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Abstract: Today, the processing and analysis of mammograms is quite an important field of medical
image processing. Small defects in images can lead to false conclusions. This is especially true when
the distortion occurs due to minor malfunctions in the equipment. In the present work, an algorithm
for eliminating a defect is proposed, which includes a change in intensity on a mammogram and
deteriorations in the contrast of individual areas. The algorithm consists of three stages. The first is
the defect identification stage. The second involves improvement and equalization of the contrasts
of different parts of the image outside the defect. The third involves restoration of the defect area
via a combination of interpolation and an artificial neural network. The mammogram obtained as
a result of applying the algorithm shows significantly better image quality and does not contain
distortions caused by changes in brightness of the pixels. The resulting images are evaluated using
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and Naturalness Image Quality
Evaluator (NIQE) metrics. In total, 98 radiomics features are extracted from the original and obtained
images, and conclusions are drawn about the minimum changes in features between the original
image and the image obtained by the proposed algorithm.

Keywords: mammography; image processing; device malfunctions; interpolation; mammogram defects

1. Introduction

Neoplasms in the mammary gland represent the most common cancer type among
women. Recently, the number of new patients diagnosed with breast cancer reached
approximately two million per year [1,2]. The early diagnosis of lesions of the mammary
gland provides good opportunities for the elimination of these abnormalities. Therefore,
medical organizations around the world are trying to provide frequent and easily accessible
mammography services [3].

Both mobile mammography and stationary mammography are widely used, providing
different levels of detail and image quality. Mobile mammography stations often produce
low-quality images. A previous paper [4] compared the image quality levels between
stationary and mobile services and concluded that the quality of images from mobile
devices is insufficient. Stationary and mobile devices, due to their high workload, may
experience disturbances in the imaging matrix or other defects that affect the image quality.
False-positive results increase the overall medical costs for society, while false-negative
results do not allow the early detection of diseases.

Due to their popularity, mobile mammography services should at least provide images
of acceptable quality, and the image quality should have a minimal impact on cancer detec-
tion. Due to the radiation received, it is highly undesirable to take “extra” mammographic
images [5]. However, image defects are often not critical and specialists can correctly inter-
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pret the mammograms. Despite this, when conducting automatic analyses, the attained
quality is not sufficient.

Image quality is especially important in automatic analysis for the correct characteri-
zation of features [6] and for the accurate operation of artificial neural networks [7–10]. It
should also be taken into account that for the elimination of image defects, algorithms are
used that take up a significant part of the diagnostic time.

Various approaches are used to improve mammogram images. For example, in [11], a
method based on a non-subsampled shearlet transform was used to eliminate image noise.
In [12], the linearly quantile separated histogram equalization grey relational analysis
method was presented. This method enhanced the local and global contrast, highlighting
the desired areas. In [13], several methods for eliminating noise were proposed, and the
median filter, max and min filters, and Weiner filter were considered.

Dynamic unsharp masking in a Laplacian pyramid was proposed in [14] to improve
the image and to better highlight the internal structure of the mammogram. In [15], a
comparison of different methods of cancer detection on mammogram images was carried
out. It was proposed the use of the following procedures to improve the quality: low-pass
filter, Gaussian smoothing, subsampling operations, and morphological operations. To
eliminate noise, median filtering was also used with a 3 by 3 window [16,17]. In [18],
various image quality improvement algorithms were presented, such as the synthetic
minority over-sampling technique to improve the training set; a Gaussian pyramid for
image scaling with minimal loss; histogram equalization, an adaptive mean, median filters,
log transforms, and a Wiener filter to increase contrast; and thresholding of the pixel
intensity to eliminate artifacts. In [19], an image filtering method based on the use of a
fractal mask was presented.

The most commonly used method is contrast-limited adaptive histogram equalization
(CLAHE) in combination with certain other algorithms. For example, in [20], to increase
the image contrast, CLAHE was used with entropy-based intuitionistic fuzzy. In [21], the
image was first converted to negative and then equalization was applied. In [22], CLAHE
was combined with a discrete wavelet transform to increase the image contrast. In [23],
several methods of image enhancement were compared: the combination of CLAHE with
bilateral filtering, a log transform, histogram equalization, a Gaussian filter, a Laplacian
filter, and median filters.

In the present work, we consider the processing of mammograms, the images of
which have a clearly defined defective strip with a strong increase in brightness, up to the
complete illumination of the image in the area of the defect. Similar defects can occur for
detectors that are in motion. As an example, normal ray detection is carried out first, which
is followed by a “hardware failure” expressed in the form of a band that differs significantly
in characteristics from a “good” image. Then, further detection is carried out with violations,
which can cause both hardware and software distortions. These distortions are expressed
in violation of the contrast or the appearance of noise and interference. In the present work,
violations that are visible as blurring of the image are considered. Existing noise elimination
algorithms cannot cope with such a “complex” defect. Simultaneously with the defect,
there is also a decrease in the contrast of one-half of the image. An algorithm for restoring
areas with a non-linear increase or decrease in image brightness is proposed. In the area
of the defect, where there is a complete loss of information, the image is interpolated and
restored by an artificial neural network. The reconstructed mammogram is obtained by
overlaying two images, which are interpolated (information about the light lines on the
mammogram) and reconstructed by a neural network (information about the background).

The processed image should have approximately the same contrast; the vessels, fibrous
and glandular tissues contained in the image should be well “read”. We use the BRISQUE
and NIQE metrics to assess the perception of the entire image, as well as ten other metrics
to assess the accuracy of recovering a lost image (an image in the band area). A comparison
is also made on 98 radiomics features extracted from the original and obtained images.
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2. Materials and Methods

Mammogram images contain artefacts and may have low contrast, which can sig-
nificantly complicate the diagnosis process. The image recovery algorithm contains the
following steps:

• Determining the core of the defect (black pixels and excessively bright pixels);
• Defect determination. Restoration of pixels outside the core;
• Equalizing the contrast of the entire image, except for the defect;
• Restoration of the core of the defect by the interpolation algorithm;
• Selection of light lines on the restored image;
• Restoration of the background of the core of the defect and of the area adjacent to the

core with an artificial neural network;
• Overlaying of the interpolation results (highlighted lines) on the background obtained

by the neural network.

Next, we take a closer look at some of the algorithms used.

2.1. Improving the Image Contrast

One of the main tasks in image processing is to increase the contrast. Contrast creates
a visual difference that distinguishes an object from the background and other objects.
The main goal is to improve the visual quality of the image. Histogram equalization (HE)
is a commonly used method for modifying a histogram. However, the HE is a global
image adjustment method that cannot effectively improve the local contrast, as the effect
will be very poor in some situations. Therefore, the contrast-limited adaptive histogram
equalization (CLAHE) method is used.

In the present work, we use the CLAHE algorithm to remove noise and enhance
the contrast of mammograms. The filter parameters directly depend on the modes of
intensity distributions on opposite sides of the defect. For the function in python, we
choose grid_size = 8 by default, while clip_limit is set to values on a case-by-case basis.
Other contrast enhancement algorithms can also be used, for example the multi-fractal
method [16].

2.2. Recovery of the Lost Image

The classic approach for recovering a lost image is interpolation or approximation.
Algorithms based on the Fourier spectrum, performing phase, and amplitude reconstruc-
tion are also used [24]. The main idea of this method is the sequential calculation of the
image spectrum, with changes made only to the defect without changing the rest of the
image [25–27].

In recent years, artificial neural networks have also been widely used [28,29]. The
main advantage of the method is the high speed of work on high-resolution images with
an acceptable level of restoration quality and the simplicity of the training set.

In the present work, two neural networks are used for the algorithm: a coarse–fine
network for coarse gap filling in an image compressed to 256 × 256 and a refine network
for more accurate gap filling in an image compressed to 512 × 512.

To improve the accuracy of filling a gap in the original image, the following parameters
are calculated:

• The contextual residual, which is the difference between an original image and an
image obtained after downsampling to 512 × 512 and further upsampling to an
original resolution;

• Attention scores, which act as characteristics of the region affinity of the part of the
image outside the gap to the gap filled by the neural network. They are used to transfer
image structure information outside the gap to the inside.

Based on these two parameters, aggregated residuals are calculated, which are then
added to the filled gap for sharpening.



J. Imaging 2022, 8, 128 4 of 17

2.3. Image Binarization

Binarization is one of the effective ways to determine the threshold level of shades
of gray for stratification of the original image into the analyzed object and background.
The quality of the image binarization process is improved as a necessary condition for
increasing the efficiency of selection (detection) of given objects [30]. The binarization
threshold is defined as an optimization problem in determining the maximum measure
of distinguishability of classes [31] or is chosen empirically. Binarization is also actively
used in mammography to eliminate image noise [32,33]. Other approaches are also used
to highlight an image against the background; for example, the thresholding method and
morphological operations were effectively applied in [17].

The main parameter of such a transformation is the threshold, which represents a
value with which the brightness of each pixel is compared. Various binarization methods
exist that can be conditionally divided into two groups: global and local. In the former
case, the threshold value remains unchanged during the entire binarization process. In
the latter case, the image is divided into regions, in each of which a local threshold is
calculated. There also exist methods (for example the Otsu method) in which a threshold is
automatically calculated that minimizes the average segmentation error, i.e., the average
error from deciding whether image pixels belong to an object or background.

The main goal of binarization is a radical reduction in the amount of information that
one has to work with. In the present work, incomplete thresholding with a global threshold
(determined empirically) is used to extract light areas in the image.

3. Results

The original image of 4052 by 5539 pixels contains a vertical defect, which consists
of a sharp increase in the intensity of the image in the area of the defect. The defect
may have a different width along the vertical line. Defect values can reach from several
tens to hundreds of pixels. The increase in brightness in the defect strip can be quite
significant, in some cases reaching full illumination (maximum brightness). Examples of
such mammograms are shown in Figure 1. The mammograms are taken retrospectively
from patient records.

It can be seen in Figure 1a that the intensity does not reach maximum values in the
region of the defect. However, the area of increased brightness is quite large. In Figure 1b,
there is an illuminated defect, and in this area there is a complete loss of information.
Unlike images in which the brightness increase is slow, in this case the brightness increase
is quite sharp. This can be clearly seen in Figures 2 and 3.

Let us note the following. A defect always shows an increase in pixel intensity on one
side with a simultaneous decrease in intensity on the other side of the defect. In addition,
the width of the defect correlates with its intensity. A wide defect corresponds to low-
intensity changes. Conversely, a narrow defect corresponds to high-intensity distortions.
For the proposed algorithm, it is necessary that one of the areas have an image with high
contrast, corresponding to an operational device.

Let us consider the results of the step-by-step reconstruction of the mammogram
image with illustrations using the example shown in Figure 1b.



J. Imaging 2022, 8, 128 5 of 17J. Imaging 2022, 8, x FOR PEER REVIEW 5 of 18 
 

 

  
(a) (b) 

Figure 1. Examples of defective mammograms. The size of the red squares is 100 by 100: (a) 
mammogram with unilluminated defect; (b) mammogram with illuminated defect. 

It can be seen in Figure 1a that the intensity does not reach maximum values in the 
region of the defect. However, the area of increased brightness is quite large. In Figure 1b, 
there is an illuminated defect, and in this area there is a complete loss of information. 
Unlike images in which the brightness increase is slow, in this case the brightness increase 
is quite sharp. This can be clearly seen in Figures 2 and 3. 

Figure 1. Examples of defective mammograms. The size of the red squares is 100 by 100: (a) mammo-
gram with unilluminated defect; (b) mammogram with illuminated defect.

J. Imaging 2022, 8, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Horizontal section of a mammogram with a wide low-intensity defect which corresponds 
to the blue stripe in Figure 1a.  

 
Figure 3. Horizontal section of a mammogram with a narrow high-intensity defect, which 
corresponds to the blue stripe in Figure 1b. 

Let us note the following. A defect always shows an increase in pixel intensity on one 
side with a simultaneous decrease in intensity on the other side of the defect. In addition, 
the width of the defect correlates with its intensity. A wide defect corresponds to low-

Figure 2. Horizontal section of a mammogram with a wide low-intensity defect which corresponds
to the blue stripe in Figure 1a.



J. Imaging 2022, 8, 128 6 of 17

J. Imaging 2022, 8, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Horizontal section of a mammogram with a wide low-intensity defect which corresponds 
to the blue stripe in Figure 1a.  

 
Figure 3. Horizontal section of a mammogram with a narrow high-intensity defect, which 
corresponds to the blue stripe in Figure 1b. 

Let us note the following. A defect always shows an increase in pixel intensity on one 
side with a simultaneous decrease in intensity on the other side of the defect. In addition, 
the width of the defect correlates with its intensity. A wide defect corresponds to low-

Figure 3. Horizontal section of a mammogram with a narrow high-intensity defect, which corre-
sponds to the blue stripe in Figure 1b.

3.1. Determination of Defects

At the initial stage, we determine the contour of the chest. This operation can be
performed by moving from the borders of the photo to the center until the pixel color stops
being black or reaches a specified low value. Next, we find the core of the defect. We
consider the core of the defect to be the part of the image where the intensity is more than
220 or equal to zero. Note that there may not be a defect core in a particular horizontal
section. Let us explain this with the example of Figure 1a. Here, you can see that the
brightness of the strip in the middle is smaller than in the upper and lower parts. Thus, in
this case, the defect core will be only at the ends of the vertical defect. In the case when the
core of the defect is not connected, we will connect the individual sections with straight
lines, resulting in a vertically similar area.

In the next step, the areas to the left and right of the defect core will be covered with
curvilinear quadrilaterals measuring 100× 100 pixels in size (in practice, this area will have
an arcuate shape along the vertical). Then, we will calculate the average pixel intensities
for each column of the selected quadrilateral. Let us determine the minimum intensity
value from the illuminated side and the maximum intensity value from the darkened side,
then connect the obtained data with a straight line, as shown in Figure 4. We determine
the difference between the average values in each column (blue line in Figure 4) and the
straight line values (orange line in Figure 4). The resulting value is calculated from the
intensity values for each point of the column, thereby adjusting the brightness of the pixels
in the defect area.

Let us repeat this action for all columns of the rectangle. Apparently, as the distance
from the defect core increases, the change in the intensity values decreases in each column
of this area, correcting the average pixel values to the desired level. The outer borders of
the upper and lower rectangles coincide with the contour of the chest, and their vertical
size can be less than 100 pixels.

In the next step, we will remove the “blurring” of the image of the area with low contrast.
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Figure 4. An example of linearization of the column-average intensity in a small square (200
by 100 pixels). The blue dotted line is for the original image. The orange dotted line is for the
smoothed image.

3.2. Equalizing Contrast in the Image

Let us estimate the contrast of the image to the left and to the right of the defect. The
blurrier (lower contrast) image shown in Figure 5a corresponds to mammogram shown
in Figure 1b. A high-contrast “uncorrupted” image of the same mammogram is shown in
Figure 5b.
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Let us improve the “corrupted” image. For this purpose, we use the CLAHE method
with the clip_limit parameter, which must be determined by the ratio of low- and high-
contrast images. We calculate the mode and standard deviation (stdA and stdB) for the
distribution of pixel brightness on both sides of the defect. We determine the CLAHE
parameter using the following formula:

clip_limit = 1.11 − 0.023 × (stdB − stdA) (1)
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This formula is empirically derived as a regression model built on optimal clip_limit
values for multiple mammograms. As a result, we improve the image for the non-
contrasting part by changing the histogram from Figure 5a to Figure 6.
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Figure 6. Histogram of a “low-contrast” image after applying the CLAHE algorithm.

After this stage, the entire image, except for the core of the defect, has approximately
the same contrast. Now let us proceed directly to the restoration of the image inside the
core of the defect.

3.3. Restoring the Image in the Core of the Defect

Using the interpolation method, we restore the images in the strip. The use of polyno-
mials of higher degrees gives artifacts to the image; therefore, we use polynomials of the
first degree. The resulting image is shown in Figure 7a. Note that the use of polynomials of
the second or third degree does not significantly change the result.

Let us analyze enlarged images from small squares. It can be seen that the edge
images (blue and red squares) are poorly restored. The images inside are approximated
well enough, retaining the “white streaks”. However, with this approach, there are small
horizontal stripes (green square), which is a usual occurrence with approximation by
polynomials of a small degree.

Now we apply an artificial neural network trained on other data [29], based on the
architecture of generative adversarial networks (GANs), which are very often used to gen-
erate natural images and videos. The resulting image is shown in Figure 7b. For the neural
networks, the image is well restored at the boundaries (blue and red squares). However,
the image inside the defect is blurred, nevertheless preserving the overall background well.

Let us proceed as follows. Let us take white streaks from the image restored by inter-
polation (defect pattern) and transfer them to the image obtained by the neural network
(defect background). To do this, we apply the CLAHE method with the clip_limit = 20 pa-
rameter, significantly increasing the contrast. Then, we carry out binarizations. We attribute
to the background the pixels with intensity levels of less than 2/3 of the maximum bright-
ness (= 170), whereas the pixels with intensity levels ranging from 171 to 255 are attributed
to the informative part of the image. We obtain a binary mask (Figure 8).
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Figure 8. A mask that carries information about significant lines in the image.

Using the mask, we select the necessary data (from Figure 7a) and apply them to the
image containing the background (Figure 7b). As a result, we obtain the image shown in
Figure 9b.
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Figure 9. (a) The original image and (b) the restored image.

3.4. Comparison of the Algorithm Versus Other Methods

A comparison of the results obtained with the proposed algorithm versus the results
obtained with existing methods for improving the image quality is shown in Table 1.
HERE, The most common metrics for measuring image quality without a reference, namely
BRISQUE [34] and NIQE [35], Are used. It can be seen that the method proposed in the
present work achieves the best value for the considered images. The following methods Are
used for comparison: CLAHE with the clip_limit = 5 parameters; MedGA medical image
enhancement method [36] based on genetic algorithms; neural network SCL-LLE [37] to
improve the quality of the input image. The results of processing shown in Figure 1 for
these methods are presented in Figures 10 and 11.

Table 1. Evaluation of various existing methods for improving image quality as well as of the
proposed method for images from Figure 1.

Input
Image Methods

Metrics

BRISQUE ↓ NIQE ↓

Figure 1a

Original image 18.72 10.41
CLAHE 24.68 47.54
MedGA 95.44 14.03
SCL-LLE 17.75 9.18

Proposed method 15.55 5.22

Figure 1b

Original image 14.34 9.77
CLAHE 40.01 10.17
MedGA 72.83 12.21
SCL-LLE 14.89 7.79

Proposed method 10.61 5.95
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Thus, the proposed method in terms of BRISQUE and NIQE metrics achieves the
best value for the images considered in the work. Additionally, note that the MedGA and
SCL-LLE methods do not remove the vertical defective band.

3.5. Estimating the Accuracy of Recovering a Lost Image

Let us evaluate the algorithm used for recovering a lost image. We use for this purpose
the “good” (right) part of the mammogram image from Figure 1a. On the original image
(Figure 12a), we cut out a rectangular strip 5 pixels wide (see Figure 12b). First, we restore
the lost image in the strip using the classical interpolation method; the results of the
restoration are shown in (Figure 12c). Then, we apply an algorithm based on a neural
network to the defective image (Figure 12b).
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The following reference metrics are used here to assess the overlay efficiency: SSIM [38],
VIF [39], VSI [40], CW_SSIM [41], MS_SSIM [42], FSIM [43], DISTS [44], GMSD [45], LPIPS-
VGG [46], and NLPD [47]. The results for all metrics (Table 2) show that after the overlay,
the image is better in comparison with the separate results for the application of the neural
network and interpolation processes.

Table 2. Evaluation of methods for restoring a “lost” image in a strip artificially cut out on the right
side of the image shown in Figure 1a.

Metrics Original Image NN Interpolation Overlay

SSIM ↑ 1.000 0.947 0.921 0.994
VIF ↑ 0.999 0.644 0.607 0.867
VSI ↑ 1.000 0.987 0.979 0.998

CW_SSIM ↑ 1.000 0.928 0.869 0.997
MS_SSIM ↑ 1.000 0.957 0.925 0.999

FSIM ↑ 1.000 0.956 0.936 0.995
DISTS ↓ 0.000 0.030 0.036 0.001
GMSD ↓ 0.000 0.093 0.116 0.023

LPIPS-VGG ↓ 0.000 0.011 0.023 0.001
NLPD ↓ 0.000 0.855 1.087 0.195

3.6. Radiomics and Statistical Analyses

Let us evaluate the features of four groups of images, the original image and three
transformed images obtained by the algorithms discussed above, namely the proposed
method, MedGA, and SCL-LLE. These evaluations will be carried out using Radiomics,
which is used to extract a large number of features in medical images. Radiomics is
also frequently used in the detection of various visually detectable diseases and abnor-
malities [48,49]. In the present work, the pyRadiomics python package [50] is used for
feature calculations.

The Radiomics values not only indicate the quantitative histogram and texture charac-
teristics of a medical image, but are also used as input data for machine learning [51–53].
Therefore, it is important to evaluate these parameters in the converted images in order
to assess the degree of change in the original image. Since the method proposed in the
work has significantly improved the perception of the picture, it is also necessary that the
characteristic features not be “spoiled” in this case.

Let us single out 93 features: 18 for first-order statistical descriptors and 75 for texture
features. Then, we can compare the obtained values using one-way analysis of variance
(ANOVA) and Tukey’s post hoc honestly significant difference (HSD) test to identify very
different features [49]. ANOVA is used here to determine whether there are any statistically
significant differences between the group for the original images and the processed images.
In other words, one-way analysis of variance compares the means among groups (in our
case, four groups), determining whether one of these means is statistically different from
the others.

Specifically, it tests the null hypothesis:

H0 = µ1 = µ2 = · · · = µ5

where µk is the group mean and k is the group number. If the ANOVA returns a statistically
significant result (p-value below 0.05), we accept the alternative hypothesis that there are at
least two group means that are statistically significantly different from each other. We then
look at radiomics features with p < 0.05 in a one-way ANOVA to find the percentage of
radiomics features that differ between at least two groups. The ANOVA does not provide
information about which group is significantly different from the others, but only that at
least two groups are statistically different. For this reason, the Tukey HSD test must be used.
This is a post hoc test based on Student’s t-distribution, which is useful for determining
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which of the group pairs are significantly different from each other. A parameter for each
pair, namely the Tukey HSD Q-statistic, is calculated as follows:

Q− statistic =
Xi − X j√

σ2
k /n

where Xi and X j are average values of the compared samples; n is the sample size; σ2
k

is the within-group dispersion. Then, the p-value of the comparison of the observed Q-
statistic and the Q-critical one is calculated. Finally, radiomics features with Tukey HSD
p-values < 0.05 are examined to determine the percentage of features that differ between the
original image and the considered approaches. This makes it clear which of the approaches
shows a statistically significant difference. The results for histogram features (First-order
features) and for texture features are shown in Figures 13 and 14.
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Analyzing the data in the histograms, we can conclude that the method proposed in
this work leaves practically all of the signs without significant changes, except for 5 signs.
For histogram features, these are the maximum intensity value and the range of intensity
spread. For textural features, these are the gray-level size zone matrix (GLSZM) features:
short run emphasis (SRE), size-zone non-uniformity normalized (SZNN), and small area
emphasis (SAE) features.

4. Discussion

The problem solved in the present study is purely practical. The defect is not signifi-
cant enough to justify purchasing new mammographs; however, it cannot be technically
eliminated. The proposed algorithm improves the images, making them acceptable for
analysis by a specialist or for further computer processing.

In the algorithm, when restoring the background of a defect, a neural network trained
on third-party data (not mammograms) can be used, since this is sufficient to restore the
background. Table 2 shows scores on ten metrics for three algorithms for recovering a lost
image. For all metrics, the combined use of interpolation and a neural network gives the
best results. Additionally, note that the algorithm can be easily applied to mammograms of
any size.

If assessed visually without zooming in, the mammogram reconstructed by the inter-
polation algorithm (Figure 7a) looks quite contrasty. However, when zoomed in (colored
squares in Figure 7a), it becomes clear that this is definitely not enough, and further im-
provement of the image is needed. A comparison of the proposed algorithm versus other
approaches in terms of BRISQUE and NIQE metrics (Table 1) indicates that it provides
better results. Adding “restoration” of the band to other approaches will lead only to
an insignificant improvement in their metrics shown in Table 1, and will not change the
overall score.

In total, 98 radiomics features are extracted from the original and “improved” images.
Two differences in histogram features are explained by the presence of an overexposed
band in the original image. If the band is excluded from consideration, then only three
different textural features remain. We also note that in addition to the visual component,
the MedGA method also significantly changes the features of radiomics, as indicated by
the values of 33.33% and 58.67% of features that differ from the original image.

5. Conclusions

An algorithm for eliminating defects in a mammogram distorted by equipment is
proposed. The mammogram has a defective strip in the form of a sharp change in the
intensity of the pixels in this area up to a complete loss of information in certain areas of
the strip. In addition, one part of the image has a lower contrast than the other part.

The algorithm combines the following steps:

• Defect highlighting;
• Equalization of image contrast outside the defect;
• Restoration of a defect by a combination of interpolation and artificial neural network.

One of the significant results of this work is an effective combination of two approaches
to image restoration. One algorithm restores the background, while the other one restores
the “significant” image. The results of the two algorithms are then combined to form a new
high-quality image without loss of radiomics features.
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