without noticeable changes. On the contrary, our proposed method can hide the attack
underneath the QR code and free it from the location constraints.

The authors believe that an adversarial example’s intent to attack image classification
models can be concealed by adding a scannable QR code to the patch, providing a stronger
purpose for the patch for human acknowledgement. However, multiple factors must also
be considered for this addition, such as the patch’s shape, the QR code’s ease of detection
by the QR scanner, and the overall feasibility to employ this technique in the physical
world, all of which are also investigated in this research.

The contributions of this work are as follows:

• Expand the adversarial patch concept by implementing the patch with a scan-ready
QR code, in which this approach has yet to be explored to our knowledge.

• Utilize the QR code pattern to improve the feasibility and robustness of physical
adversarial examples.

• Explore methods to allow adversarial examples to carry out additional information
for usage in other applications, in addition to its primary purpose as an adversarial
attack tool.

• Study possible differences between square-shaped and circular-shaped adversarial
QR patches in terms of adversarial efficacy.

• Investigate the optimal brightness values for the adversarial QR patch’s dark parts
in order to maximize the adversarial efficacy and the patch’s scannability toward a
QR scanner.

• Investigate whether particular classes of images are more resistant or vulnerable to
the QR patch attacks.

• Investigate the transferability of QR patch attacks on various deep learning models.

2. Materials and Methods

The general process to create the QR adversarial patches is based on [6], with adjust-
ments made to accommodate the addition of the QR symbol into the adversarial patch.

2.1. Masked Patch Creation

The adversarial patch application to an input image is represented by the operation
A(p, q, x, r, l), where the patch application A is formed by translating patch p onto the input
image x at location l, with r patch rotation. To begin the process of patch application, a
matrix filled with only zeroes called a “mask image” will be created with the same size as
the original input image x. A patch image p is then created as a QR symbol generated from
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a plain text or URL input string q, where the colors are represented with binary numbers
where 0 represents black and 1 represents white colors. The generated patch is then rotated
using randomized angle r between 0, 90, 180, or 270 degrees and then applied onto the
mask image at random location l. Finally, the patch is applied onto the training images
to create an adversarial example. Figure 1 displays the masked patch p creation process,
where the black, white, and gray colors, respectively, represent zeros, random values and
unassigned values.

Figure 1. The QR patch masking with specified rotation and translation.

2.2. Patch Training Process

Once the masked patch has been initialized, the next process is to apply the masked
patch onto the training input image. For the initial patch weights, the black areas of the
QR code symbol (i.e., the QR code’s contents) will be set to 0, since such an area would not
be trained and must be kept. The adversarial QR patch p′ is computed by maximizing the
expectation of the [6]’s function as follows:

p′ = argmax
p

Ex∼X,r∼R,l∼L[log Pr(ŷ|A(p, q, x, r, l))] (3)

where ŷ represents the target image classifier model’s confidence of the training image
being the target class, where the patch operator A is applied over the distribution of X
training set images. The patch location l and the randomized patch rotation r are also varied
over the distribution of locations L and rotations R to improve the patch’s resiliency against
varied placement locations and angles. Finally, q refers to the string used to generate the
QR code symbol on the patch.

The QR adversarial example training process is displayed in Figure 2 where Equation (3)
is applied during the process. The process starts with the forward and backward propaga-
tion on the adversarial example xadv, where the gradient of the loss toward the target class
obtained from backward propagation ∇x J is used to update the patch in Update(p,∇x J).
The update function can be expressed as:

p′new = p′ −∇x J (4)

where p′ is the current patch, and p′new is the updated patch.

Figure 2. The architecture of the QR adversarial attack system for one training sample.
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The updated patch p′new is then reapplied onto the training image using the same
operator A(p, q, x, r, l). The operator will recreate the adversarial example xadv, which
will be re-evaluated by the target image classifier model to obtain the training image’s
confidence value of the target class ŷ. The training process will stop once the output
prediction confidence value ŷ exceeds the target confidence value y′ or once the training
process reaches the maximum amount of iterations specified from the parser before training.
The final adversarial example xadv along with the adversarial QR patch p′ is then returned
from the process.

In addition, if the adversarial example xadv is successful in attacking the target model
during the training process, it will be saved into the file system for further usage. Finally,
as the objective of the training process is to alter the output prediction values from the
target classifier network, the ground truth is not concerned with the backward propagation
process of the target classifier network.

2.3. Circular-Shaped QR Adversarial Patch Implementation

It was observed in our empirical approach that the circular-shaped adversarial patches
can retain their adversarial efficacy with each training iteration better than their square-
shaped counterparts [25]. Therefore, an idea is implemented to apply the QR symbol
onto a circular-shaped adversarial patch. The circular-shaped QR patch creation process
is mostly homogeneous with the process to generate the square-shaped QR patches with
several adjustments. Firstly, the QR code symbol is embedded at the size of 85% of the
circular patch’s diameter instead of just using the generated QR image directly. This is to
increase the area of adversarial perturbation while retaining the QR code symbol’s size
compared to the square QR patches. Secondly, the size of the circular-shaped QR patch is
slightly bigger compared to its squared counterpart (100 × 100 pixels for circular-shaped
QR patch compared to 74 × 74 pixels for square QR patch) as the circular-shaped QR patch
needs larger space to contain the same sized QR code as the square QR patch. Finally, the
initial color of non-QR parts of the circular-shaped QR patch is randomized.

The initial circular-shaped QR patch is displayed in Figure 3, and the circular-shaped
QR patch after the training process (τ = 50) is displayed in Figure 4. For comparison,
Figure 5 displays the trained square-shaped QR patch from [26].

Figure 3. Initial circular QR patch.

Figure 4. Trained circular QR patch.
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Figure 5. Trained square QR patch.

2.4. QR Code Visibility Improvement by Color Intensity Adjustment

The adversarial patch algorithm will sometimes produce black color patterns that
reduce the visibility of the QR symbol on the patch. To address this issue, we adjust the
patch’s black, non-QR-symbol areas to help distinguish between the QR symbol and the
adversarial parts of the patch.

The process is done by creating a quiet zone surrounding the QR symbol by increasing
the color intensity of the trained patch’s black (R:0, G:0, B:0) parts, making the patch more
visible to a QR code scanner to read the patch’s QR contents. The τ addition function can
be defined as:

p′out(u, v) =

{
p′(u, v) + τ, if p′(u, v) = [0, 0, 0]
p′(u, v), otherwise

(5)

where u and v represent the pixel’s coordinates on the patch p′, and τ represents a small
integer. Figure 6 displays the summary of processes to adjust the patch’s color intensity.
The leftmost image displays the trained QR patch before the color intensity adjustment, the
middle image displays only the black parts of the patch from the leftmost image, and the
rightmost image displays the patch after the color intensity adjustments.

Figure 6. The process to make the trained QR patch visible to a QR scanner.

3. Results
3.1. Initialization and Parameter Settings

The patch training process begins with the initialization of the target image classifica-
tion model, which will be instantiated from pre-trained image classification models. The
default target image classification model is a convolutional neural network model known
as InceptionV3 [10], which is also trained using the ImageNet ILSVRC2012 dataset [18]
used to train the adversarial QR patch. In addition, the target image class and the thresh-
old prediction value is also specified here to serve as a point to decide whether to move
on to the next iteration or not. The default threshold value is set to 0.9, or 90% of the
prediction confidence.
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Next, the training image dataset is initialized by sampling 50,000 validation sets
from the ImageNet ILSVRC2012 dataset, which is then split into training and testing
sets. The images are then modified to optimize the training process by resizing them to
299 × 299 pixels (to prevent errors during the patch training and testing processes) and
normalized using the dataset’s mean and standard deviation to improve time efficiency.
Finally, the image is identified incorrectly by the pre-trained image classifier model by
comparing the label of each image with the result from the pre-trained model.

3.2. Adversarial Efficacy of Advsersarial QR Patch

The adversarial efficacy of the square-shaped adversarial QR patch shown in Figure 7
has been tested and compared against the non-QR square and circular-shaped shape
patches shown in Figures 8 and 9. The test was performed by recording loss values over
patch updates calculated from randomly selected 6000 training images. Once the target
class confidence is higher or equal to 0.9, or after 500 iterations have passed, the weights on
the patch would then be carried over the next image to create the next attack iteration. The
results displayed in Figures 10–12 showed the loss values over patch updates, where the
rightmost axis displays the index of the training image processed per each update iteration.

Figure 7. Square QR adversarial patch.

Figure 8. Square non-QR adversarial patch.
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Figure 9. Circular non-QR adversarial patch.

Figure 10. Training loss for QR-shaped patch.

Figure 11. Training loss for square-shaped patch.
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Figure 12. Training loss for circular-shaped patch.

The results showed that all three types of patches show similar trends at an early
stage. Later on, however, the circular patch displayed higher resistance to background
scene changes as the loss values did not spike as much as its square counterparts, both QR
and non-QR. A conjecture is made that the reason for the square shapes’ lower resistances
is because the higher amount of edges and corners possess salient features hindering
other features on the adversarial example. Every time a new input image is fed into the
training system, such salient features would cause disruptions and lead to the spike of loss
displayed in Figures 10–12 .

The next test performed is to evaluate the convergence speed of the patch update of
each shape (Figure 13). This was done by measuring the average loss over 1000 update steps
of the three different patch shapes (circle, non-QR square, QR square), in which the training
images were sampled from the ImageNet dataset using the same seed for randomization
to ensure that the same set of images was used for all three patch shapes during training.
However, only 1000 iterations were performed for each scene due to computational power
limitations. Figure 13 depicts the loss curve for each shape after the experiment, where the
circular patch showed the fastest descent, followed by non-QR and QR square patches with
negligible differences.

Figure 13. Loss per gradient 1000 update steps from initial state.

3.3. Variation of Adversarial QR Patch Conditions

In this section, we tested two variations of Adversarial QR Patch conditions: Shape of QR
background and Color intensity (τ). The examples of the results are shown in Figures 14 and 15.
Each figure shows the evaluation results of an image before and after applying the square-
shaped adversarial QR patch and circular-shaped adversarial QR patch, including the
prediction before and after applying color intensity adjustments to the patch. We also
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demonstrated the saliency activation of the top predicted class of each patch shape using
GradCAM++ [27].

Furthermore, the circular-shaped QR patch’s adversarial efficacy after the color inten-
sity adjustments with the τ value was then evaluated and compared to the square QR patch.
The comparison was done by applying both patches onto 3492 ImageNet dataset images at
the same location (u, v) = (80,160). Then, the average confidence value of the target class
“Panpipe” was calculated with τ starting from 0 to 89. In addition, the circular-shaped QR
patches were generated and trained using the same configurations to square patches to
ensure accuracy of the comparison between both patch shapes.

The average confidence value of the “Panpipe” target class over τ updates from 0 to 89
can be found in Figure 16. The green line represents the average confidence value from the
adversarial examples with the square QR patch, while the blue line represents the average
score from the circular-shaped QR patch. The standard deviation of both patch shapes
is also shown as the error bars of identical colors. The results showed that the average
confidence value of the circular-shaped QR patch is higher than those of the square-shaped
QR patch up to τ = 80 where the average confidence value became almost zero. We believe
that the higher average adversarial efficacy and resistance to color intensity adjustments
are due to the corners and edges of the square-shaped in a square QR patch which contain
salient features disrupting other features in the image and reducing the square patch’s
effectiveness. The effects are identical for both cases of QR and non-QR adversarial patches.

Original Image Image with Square Patch Image with Square Patch(τ = 50)

Figure 14. Classification predictions before and after application of the adversarial QR patch and the
heatmap indicating saliency activation of the top predicted class (the color scheme is visualized from
blue (low) to red (high)).
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Original Image Image with Circular Patch Image with Circular Patch(τ = 50)

Figure 15. Classification predictions before and after application of the circular-shaped QR patch and
the heatmap indicating saliency activation of the top predicted class (the color scheme is visualized
from blue (low) to red (high)).

Figure 16. Average confidence values of the targeted “Panpipe” class for circular-shaped and square-
shaped QR patches over the varying τ from 0 to 89.

3.4. Trade-Off between Adversarial Efficacy and Scannability

Another experiment was performed to find the optimal τ value that can maximize the
adversarial QR patch’s visibility to a QR scanner while maintaining the patch’s adversarial
efficacy. The experiment was conducted by scanning the square and circular-shaped QR
patches on a computer screen with a mobile phone camera (Samsung Galaxy S10) while
also updating τ after every scanning attempt.

The results of the experiment can be seen in Figures 17 and 18, in which the vertical
blue dash line represents the minimal τ for the mobile phone’s QR scanner to be able to
scan the QR symbol for both patch types, which were approximately 42 for the circular-
shaped patch and 48 for the square patch. However, many factors can affect the patch’s
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scannability to a scanner, including the application used to scan, the reflection from the
scanned surface, the distance between the patch and the scanning device, and the brightness
of the scanning environment.

Figure 17. The scannability threshold experiments over the varying τ from 0 to 89 on the circular-
shaped QR patch.

Figure 18. The scannability threshold experiments over the varying τ from 0 to 89 on the Square
QR patch.

3.5. Class-Specific Adversarial Performance

Since the principle of the adversarial patch is to introduce a visual pattern that perturbs
the saliency of an existing visual feature in an image indicating the primary category of
object, the experiment in this section was performed to observe the adversarial efficacy
over images of different categories and find the image patterns that were most or least
influenced by the adversarial patch. In the experiments, we have applied five adversarial
QR patches (Non tau-adjusted): k ∈ {Orangutan (#365), Airliner (#404), Airship (#405), High
bar (#602), iPod (#605)}, as shown in Table 1. The adversarial QR patches were tested over
70,000 samples that were randomly selected over 1000 classes in the ImageNet dataset.

The evaluation metric can be expressed using the following equations:

Ct,i,k = f (x(i)adv,k) (6)

where Ct,i,k is the predicted class label using the image classifier f (·), i refers to an index of
N tested images in the class Ct,i,k, and xadv is the randomized sample with the kth patch
applied through the patch operator A(p, q, x, r, l) in Equation (3).
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To evaluate the success rate of the adversarial QR patch, we can calculate:

wi,k =

{
1, Cs,i,k 6= Ct,i,k

0, otherwise
(7)

where wi,k is a binary value indicating if the attack of the kth adversarial QR patch is a
success or failure. Cs,i,k is the ground-truth class of the source image before adding the
adversarial QR patch.

Wk =
1
N

N−1

∑
i=0

wi,k (8)

where Wk is the overall successful attack rate (0 to 1) given the kth adversarial QR patch.
Finally, the average successful attack rate of K types of adversarial QR patches (%) can

be written by:

Winrate =
100
K

K−1

∑
k=0

Wk (9)

Table 1. Five QR patches generated to test per-class adversarial performance.

Patch Class Index: Label Sample Images

365: Orangutan

404: Airliner

405: Airship

602: High bar

605: iPod

The results of the experiment are shown in Figure 19, where the vertical axis represents
the average win rate over a particular class index, which is represented by the horizontal
axis. Table 2 illustrates the average win rate across attacks of five different adversarial
QR patches: the top five classes that are most resistant, as well as the most vulnerable,
to the adversarial patch attack. From the results, it can be implied that larger, repeating
patterns such as landscapes are easier to fool than the classes with well-defined, non-
repeating features such as numbers on the odometer and the wing patterns of a monarch
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butterfly. However, the object size does not seem to have much effect on this aspect, since
the images from both the Valley and the Monarch classes have the subject covering almost
the whole frame.

Figure 19. The win rate averaged across five patch attacks.

Table 2. Top five classes that are resistant and vulnerable to adversarial patch attacks.

Index Class Winrate (%) Sample Images

979 Valley 95

976 Foreland 94

978 Seashore 89.30

885 Velvet 87.65

975 Lakeside 85.45

.. .. .. ..

.. .. .. ..

.. .. .. ..

181 Bedlington terrier 7.06

779 School bus 6.55

251 Dalmatian 5.97

323 Monarch 5.25

685 Odometer 4.86

3.6. Adversarial Performance Comparison against Other Learning Models

Using the evaluation metrics from Section 3.5, we applied the Adversarial QR Patch
of the class Airship (#405) trained by the InceptionV3 model on the test images. Then, we
classified the test images with the pre-trained model of Resnet50 [28] and VGG16 [13]
to observe the generalization of the adversarial QR patch trained by InceptionV3. To
understand whether the characteristics in adversarial performance observed in the previous
section also translate to other CNN models, the results are shown in Figure 20, and the
data are sorted in a descending manner averaging the win rate across all the three models.
The top five classes in Table 3, which are (Valley (#979), Foreland (#976), Seashore (#978),
Velvet (#885), and Lakeside (#975) have an average win rate of (0.874, 0.873, 0.724, 0.827, and
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0.776). The patch was only trained on the InceptionV3 model, yet it has worked in a similar
trend when used to attack against multiple models. This exemplifies the generality of the
adversarial patch as well as transferability across other different deep learning models.

Table 3. Top five classes and bottom five classes that are resistant to adversarial patch attacks when
averaged across three models, with previous entries from Table 2.

Rank Index Name ResNet50 VGG16 InceptionV3 Average Sample Images

1 996 Maitake 92.59 100.00 71.43 88.01

2 979 Valley 80.00 96.30 85.94 87.41

3 976 Foreland 78.05 90.63 93.10 87.26

4 147 Grey Whale 85.19 93.10 78.72 85.67

5 536 Docking 85.71 100.00 70.21 85.31

.. .. .. .. .. .. .. ..

9 885 Velvet 80.00 100.00 68.18 82.73

.. .. .. .. .. .. .. ..

20 975 Lakeside 83.33 77.42 72.00 77.58

.. .. .. .. .. .. .. ..

45 978 Seashore 79.17 55.56 82.69 72.47

.. .. .. .. .. .. .. ..

665 251 Dalmatian 65.31 44.44 12.31 40.69

.. .. .. .. .. .. .. ..

879 323 Monarch 46.67 30.16 10.00 28.94

.. .. .. .. .. .. .. ..

946 685 Odometer 38.10 29.17 2.74 23.33

.. .. .. .. .. .. .. ..

957 779 School Bus 28.30 30.77 6.90 21.99

.. .. .. .. .. .. .. ..

974 181 Bedlington
Terrier 24.19 28.21 4.48 18.96

.. .. .. .. .. .. .. ..
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Table 3. Cont.

Rank Index Name ResNet50 VGG16 InceptionV3 Average Sample Images

996 411 Apron 9.62 6.25 8.20 8.02

997 549 Envelope 3.28 3.45 16.39 7.71

998 610 T-Shirt 12.07 5.56 2.08 6.57

999 741 Prayer Mat 0.00 0.00 18.97 6.32

1000 721 Pillow 4.65 0.00 3.03 2.56

Figure 20. The win rate for adversarial QR patch attack (trained by InceptionV3) against three
classifiers: ResNet50, VGG16 and InceptionV3; the data are sorted in a descending manner from
averaging the win rate across all the three models.

4. Conclusions

To conclude, QR codes can be practically used as an adversarial patch against tradi-
tional image classification models while retaining their scannability, making them viable
for real-world application. Despite the trend where most QR patches are created in square
shapes, the experiment results revealed that the circular-shaped QR patch displayed a
stronger adversarial efficacy and scannability. The most acceptable τ value used to adjust
the patch’s dark parts, which maximizes the patch’s adversarial efficacy and scannability,
was found to be 48 for square-shaped patches and 42 for circular-shaped QR patches. We
have found that the patch trained against a particular classifier network could also be used
on other models. Furthermore, we have found that image classes composed of repeatable
patterns are much easier to fool than those that were not. Finally, further expansions can be
made to this research in the future, including studying methods to improve the QR code’s
scanning distance and angle, and time and resource optimization for the adversarial patch
training process. The length of the QR code string can also be studied further to see if it has
any impact on the adversarial patch’s efficacy and QR scannability.
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