Journal of

Imaging

Article

Image Classification in JPEG Compression Domain for Malaria
Infection Detection

Yuhang Dong

check for
updates

Citation: Dong, Y.; Pan, W.D. Image
Classification in JPEG Compression
Domain for Malaria Infection
Detection. J. Imaging 2022, 8, 129.
https://doi.org/10.3390/
jimaging8050129

Academic Editors: Jonathan Wu,
Thangarajah Akilan, Jitendra Kumar
and Chengsheng Yuan

Received: 20 March 2022
Accepted: 26 April 2022
Published: 3 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and W. David Pan *

Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Dr NW,
Huntsville, AL 35899, USA; yd0009@uah.edu
* Correspondence: pand@uah.edu

Abstract: Digital images are usually stored in compressed format. However, image classification
typically takes decompressed images as inputs rather than compressed images. Therefore, performing
image classification directly in the compression domain will eliminate the need for decompression,
thus increasing efficiency and decreasing costs. However, there has been very sparse work on image
classification in the compression domain. In this paper, we studied the feasibility of classifying
images in their JPEG compression domain. We analyzed the underlying mechanisms of JPEG as an
example and conducted classification on data from different stages during the compression. The
images we used were malaria-infected red blood cells and normal cells. The training data include
multiple combinations of DCT coefficients, DC values in both decimal and binary forms, the “scan”
segment in both binary and decimal form, and the variable length of the entire bitstream. The result
shows that LSTM can successfully classify the image in its compressed form, with accuracies around
80%. If using only coded DC values, we can achieve accuracies higher than 90%. This indicates
that images from different classes can still be well separated in their JPEG compressed format. Our
simulations demonstrate that the proposed compression domain-processing method can reduce the
input data, and eliminate the image decompression step, thereby achieving significant savings on

memory and computation time.

Keywords: compression domain; JPEG; classification; malaria

1. Introduction

Owing to the rapid improvement of GPU computing power, neural networks are now
able to grow into larger sizes in both width and depth. However, more layers bring an
increasing number of parameters that need to be trained. For example, GoogLeNet [1]
has 6 million parameters, AlexNet [2] has 62 million parameters, and VGG16 [3] even has
138 million parameters. Researchers have been studying how to reduce the parameter size
of neural networks and have successfully used different pruning methods to relieve the
pressure of GPUs [4]. In this paper, instead of fixating on the neural network, we inves-
tigated the feasibility of using the neural network to classify images in their compressed
domain, which took much less storage and thus consumed less computing power.

We evaluated different combinations of output from the JPEG lossy compression
method. We calculated the DC values of each minimum coded unit (MCU), together with
zero to five AC values after 2D discrete cosine transform (DCT) or quantization. We defined
these datasets as the baseline because all the DCT coefficients were directly correlated to the
pixel values from the original image. DC values after differential pulse-code modulation
(DPCM) and variable length coding (VLC) were also extracted.

For the compressed bitstream, two datasets were built from the scan segment in both
decimal and binary numbers. Finally, the entire bitstream was represented in decimal and
binary values. All the mentioned datasets were tested on a long short-term memory (LSTM)
network [5].
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The rest of this paper will be organized as follows. In Section 2, we will introduce
the research that had been conducted in the compression domain. Section 3 will cover
the source image we used, a simple illustration of how JPEG compressed an image, and
how we extracted data from different stages during compression. Section 4 contains the
classification results and analysis. Finally, Section 5 concludes this paper.

2. Related Work

Research has been conducted on evaluating how the JPEG compressed image would
affect classification accuracies for deep learning [6,7], including one of our previous publi-
cations [8]. The input samples were images with different compression qualities. However,
true compression domain data were generally difficult to work with, because the trans-
formation, prediction, and other non-linear operations inside the compressor together
contributes to a less correlated bitstream.

A comprehensive description of text analytics directly on compression was provided
in [9,10], but the analysis was limited to saving in storage and memory. Bits after compres-
sion of the text file were also used in [11] to distinguish 16 dictionary-based compression
types. Although different methods were proposed in [12,13], the core concept was the same,
which was to realize random data access in compressed bitstream. However, for JPEG
compression with sequential mode, extracting DCT coefficients requires full decompression.
This concept might find new applications in other image compression formats.

Other researchers computed the normalized compression distance from the length of
compressed data files for classification [14-16]. Though this method worked in various
areas, the compression had to be lossless. The keyframe of compressed video data was
also evaluated in [17-20]. The compressed domain data of High-Efficiency Video Coding
was also used for object detection in [21-24]. However, only special sections based on the
coding syntax were decoded.

Some studies [25] used DCT to generate coefficients for classification. However, the
DCT was conducted on whole images, instead of 8 x 8 minimum coded (MCU) unit in
JPEG. DCT coefficients were also used for image retargeting [26], image retrieval [27,28]
and image classification [29]. Compressed bitstream was used in [30] to classify images.
As the input images were sequentially encoded, it is also required to decode the whole
bitstream first to get DC and AC values for each MCUs.

3. Materials and Methods
3.1. Source Image

We used whole slide images (WSI) from the University of Alabama in Birmingham's
pathology lab [31]. The entire image contained around 1,000,000 red blood cells, with at least
0.2% samples infected by the malaria parasites. We performed several image morphological
operations to crop each cell out [32]. Then, we used the support vector machine (SVM) to
classify cells based on several selected features [33]. The classified data were provided to
pathologists for curation. Finally, we compiled the pure malaria-infected-cell dataset and
the normal red blood-cell dataset as shown in Figure 1.
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Figure 1. Cropped red blood-cell samples. Top row shows non-infected cells, bottom row shows
infected cells. The purple nucleus and blue ring make the malaria parasite.
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The data sizes for training, testing, and validation are listed in Table 1, with the ratio of
sample numbers regarding the whole input set equating to roughly 0.70:0.15:0.15. Each cell
image was resized to 50 x 50 for the unified dimension and transformed into a grayscale
image for simplicity.

Table 1. Sample number of Train, test and validation sets.

Infected Normal
Training 558 562
Testing 122 118
Validation 120 120

3.2. Discrete Cosine Transform

Discrete cosine transform uses the summation of cosine functions at different frequen-
cies and magnitudes to represent the original input. It is widely used in signal processing
and data-compression schemes because the input signal energy can be concentrated in
just a few coefficients after the transformation. For an 8 x 8 MCU in JPEG compression,
we used Equations (1) and (2) to calculate DC and AC values after DCT.

1 7.7
g Z Z mns (1)
m—+1)xm 2n+ 1)y
Any— - Z Zsmncos 16) cos( 6 )y . 2)
m 0n=

We can calculate basis matrices of DCT using the above equations and visualize them
in Figure 2.

B BRI EE IR

Figure 2. Basis matrices of DCT in JPEG compression. The block on the top left is the DC component.
The frequency increases with the increment of both row and column numbers.

DCT is related to discrete Fourier Transform (DFT). In fact, for a sequence of length N,
DEFT assumes the sequences outside are replicas of the same sequence, which will introduce
discontinuities at both ends of the sequence. Meanwhile, for DCT, the sequence will be
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mirrored to make length 2N. The DCT is simply the first N points after a 2N-length DFT.
The mirroring operation will eliminate the discontinuities at both ends of the sequence,
which means that if we discard the high-frequency component, the remaining coefficients
will not create additional distortion. Additionally, the result after DCT being real values
makes it more convenient to use in real applications.

3.3. JPEG Flow Chart

The first step of baseline JPEG compression was to perform a level shift. Since our
input images had a bit depth of eight, every pixel value was subtracted by 28 = 128 to
reduce the dynamic range. Then, each image was divided into multiple MCUs with the
size of 8 x 8. After applying DCT, for each MCU, we calculated one DC coefficient using
Equation (1) and 63 AC coefficients using Equation (2). The flow chart of baseline JPEG
compression is shown in Figure 3.

DC Huffman
table

® @ ®
' i Header & marker

@ Differential | | Variable :
: coding length
E Uniform coding
e e8] s
quantization Variable Compressed
Zig-zag | | Run-level | | lenath Image data
ﬁ scan coding eng N
coding
Quantization %
table AC Huffman
table

Figure 3. Flow chart for baseline JPEG for the grayscale image. An input image will go through
multiple operations, including DCT, quantization, differential coding, and variable-length coding.
The output is bitstream with headers and markers containing side information for the decoder.
Numbers 1 to 4 denote the locations where we extract datasets 1 to 4.

Then, the 64 DCT coefficients were divided by a quantization matrix and rounded to
the nearest integers. The DC and AC values were separated from here for different coding
schemes. All of the quantized DC values were gathered and transferred using DPCM, and
VLC was applied with the DC Huffman code table. The remaining 63 AC values were first
reordered using a zig-zag scan pattern, which could be found in Appendix A. Then the
63-point vector was run-length coded, and then mapped to a binary stream using the AC
Huffman table.

The two bitstreams for the DC components and AC components were reorganized with
markers and headers, which contained side information, including the size of the image,
length of the current segment, and the location of the target Huffman code table during
compression or decompression. Since we ran codes in the MATLAB environment, we used
the same quantization matrix, DC Huffman table, and AC Huffman table as MATLAB
builtin function imwrite for JPEG compression. See the three tables in Appendix A.

3.4. Extract Coefficients

We wrote a simple version of MATLAB code based on the JPEG standard [34], which
could only compress grayscale images to analyze how data from different stages during
compression would impact classification. Then, we could easily modify the program to
produce the data we need.

The first approach was to take the DC coefficients, combined with zero to five AC
coefficients directly after DCT, then make six datasets as denoted by the circled number
one in Figure 3. We also generated another six datasets from the DCT coefficients after
quantization using the same strategy, as the circled number two in the same figure. Using



J. Imaging 2022, 8, 129

5o0f 14

the DC value with several AC values to represent the whole MCU was reasonable because
most energy was concentrated on the left top corner in the DCT coefficient matrix, which
was the low-frequency region as shown in Figure 2. In addition, the large values on the right
bottom corner of the quantization table further reduced the impact of the high-frequency
component. See Table 2 for an example of how we built these 12 datasets from a sample
MCU after a level shift in Table 3.

Table 2. Extract 12 combinations of coefficients from Table 3. Each set consists of a DC component
with a certain number of AC values, which were retrieved either after DCT or after quantization.

Coefficients after DCT Coefficients after Quantization
DC 815.88 102
DC + 1AC 815.88, 17.85 102, 3
DC +2AC 815.88, 17.85, 6.05 102,3,1
DC + 3AC 815.88, 17.85, 6.05, —13.82 102,3,1, -2
DC +4AC 815.88, 17.85, 6.05, —13.82, 6.54 102,3,1, -2,1
DC + 5AC 815.88, 17.85, 6.05, —13.82, 6.54, 25.05 102,3,1,-2,1,5

Table 3. Pixels values for a MCU after performing level shift.

122 101 89 94 97 90 89 98

118 109 100 97 99 102 105 106
111 114 108 98 98 107 111 108
108 110 106 99 95 98 102 105
109 102 101 104 99 91 95 108
109 99 99 108 106 94 98 114
106 101 100 104 103 98 100 106
101 104 102 95 93 97 96 91

We also extracted DC values after DPCM and VLC to evaluate how these two opera-
tions would impact the classification accuracy. These two approaches are marked as circled
numbers three and four in Figure 3. Note that after DPCM, the coded DC values were still
integers. However, after VLC, they were all turned into bits according to the DC Huffman
table.

For the compression domain, we first selected the “scan” segment, which contained
decimal values after compression without most headers and markers. This method was
marked as circled number five in Figure 4. We also extracted the corresponding binary
form of the “scan” segment as dataset number six. Finally, we tested the whole compressed
image data in both binary form and decimal form, as circled numbers seven and eight in
Figure 4.

®e®

A 2
Start of image | Quantization table | Frame header | DC Huffman table | AC Huffman table | Scan header | Scan | End of image

Figure 4. Simple syntax of JPEG compression. Each block is represented in hexadecimal values.
Numbers 5 to 8 are locations where we extract datasets 5 to 8.

For datasets five to eight, as the coded length of each image would differ from each
other, we had to specify the length of the input as D. Any input with a size larger than D
was truncated, and the ones that were shorter than D were padded with zero to make the
same lengths. To evaluate how the classification accuracies would react to the change of
input length, we also selected 10 datasets with linearly increased D as input to the LSTM.
Descriptions of all eight datasets are listed in Table 4 below.
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Table 4. All eight datasets from different stages during JPEG compression. Input streams are either
decimal numbers or binary numbers.

Number Content Form

1 DC values + 0-5 AC values directly after DCT decimal
2 DC values + 0-5 AC values after quantization decimal
3 DC values after DPCM decimal
4 DC values after VLC binary
5 variable length scan segment without header & marker decimal
6 variable length scan segment without header & marker binary
7 variable length whole string decimal
8 variable length whole string binary

4. Results and Analysis

The above eight datasets were fed into LSTM for classification. The structure of the
model we used is shown in Figure 5. We chose the neuron numbers to be 250, and the
training epoch to be 30. The reason for choosing LSTM over CNN was that the input data
was a bitstream (or bytestream if decimal values were used). After compression, the coded
bitstream lost the original correlation existing in neighbor pixels, when the image was
divided into MCUs. During the compression procedure, the most important reason for
CNNes, the spatial correlation, was largely reduced, making CNN less efficient than LSTM,
which worked well for sequential input.

Sequence
Input

LSTM | | FullyConnected | | Softmax | | Classification
Layer Layer Layer Layer

Figure 5. LSTM model for training, validation, and testing. Input is datasets one to eight, and the
final classification layer gives the result of whether the input sample is infected or not.

4.1. Coefficients after DCT and after Quantization

For datasets one and two, we combined the curves for each set in Figure 6 to show
how classification accuracies would change regarding DC values with different numbers
of AC values. Generally, the classification was more accurate as more DCT coefficients
were involved. More coefficients could be interpreted as more information came from
the original image, making classification easier. It is worth noting that even using only
DC value, the accuracy could still reach greater than 80%. This should be credited to
the simplicity of the dataset. The DC value of the MCU containing the malaria parasite
would be much larger than that of red blood cell cytoplasm because the parasite was
stained purple/blue. Therefore, DC values were one of the most important features. We
could also notice that for these two datasets, the classification accuracies of coefficients
after quantization seemed higher than the ones after DCT. This could be attributed to the
quantization reducing the dynamic range of the coefficients.

As we can see, all accuracies were above 80%, meaning we could use the DC values
alone, or DC value adding a few AC values, to achieve a reasonably good performance.
However, due to the sequential decoding mechanism of JPEG decompression, we still had
to decode the whole bitstream to get these values.

4.2. DC Values after DPCM and VLC

Dataset three contained only DC values after DPCM. The classification accuracy versus
training iteration is shown in Figure 7. Due to the fact that DPCM actually subtracted the
previous DC value from the current one, the redundancy was further reduced, thus pushing
the accuracy even higher. The classification accuracy on the validation set was 92.92%, and
on the testing set was 94.17%.
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0.9

0.88

0.86

Accuracy

0.84

—*—— Dataset 1: Coefficients after DCT

0.82 —k—— Dataset 2: Coefficients after Quantization i
T

0-8 1 1 1 1
1 2 3 4 5 6

Number of Coefficients

Figure 6. Classification accuracies on coefficients after DCT and after quantization. Generally, an
increasing number of DCT coefficients leads to higher accuracies.
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Figure 7. Classification accuracies and loss during training and validation for DC values after DPCM.
The accuracy curve shows that even using only DC value after DPCM, the LSTM model converges
well after certain iterations.

We also calculated dataset four, which consisted of bits corresponding to DC values
after VLC. The classification accuracy was lower than the previous result, as shown in
Figure 8, and the result on the testing set was 69.58%. The low value was because the
bitstream was naturally decorrelated, and furthermore, different coding mechanisms were
used for positive and negative values after DCT, which further reduced the correlation
between bitstream and pixel values. Additionally, it was hard for LSTM to generalize the
input data, because the neural network had overfitting after 10 epochs. We also had to
choose the model with minimum validation loss.
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Figure 8. Classification accuracies and loss during training and validation for DC values after VLC.
The average performance denotes that VLC devastated the correlation between pixels and bitstream.

4.3. Scan Segment in Decimal and Binary

Datasets five and six were scan segments from the compression domain in decimal and
binary form, respectively. Because the original x axis for dataset five was “number of bytes”,
we multiplied the input length vector by eight to get the number of bits and resulted in a
better comparison, as shown in Figure 9. Since the accuracies for inputs with bits number
smaller than 3600 kept oscillating around 50%, which was equal to the result of flipping a
coin, we omitted most data points in this range for better visualization. In the same figure,
there is a sharp increase between 3600 to 4000 bits. After that, the accuracy remains around
80%. This could be attributed to the location of important features for classification in this
special case. For malaria-infected red blood cells such as those in Figure 1, the most useful
features—the purple nucleus and the blue ring shape of the parasite—often presented in
the middle region of the image. Similarly, the corresponding bits for these features also
started to appear around 3600 bits to 4000 bits, thus increasing the classification accuracy.

0.85 T T T

08 . 5 .

0.75

©
]
T

0.65

Accuracy

o
[«
T

0.55

0.5r —*— Dataset 5: scan segment in decimal | |

—#—— Dataset 6: scan segment in binary

0.45 :
3000 3500 4000 4500 5000 5500

Number of Bits

Figure 9. Classification accuracies for different lengths of scan segment in decimal or binary form.
The sharp increase and good match of the two curves prove the scan segment can be classified in
both decimal and binary form.
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4.4. Whole String in Decimal and Binary

The results for datasets seven and eight were similar to that of datasets five and
six, as shown in Figure 10. The classification accuracy rapidly increased to 80% around
6500 bits. This meant that we could classify the scan segment alone and achieve a similar
classification performance.

0.85 T

0.8

0.75 [

o©
3
T

Accuracy
o
(2]
(3}
.

06 q
0.55 1
051 *— Dataset 7: whole string in decimal | |
—*—— Dataset 8: whole string in binary
0.45 ! ! . !
5500 6000 6500 7000 7500 8000

Number of Bits

Figure 10. Classification accuracies for different length of whole string in decimal or binary form.
The tread of two curves proves the whole string in both decimal and binary form can be classified.

These two curves matched the trend in Figure 9, because the input data only dif-
fered in several segments, from “Start of image” to “Scan header”, as shown in Figure 4.
After adding this length back (in our case it was 2624 bits), we put these four curves
together, as shown in Figure 11. The well-matched curves again proved that we could
only use scan segments to reduce computational load while maintaining relatively high
classification accuracies.

0.85 T T

0.8

0.75

©
]
T

0.65

Accuracy

o
(]
T

0.55

—*—— Dataset 5
—#—— Dataset 6

Dataset 7 | |
—k—— Dataset 8

05

0.45 ' f ' f
5500 6000 6500 7000 7500 8000

Number of Bits

Figure 11. Classification accuracies for datasets five to eight. The similar shape of the four curves
proves that the LSTM model can successfully classify compressed domain data.
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The four curves started at the same x values, but ended differently, because datasets
five and six also discarded the “End of image” marker, as shown on the rightmost in
Figure 4. This marker took four hexadecimal values as FFD9, which could be translated to
16 bits, and thus make up the difference.

4.5. Savings on Storage and Time

In order to better assess how much space and time we could save by using compression
domain classifications, we recorded the bits per input and the running time of each training
epoch in Table 5. All the experiments were conducted on a computer using Windows 10
with Intel Core i7-7700HQ, which had a clock rate of 2.80 GHz. The MATLAB R2022a was
used as the platform and no GPU was used. For datasets with multiple subsets (all datasets
except for three and four), only one subset was evaluated for demonstration.

Table 5. Storage and time saved for all datasets. The trade-off can be made between lower accuracies
with fewer computational resources (compression domain data), and higher accuracies with more
computational resources (original image).

Dataset Inl:sittss)lze Iﬁzgtlféze 1;111;21(1; % g; ‘I,I; Accuracy How Input Size Is Calculated
original 20,000 0 18.118 0 82.92% 50 x 50 x 8: image size x bit depth
o o o 49 x 18: Number 18 includes 1 bit for sign, 10 bits for number
1 882 95.59% 4719 73.95% 81.67% from 0-1023, 7 bits for number aftgr decimal point
2 392 98.04% 6.09 66.39% 85.42% 49 x 8: Number 8 indicates number of bits for DCT
3 392 98.04% 4.555 74.86% 94.17% coefficients from —127 to 127
4 184.17 99.08% 5.289 70.81% 69.58% average of input binary bitstream
5 5208 73.96% 8.249 54.47% 80.42% 651 x 8: 8: numbers of bits for value from 0-255
6 5208 73.96% 32.03 —76.79% 79.58% average of input binary bitstream
7 7864 60.68% 10.58 41.61% 81.25% 983 x 8: 8: numbers of bits for value from 0-255
8 7864 60.68% 46.12 —154.55% 78.33% average of input binary bitstream

First, we had the original grayscale images of size 50 x 50 with a bit depth of eight.
As LSTM only took sequential input, we reshaped the image to a 1D vector of 2500 pixels,
during which the spatial correlation was significantly weakened. These all contribute to
the fact that the classification accuracy was only 82.92%, which was lower than using CNN
in our previous paper [8]. Regardless of the suboptimal classification accuracy, we could
still use this case as the baseline to measure the savings on storage size and computation
time if we used compressed byte streams as inputs to classifiers.

For the original image set and datasets one through four, we had to perform decom-
pression first to achieve DCT coefficients. So, we ran the imread function on each of the
1600 images. The total decompression time was 1.306 seconds, which was added to the
running time of the five mentioned datasets. As image size was 50 x 50, the total number
of MCUs was (ceil (32))? = 49.

We could see that all the testing datasets had a large reduction in the input size
compared to the original images. Most of the storage saved was translated to a decrease in
running time. Note that for datasets six and eight, the running time was even higher than
that of the original images. This was caused by the input being binary bitstreams. Though
they occupied less storage, when fed into LSTM, the network still treated them as regular
values regardless of their bit depth. So, basically, the training time largely depended on the
length of the input.

In general, we could infer that the compression domain data would provide similar
classification accuracies, and save storage and running time as well. This effect would be
more significant if applying the same algorithm to images with larger sizes, or images with
high compression ratios.

5. Conclusions

The curves shown in previous sections proved that it was possible to classify malaria-
infected cells based on partially decoded image segments or even the whole bitstream.
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The DCT coefficients from datasets one and two could be separated easily, though achiev-
ing these values required full decompression. For the DC values after DPCM and VLC in
datasets three and four, the drop in accuracy indicated that VLC would destroy the corre-
lation, making LSTM difficult to generalize. Datasets five to eight showed clear evidence
for successful classification in the compression domain, even for the reduced size of the
input. The good performance could be credited to all images being resized under the same
sizes and compressed under MATLAB, so all the header files were the same, including two
Huffman tables and the quantization table. These bits contributed no extra information to
classification, so we could discard them.

In general, we managed to classify red blood cells in both the pixel domain (DCT
coefficients) and compression domain (bitstream). The experimental results showed that we
could have partial decompression and obtain similarly good results. We could even feed the
neural network with the original bitstream (or bytestream in decimal) of the image and well
separated the two classes. The reduced size of the input and skipping the decompression
would both lead to saving in computation, as demonstrated by our simulations.

The result could be extended to more general cases for classification in the deep-
learning area. Instead of decoding the whole JPEG compressed bitstream to extract the DCT
coefficient, or using the original pixel values as input, directly classifying the bitstream
might provide similar benefits by reducing the computation time and storage requirement.
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Abbreviations

The following abbreviations are used in this manuscript:

JPEG Joint Photographic Experts Group
MCU minimum coded unit

DCT Discrete cosine transform

DPCM Differential pulse-code modulation
VLC Variable length coding

LSTM  Long short-term memory

WSI Whole slide image

DFT Discrete Fourier transform

SVM Support vector machine

CNN Convolutional neural network

Appendix A

This appendix includes tables and matrices used in the JPEG compression of MATLAB.
For the DC Huffman table in Table A1 and AC Huffman table in Figure Al, the pair of
values are hexadecimal values for the letters, and the zeros and ones are the corresponding
codewords.
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For the quantization table in Table A2, the left top value 8 is the lowest frequency and
the right bottom value 50 is the highest frequency, which matches the DCT coefficients.

Table A1l. DC Huffman table. Less frequent symbols are assigned longer code-words.

Code-Words

Symbols

00
01

02
03
04
05

06
07

08
09
0A
0B

R c0c0000O T cococoo0O T~
00000000000 rr e coccocoocococcocooo
00 0000000000000 000000000000rmmr ===«

Figure A1l. AC Huffman table. The wider range of AC coefficients requires more code-words.

Table A2. Quantization table. The corresponding JPEG quality factor is 75%.

31

28
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31

39
46
51
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26

30

35
40

52

57
60

52

20

29
29
44

55
52

61
50

12
13
20
26
34
41

52

56

10
12
15
28

32
44

49

11
19
28
39

48

11
18

32

46

12
25
36

Zig-zag order as shown in Table A3 determines the order when flattening the coeffi-

t matrix to a vector.

clen

Table A3. Zig-zag order. Values in an MCU will be translated to a vector according to this order.

28
42

43
53
54
60
61

63

27
29
41

44
52

55
59
62

15
26
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40

45

51

56
58
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16
25

31

39

46
50
57

13
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32
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47

49

12
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23
33
37

48

11

19
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34
36

10
20
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35
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