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Abstract: Recent advances in depth measurement and its utilization have made point cloud pro-
cessing more critical. Additionally, the human head is essential for communication, and its three-
dimensional data are expected to be utilized in this regard. However, a single RGB-Depth (RGBD)
camera is prone to occlusion and depth measurement failure for dark hair colors such as black hair.
Recently, point cloud completion, where an entire point cloud is estimated and generated from a
partial point cloud, has been studied, but only the shape is learned, rather than the completion of
colored point clouds. Thus, this paper proposes a machine learning-based completion method for
colored point clouds with XYZ location information and the International Commission on Illumina-
tion (CIE) LAB (L∗a∗b∗) color information. The proposed method uses the color difference between
point clouds based on the Chamfer Distance (CD) or Earth Mover’s Distance (EMD) of point cloud
shape evaluation as a color loss. In addition, an adversarial loss to L∗a∗b∗-Depth images rendered
from the output point cloud can improve the visual quality. The experiments examined networks
trained using a colored point cloud dataset created by combining two 3D datasets: hairstyles and
faces. Experimental results show that using the adversarial loss with the colored point cloud renderer
in the proposed method improves the image domain’s evaluation.

Keywords: point cloud completion; colored point cloud; deep learning

1. Introduction

Currently, three-dimensional (3D) data measurement is becoming prevalent with the
development of depth sensors such as LiDAR sensors. Smartphones are also equipped
with depth sensors for face authentication, portrait photography, and augmented reality
(AR) applications. Point cloud data, the same as 3D data measurement and utilization, are
becoming increasingly important and popular as a method of expression for 3D contents
such as AR and virtual reality (VR). The human head is an important part of the human
body for communication, and its 3D data can be used in communication as well. However,
when a dark hair color is present, a single RGBD camera is prone to occlusion and depth
measurement failure. Therefore, obtaining complete 3D data of the entire head from RGBD
images of the head with depth loss is difficult.

With the advancement of machine learning-based methods in recent years, research
on point clouds based on deep learning, which directly processes 3D point clouds, has
advanced. One such task is called point cloud completion, where an entire point cloud is
estimated and generated from an incomplete point cloud. Point cloud completion methods
enable the completion of a single depth image with occlusion, obtaining an entire point
cloud of the target object. However, previous studies on point cloud completion have only
dealt with shapes and could not process point clouds, including color information.

Therefore, this paper proposes a machine learning-based colored point cloud com-
pletion method to obtain complete 3D data from RGBD images of the human head with
depth loss in a section of a hair. As the loss for learning colored point clouds, this paper
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proposes a color difference loss between point clouds based on the Chamfer Distance (CD)
or Earth Mover’s Distance (EMD), which are used for point cloud shape evaluation. In
addition, to improve the visual quality, the proposed method applies an adversarial loss
to L∗a∗b∗-Depth images of the output point cloud from a differentiable point renderer.
Experiments were conducted using the proposed method to complement a partial point
cloud of the human head to a complete point cloud of the head, including color information,
and the results were evaluated in the point cloud and image domains.

2. Related Work

3D measurement methods are mainly classified into two types: active and passive.
The active type includes active stereo methods, which use a spotlight or pattern light, and
optical radar methods, which measure light reflection. Light detection and ranging (LiDAR)
and some RGBD cameras use time-of-flight sensors based on the optical radar method. It is
challenging to use these active methods to measure the depth of an object that absorbs light
because a light pulse is applied to the object, and the reflected light is read. The passive
type includes stereo image methods, which calculate depth via triangulation using two
cameras, and the Structure from Motion method, which calculates the camera position and
3D shape of an object from multiple images from different viewpoints. In these methods,
it is necessary to search for the corresponding feature points from multiple images, and
it is difficult to measure the 3D shape of an area with no pattern. Thus, it is difficult to
measure the 3D shape of an object that absorbs light and whose features are difficult to
detect. Therefore, hair color is typically monochromatic; depth measurement is likely to
fail for dark hair such as black hair.

Recently, research on deep learning-based methods has advanced in various fields,
including image processing, natural language processing, and audio processing. Various
deep learning-based methods have been proposed for point cloud data, including Point-
Net [1]. PointNet is a classifier and segmentation network that inputs and outputs point
cloud data directly. These point cloud data are unordered without any relationship among
data points. In PointNet, a shared multilayer perceptron (MLP) is performed for each data
point, and then max pooling is performed to extract features of the entire point cloud to
achieve order invariance. In PointNet++ [2], point clouds are sampled and grouped in
a multi-step process, and PointNet is applied to them to process local features. It also
performs multiscale grouping, which combines the features of multiple scales. Dynamic
graph convolution neural networks (CNNs) (DGCNN) [3] perform graph convolution on
data points in a k-neighborhood in feature space. Point-voxel CNNs (PVCNNs) [4] are
networks using PVConv, a combination of point cloud and voxel-based methods. PVConv
internally voxelized and convoluted point clouds without increasing the resolution of
voxels using a 3DCNN. Compared with PointNet++ and DGCNN, PVCNN achieves high
accuracy in part segmentation with low latency and low graphics processing unit (GPU)
memory usage.

FoldingNet [5] is an autoencoder for point cloud shapes. The decoder of FoldingNet
does not transform into a 3D point cloud using the fully connected layer but instead
transforms the two-dimensional grid coordinates into the point cloud surface by folding
them step by step.

The point completion network [6] is a point cloud completion method and is a PointNet
based encoder with shared MLP and max pooling. Its decoder is a multi-stage generator
that generates a coarse output point cloud using a fully connected layer and then outputs
a detailed point cloud using a folding-based layer. The morphing and sampling network
(MSN) [7] uses a morphing-based decoder. MSN uses a folding-based method to generate
multiple patch point clouds for the middle output. Thus, it is possible to deal with complex
shapes that are difficult to achieve by folding a single grid. Then, the middle output point
cloud is combined with the input point cloud and downsampled to uniform density by
minimum density sampling. Finally, the final point cloud is output by refinement using a
residual network. Since the EMD is a better visual metric than the CD, which is often used
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to evaluate a point cloud shape, MSN uses an approximate algorithm EMD for training.
SpareNet [8] uses channel-attentive EdgeConv in its encoder and residual network. The
morphing-based decoder uses style-based point generation, which is inspired by Style-
Generative Adversarial Network(GAN) [9]. Additionally, a differentiable point renderer
converts an output point cloud into a depth image, and a CNN-based discriminator is used
for adversarial learning. There is Cycle4Completion [10], which establishes a geometric
correspondence between complete and incomplete shapes from both directions rather than
one direction from incomplete shapes to complete shapes. The other point cloud completion
method uses the adversarial samples with PMPD-k attack (k-iteration projection on the
mean of principal directions attack) [11].

Point2Color [12] performs point cloud colorization to estimate the color information
of each point from a point cloud with no color information. The network uses PointNet++
for coloring. For training, Point2Color applies adversarial loss to the output point cloud
using PointNet++ and adversarial loss to the rendered image of the output point cloud
using CNNs.

3. Proposed Method
3.1. Dataset

Deep learning requires a large amount of data for training. However, there is no
large-scale 3D dataset of the entire heads, including hair. This study combines a human
face 3D dataset and a hairstyle dataset to create a head point cloud dataset, including
color information.

This study uses FaceScape [13] as the face dataset. FaceScape contains 847 faces, with
20 different facial expressions recorded for each face. Five expressions from the dataset are
used: neutral, mouth stretch, jaw left, lip roll, and eyes closed.

This study uses USC-HairSalon [14] as a hairstyle dataset. USC-HairSalon contains
343 types of hairstyles. The same data expansion is performed as in HairNet [15], one of the
previous studies using USC-HairSalon. In this data extension, each hairstyle is classified by
hair length (XS, S, M, L, and XL) and hair curl (straight or curly), and two hairstyles of the
same type can be blended to create a new hairstyle.

The 3D data of these faces and hairstyles are combined using the 3DCG software
Blender [16].

The Particle Hair and the Principal Hair BSDF shader are used to draw the hair.
Melanin and Roughness are set randomly to reproduce black, brown, and blonde hair,
rendering RGBD images. A single point cloud is created as the ground truth point cloud
based on RGBD images from six directions. This point cloud is downsampled and converted
to a point cloud of 16,384 data points.

For partial input point cloud, we created RGBD images by placing cameras at 60◦ left
and right, 30◦ above, and 10◦ below the center of the neck randomly. The amount of change
when the hair is illuminated and the Perlin noise to reproduce the depth loss in the hair
part are used, as shown in Figure 1. This study assumes that the part of the hair that tends
to have depth loss in the dark hair color, such as black hair, is the part that absorbs light.
In this study, we calculated the difference in grayscale between the original image and an
image illuminated from the camera position and deletes the depth information in areas in
which the difference is small. The depth image of the hair part is further masked using
Perlin noise. This RGBD image is converted to a point cloud and downsampled to data
4096 points. These input point clouds are created from four different directions for one
ground truth point cloud.

Finally, the dataset is scaled in this study so that the 3D position coordinates are in the
range of [−1, 1]. In addition, the color information is converted from RGB to L∗a∗b∗ and
multiplied by 1/100. OpenCV [17] is used for color transformation, and the white point is D65.
An example of the created colored point cloud dataset is depicted in Figure 2. The dataset
was created by dividing the original data into 70/15/15 as training/validation/test sets.
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(a) (b) (c)

(d) (e)

Figure 1. Reproduction of missing depth images in input point clouds. (a) color image; (b) lighted
image; (c) difference image; (d) Perlin noise; (e) reproduced missing depth image.

(a) (b)

(c) (d)

Figure 2. An example of a colored point cloud data set of the head. (a) color image; (b) depth image;
(c) ground truth point cloud; (d) partial input point cloud.

3.2. Network

A network based on the MSN [7] architecture is used, as shown in Figure 3. Pre-
liminary experiments with point completion network [6] resulted in more approximate
output. Therefore, an MSN based network with a refiner that adds the input and coarse
outputs together and processes them again is adopted from previous studies of point cloud
completion. There is also the issue of computational complexity, since the network has an
encoder, decoder, refiner, point renderer, and discriminator.

After the encoder extracts global features, the morphing-based decoder morphs the
32 unit squares [0, 1] into a patch point cloud of 512 data points and outputs a coarse point
cloud of 16,384 data points. The middle output point cloud and the input point cloud are
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added and converted into a point cloud of 16,384 data points with uniform density using
minimum density sampling. Finally, a residual network is used to refine and output the
final point cloud. In MSN, only XYZ position coordinates are inputs and outputs. This
study inputs and outputs the point data of six dimension vectors, including L∗a∗b∗ color
information, and complements the colored point cloud. Since the L∗a∗b∗ color space is a
uniform color space, unlike the RGB color space, it can approximate the color difference
perceived by humans using the Euclidean distance.

In the proposed network, the encoder and residual network are changed to use
PVConv [4]. As shown in Figures 4 and 5, global features and difference information
are extracted by convolution using PVConv with voxel resolutions of 32× 32× 32 and
16× 16× 16. As the decoder, SpareNet’s [8] style-based folding layer is used.

A GAN with a differentiable point renderer is used for training. This network is based
on the SpareNet implementation but modified to render L∗a∗b∗-Depth images, as shown
in Figure 6. The point renderer is used to create L∗a∗b∗-Depth images of the input and
output/ground truth point cloud from four directions: front, back, left, and right. The
discriminator primarily consists of four CNN blocks to determine whether an image is of
the ground truth point cloud or the complemented point cloud.

Ground 

Truth

Encoder
Morphing

-Based

Decoder

Minimum

Density

Sampling

Residual

Network

Partial

Input

Final

Output

Point

Renderer

Discriminator

Point

Renderer

Discriminator

Coarse

Output

Figure 3. Architecture of the proposed network.

PVConv (32×32×32)

PVConv (16×16×16)

PVConv (16×16×16)

Shared MLP

Shared MLP

global feature

Max pooling

(4096, 6)

(4096, 16)

(4096, 32)

(4096, 32)

(4096, 128)

(4096, 1024)

(1024)

Input

Figure 4. Encoder of the proposed network.
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PVConv (32×32×32)

PVConv (16×16×16)

PVConv (16×16×16)

Shared MLP

Shared MLP

(16,384, 7)

(16,384, 16)

(16,384, 32)

(16,384, 32)

(16,384, 128)

(16,384, 512)

down sampled
point cloud

Max pooling

(512)repeat

Shared MLP

Shared MLP

(16,384, 256)

Shared MLP

(16,384, 256)

Shared MLP

(16,384, 128)

(16,384, 6)

Final Output

(1
6
,3

8
4
, 1

2
3
2
)

Figure 5. Residual network of the proposed network.

(a) (b) (c)

Figure 6. Point-rendered image of a point cloud; (a) point cloud; (b) color image; (c) depth image.

3.3. Loss

CD [18] and EMD [18] are frequently used as evaluation methods for point cloud
shapes. CD represents the average distance between each point in point cloud S1 and the
nearest neighbor in another point cloud S2:

LCD(S1, S2) =
1
2
(

1
|S1| ∑

x∈S1

miny∈S2 ||x− y||2 +
1
|S2| ∑

x∈S1

miny∈S1 ||x− y||2) (1)

On the other hand, EMD is computed for two point clouds of the same size so that the
average distance of bijection φ pairs is the smallest:

LEMD(S1, S2) = ∑
φ:S1→S2

1
|S1|

minx∈S1 ||x− φ(x)||2 (2)
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As for MSNs, EMD is more computationally expensive but has better visual evaluation
performance than CD. Therefore, EMD is used as the loss function of the point cloud shape
using an approximation algorithm similar to MSN.

As the loss function for color, we used the average color difference in the L∗a∗b∗ color
space between the points for which CD or EMD calculates the distance. In addition, the
expansion loss Lexp, which suppresses the expansion of each patch point cloud by the
morphing-based decoder, is added to the loss function. Without a GAN, the loss function
consists of the shape loss LEMD, color loss Lcolor for the middle and final output point cloud,
and expansion loss Lexp for the middle output point cloud:

LwithoutGAN =LEMD(Sgt, Scoarse) + LEMD(Sgt, S f inal)

+ ωcolor(Lcolor(Sgt, Scoarse) + Lcolor(Sgt, S f inal)) + ωexpLexp(Scoarse)
(3)

The weights are set to ωcolor = 0.3 and ωexp = 0.1.
In the case of using a GAN, LwithGAN adds an adversarial loss LGAN to LwithoutGAN .

LGAN consists of the loss Ladv for estimating the L∗a∗b∗-Depth image π(S) using the
discriminator, the L-1 distance Limg between L∗a∗b∗-Depth images of the output point
cloud and the ground truth point cloud, and the L-2 distance L f eat between feature maps
Di of complemented point cloud images and ground truth point cloud images using four
blocks of the discriminator. These losses are formulated as

Ladv = (1D[π(S f inal)])
2 (4)

Limg =
1

4HWC
||π(Sgt), π(S f inal)||1 (5)

L f eat =
4

∑
i

ai
HiWiCi

||Di[π(Sgt)], Di[π(S f inal)]||22 (6)

ai =
Ci

∑4
i Ci

(7)

with HWC as height, width, and channels of feature map shape by each deiscriminator
block i.

LwithGAN = ωrecLwithoutGAN + LGAN (8)

The weights are set to ωrec = 200.0, ωadv = 0.1, ωimg = 1.0, and ω f eat = 1.0.

4. Experimental Results

Four types of training were performed using MSNs with only input/output changes:
CD/EMD-based color loss, with/without GANs. In this study, we also experimented with
the proposed network for CD-based color loss, with/without GANs. Adam was used as
the optimization function for the training. The training was performed for 150 epochs each,
and the one with the lowest validation loss was adopted. Each training took approximately
five days on a computer equipped with three RTX2080ti or GTX1080ti.

4.1. Morphing and Sampling Network

Figure 7 shows the result of the colored point cloud completion for the test data using
the learned MSN. The figure shows that the point cloud of the entire head can be roughly
generated from the missing point cloud, including color information. In the case with GAN,
parts such as the mouth are drawn more clearly than in the case without GAN.

Table 1 shows the evaluation result of CD, EMD, CD-based color difference, EMD-
based color difference, Limg, and Fréchet Inception Distance (FID) [19] for the trained
MSN using the test data. CD and EMD are the most common metrics for evaluating point
cloud shapes in point cloud completion tasks. FID measures the distance between the
distributions of two image groups and is used in image generation tasks employing a
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GAN. In this experiment, the final output point cloud and the ground truth point cloud are
evaluated as point-rendered images from the front. Table 1 shows that the accuracy of the
point cloud shape tends to be higher when the EMD-based color difference loss is used. It
is considered that the learning converged well because the calculations of the shape and
the color difference were performed at the same points.

On the other hand, for the color difference between CD- and EMD-based point clouds,
the accuracy tends to be higher when using the CD-based color loss. Therefore, the CD-
based color loss is considered appropriate. Since Limg is the L1 distance to rendered
L∗a∗b∗-Depth images, models without a GAN with better CD, EMD, and color difference
evaluation produced better results. In addition, when using a GAN, the evaluation in the
point cloud domain is lower, but the evaluation in the FID is higher than that without
a GAN. In other words, more visually appropriate completion is possible by using the
adversarial loss with a differentiable point renderer.

Table 1. Evaluation results of learning with MSN.

CD EMD CD-Based
Color Difference

EMD-Based
Color Difference Limg FID

Lcolor : CD-based, LGAN : unused 1.464 × 10−2 4.367 × 10−2 5.176 × 10−2 5.427 × 10−2 6.830 × 10−3 127.8

Lcolor : EMD-based, LGAN : unused 1.443 × 10−2 3.992 × 10−2 5.296 × 10−2 5.465 × 10−2 6.805 × 10−3 122.8

Lcolor : CD-based, LGAN : used 1.549 × 10−2 4.478 × 10−2 5.281 × 10−2 5.522 × 10−2 7.126 × 10−3 94.7

Lcolor : EMD-based, LGAN : used 1.494 × 10−2 4.441 × 10−2 5.711 × 10−2 5.736 × 10−2 7.163 × 10−3 100.7

Figure 7. Completion results using MSN.

4.2. Proposed Network

Figures 8–10 show the colored point cloud completion results for the test data using the
trained proposed network. Comparing the evaluation result with the result of MSN using
the same loss function in Table 2, the proposed network performed better in all metrics.
However, in terms of the EMD, the proposed network could not outperform the MSN using
the EMD-based color difference loss without a GAN. This is due to the proposed network’s
overtraining, Figure 11 shows the trends of LEMD(Sgt, S f inal) and Lcolor(Sgt, S f inal) during
the training of the proposed network with a GAN. From Figure 11, the proposed network is
overtrained, especially in terms of shape. It is necessary to expand the dataset to suppress
overlearning.
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Furthermore, interpolation did not work well for complex hair shapes such as long
and curly hair. This appears to occur because the shape tends to be average and the point
density is insufficient. For complex shapes, the use of an adversarial loss by a point cloud-
based discriminator and upsampling of the point cloud by a multi-step decoder should
be considered.

In addition, these results show that some details of the input point cloud may not be
retained in the output. This is because the input point cloud is encoded. Increasing the size
of global features may mitigate this problem, but we believe it is a tradeoff for overlearning.
The proposed method uses a residual network for refinement, but it samples a point cloud
regardless of whether it is an input point cloud or a coarse output point cloud, so some
details may not be retained. In the future, we will consider using refinement twice, as
SpareNet does, or using skip connections to convey input details other than global features.
Furthermore, adding a one-sided CD from the input point cloud to the loss function may
mitigate this problem.

Table 2. Evaluation results of learning with the proposed network.

CD EMD CD-Based
Color Difference

EMD-Based
Color Difference Limg FID

Lcolor : CD-based, LGAN : unused 1.352 × 10−2 4.172 × 10−2 4.986 × 10−2 5.251 × 10−2 6.504 × 10−3 110.2

Lcolor : CD-based, LGAN : used 1.345 × 10−2 4.139 × 10−2 5.023 × 10−2 5.321 × 10−2 6.550 × 10−3 80.9

Figure 8. Completion example 1 using the proposed network.
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Figure 9. Completion example 2 using the proposed network.

Figure 10. Completion example 3 using the proposed network.
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Figure 11. Losses during the learning. (a) EMD for final output; (b) CD-based color difference for
final output.

4.3. Completion of Actual Data

Figure 12 shows the completion result of the actual data measured by Azure Kinect
DK using the proposed network with a pretrained GAN. This result confirmed that the
color of the face part was not reproduced correctly compared with the complete results for
the test data. This is probably because the lighting environment of all data in the training
dataset was the same. Therefore, it is necessary to create a dataset reproduced in various
lighting environments in the future.

(a) (b)

Figure 12. Results of completion the actual data using the trained proposed network with GAN.
(a) Completion example 1; (b) Completion example 2.

5. Conclusions

In this study, we proposed a machine learning-based completion method for colored
point clouds, which complements a colored point cloud with missing head parts to a
complete point cloud of the entire head, including color information. We demonstrated
that an approximate shape can be obtained using a dataset created by combining 3D data
of the face and hair. Colored point clouds can be learned by using a color difference loss
based on the CD or EMD. For the evaluation of color and images, we found that using the
CD-based color loss is better than the EMD-based color loss. In addition, the proposed
network improved the completion accuracy by using PVConv and the style-based folding
layer. In this study, we confirmed that learning with the adversarial loss for L∗a∗b∗-Depth
images using a point renderer provides adequate visual completion.

Future work includes improving the network and loss function and expanding the
dataset. The current method cannot adapt complex hairstyles and data measured with
actual RGBD cameras, and the point density is insufficient to represent details. Methods
that have proven effective in point cloud completion, such as a multi-step generator and a
skip connection, could be used to improve the process. It is necessary to compare how
these point cloud completion methods differ in learning colored point clouds. Adding
a point cloud-based adversarial loss and a one-sided CD from input point clouds to the
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loss function is expected to realize better desirable learning. The dataset also needs to be
expanded to reproduce various measurement environments to mitigate overfitting and
improve real data completion. The completion output of our network tends to be blurry,
and the completion accuracy needs to be improved for practical applications. We believe
that deep learning-based colored point cloud completion can be extended not only to the
head but also to other types of input, such as the human body. It is expected that the
colored point cloud completion will be supplemented to the head and the entire body in
the future and will apply to several scenes.
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