Journal of

Imaging

Article

Data Extraction of Circular-Shaped and Grid-like Chart Images

Filip Baji¢ *{ and Josip Job 2

check for
updates

Citation: Baji¢, F; Job, J. Data
Extraction of Circular-Shaped and
Grid-like Chart Images. . Imaging
2022, 8,136. https://doi.org/
10.3390/jimaging8050136

Academic Editor: Edoardo Provenzi

Received: 14 April 2022
Accepted: 10 May 2022
Published: 12 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

University Computing Centre, University of Zagreb, 10000 Zagreb, Croatia

Faculty of Electrical Engineering, Computer Science and Information Technology Osijek,
31000 Osijek, Croatia; josip.job@ferit.hr

Correspondence: filip.bajic@srce.hr

Abstract: Chart data extraction is a crucial research field in recovering information from chart images.
With the recent rise in image processing and computer vision algorithms, researchers presented
various approaches to tackle this problem. Nevertheless, most of them use different datasets, often
not publicly available to the research community. Therefore, the main focus of this research was
to create a chart data extraction algorithm for circular-shaped and grid-like chart types, which will
accelerate research in this field and allow uniform result comparison. A large-scale dataset is provided
containing 120,000 chart images organized into 20 categories, with corresponding ground truth for
each image. Through the undertaken extensive research and to the best of our knowledge, no other
author reports the chart data extraction of the sunburst diagrams, heatmaps, and waffle charts. In
this research, a new, fully automatic low-level algorithm is also presented that uses a raster image as
input and generates an object-oriented structure of the chart of that image. The main novelty of the
proposed approach is in chart processing on binary images instead of commonly used pixel counting
techniques. The experiments were performed with a synthetic dataset and with real-world chart
images. The obtained results demonstrate two things: First, a low-level bottom-up approach can be
shared among different chart types. Second, the proposed algorithm achieves superior results on
a synthetic dataset. The achieved average data extraction accuracy on the synthetic dataset can be
considered state-of-the-art within multiple error rate groups.

Keywords: chart data extraction; chart image processing; data visualization; image processing and
computer vision

1. Introduction

In the world of advanced Internet technologies, data and information have a signifi-
cant role. The data accumulate exponentially, and it is difficult to distinguish and notice
between important information and irrelevant information. When it comes to data that are
represented by numbers, which can be piled up and unstructured or organized in tables,
the critical information is not easily readable. It often requires mental effort and previous
knowledge in the given field. Chart images are used to make data more readable by the
individual, easier to understand, and easier for information transfer.

Data visualization (chart images) are graphs or diagrams used to present the tabular
data’s quantitative information. These images have been used since the 18th century [1] in
different science fields, including mathematics, statistics, and analytics. Today, chart images
prevail in scientific papers, financial reports, textbooks, webpages, and news articles [2].
Well-designed chart images are time-consuming to produce and often require additional
effort from the author, and even then, these data representations are not easily accessible
by everyone. The problem affects people as well as machines. For example, people with
impaired vision and all blind individuals can not access the “locked” information inside
chart images. These people often rely on assistive technology (braille display, screen
readers, and speech converters), which can only read the information that is provided by
the author in the surrounding text [3,4]. Manual reading of chart images is often inaccurate
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and can not be used for scientific purposes. The underlying data can also be necessary to
all individuals for different general purposes, including verification or comparison of the
achieved results.

On the other hand, while most people can read and decode chart images, machines
can not easily approach them. For example, the results of the Internet search engines
can not include information from chart images. The programs for comparing, re-using,
or transmuting chart images are nonexistent or hardly available. In order to solve the
challenges mentioned above, many authors contributed to the field of reverse-engineering
chart images.

When reverse-engineering of chart images are discussed, image classification image
processing should be noted. Image classification is a well-studied process in machine
learning which refers to categorizing and labeling images according to the visual content.
Over the years, authors used different key approaches to achieve the highest average
classification accuracy. These approaches can be grouped into four categories: custom
algorithm [5-8], model-based approach [9-11], Support Vector Machines [2,12,13], and
neural networks [14-17].

After classifying an image, the next step is to decompose that image into graphical
and textual data. Text localization, text processing, and text recognition are well-known
challenges addressed using Optical Character Recognition (OCR) systems. This research
uses a publicly available out-of-the-box OCR system whose output result quality is not this
research topic.

Research Contributions

In this work, we presented a new, fully automatic low-level algorithm that uses a raster
image as input and generates an object-oriented structure of the chart of that image. The
main novelty of the proposed approach is in chart processing on binary images instead of
commonly used pixel counting techniques. Our primary contributions can be summarized
as follows:

e A novel algorithm for processing chart images that is based on processing binary
images. The proposed novel algorithm follows a bottom-up approach and uses pixel-
level, and many low-level operations and procedures on pie charts, donut charts,
sunburst diagrams, heatmaps, and waffle charts. The sunburst diagrams, heatmaps,
and waffle charts, to our knowledge, have never been processed before, and we are
the first to present state-of-the-art results;

e  Alarge-scale dataset containing 120,000 chart images is organized into 20 categories.
Each image in the dataset is labeled and joined with additional documentation that
includes the ground truth. This dataset is publicly available at figshare: https://doi.
org/10.6084/m9.figshare.19524844.v1 (accessed on 13 April 2022);

e An extensive experimental analysis of the proposed algorithm on the created dataset
and commonly used International Conference on Document Analysis and Recognition
(ICDAR) dataset to provide a valid comparison.

e The proposed image classification system is related to our previous research, where
Siamese Convolutional Neural Network achieved state-of-the-art results, 100% average
classification accuracy, and an F-1 score over seven data visualization types.

The remainder of the paper is organized in the following manner. Section 2 presents the
current research in chart data extraction. Section 3 provides information about the proposed
algorithm and a created dataset. In Section 4, an evaluation of the proposed algorithm is
conducted on synthetic chart images and real-world chart images. The discussion of our
findings and open challenges are presented in Section 5. Finally, Section 6 gives the final
remarks on this experiment and provides plans for future research.

2. Related Work

The two primary goals of authors who deal with data extraction of chart images are
to obtain the original data table from which the visualization has been created or obtain
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the used visual styles (color map, fonts, dimensions, and position of elements). Through
the years in chart data extraction, authors used different data recovery approaches that
can be grouped into two categories: the automatic and the interactive. In the automatic
approach, the user inputs a chart image into the system, and the system decodes the image
and returns an object. This type is in the majority and requires no additional interaction
or correction of the user. On the other hand, in the interactive approach, it is expected for
the user to click or select the area of interest from which the data should be exported. The
required selections are often starting and ending points or a group of points. These systems
are often more complex than the automatic ones and are only researched in ChartSense [18]
and by Yang et al. [19]. While interactive systems can achieve competitive results, they are
prone to error due to required human interaction. Another drawback is the required time
for processing large-scale datasets.

Compared to chart type classification, chart data extraction supports considerably
fewer chart types. The most processed chart types are bar, line, and pie chart. Scatter
plot is researched in [20,21], and area and radar chart in ChartSense [18]. The developed
algorithms often rely on low-level knowledge, and the diversity of chart types creates
further challenges. The algorithms expect to find chart objects in predefined places and use
the combination of pixel distance and scaling values. The axes (the finite number of black
pixels in a row) are obligatory for bar and line charts. On one side of the axes are labels
that OCR detects, and on the other side are chart objects detected by pixel color change.
Since pie charts do not contain axes, different methods are used. With the usage of Random
sample consensus (RANSAC) regression, a color change between adjacent pixels can be
detected, which translates to a pie slice, ReVision [22], ChartSense [18], and Chart-Text [23].
Another method for detecting pie slices is counting the number of colored pixels between
two boundaries [14,24].

Deep learning models can also detect the objects in chart images. Liu et al. use the
Recurrent Neural Network (RNN) for detecting angles in pie charts. The developed neural
network achieves bar data extraction of 79.40% and pie data extraction of 88.00% [25].
Choi et al. in Visualizing for the Non-Visual use textual and graphical information for data
extraction [14]. Three different algorithms are created for three chart types: bar, line, and
pie. The objects are detected using different object detection models (Yolo2, Faster R-CNN,
SSD), and bounding boxes are drawn. By using different image processing techniques
inside the bounding boxes, pixel values are obtained. Combining neural networks and
low-level operations results in data extraction accuracy for bar charts 89-99%, line charts
72-88%, and pie charts 86-92% (the results depend on the used dataset). The state-of-the-art
pie chart data extraction results are found in [24]. Here, the authors developed a novel
image processing-based algorithm that works with 2D and 3D pie charts. The salt-and-
pepper noise is removed from the input image, the image is converted to a grayscale image,
and after the gradient analysis, the image is binarized. This algorithm is also considered
low-level as it counts the number of pixels in the area of interest. The reported accuracy for
2D pie charts is 99%, while for 3D pie charts, 97%. A comparison with other state-of-the-art
papers can not be made, as this is the only algorithm that works with 2D and 3D pie charts.
A summary of the presented related work is summarized in Table 1. As seen in Table 1,
not all authors report comparable data extraction results or dataset size. The last column,
“Dataset,” is a sum of all images used for chart data extraction. From the evaluation point
reported in the papers, it is hard to notice what actual number of images were used for
chart data extraction, as the dataset often consists of images from different sources.
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Table 1. A short summary of presented related work.

Ref. Year Bar [%] Line [%] Pie [%] Scatter [%] Dataset
Yang et al. [19] 2006 - - - - 115
Savva et al. [22] 2011 79 - 62 - 105
Mishchenko and Vassilieva [9] 2011 - - 67 - 300
Al-Zaidy et al. (2015) [26] 2015 83 - - - 18
Al-Zaidy et al. (2016) [27] 2016 86 - - - 300
Al-Zaidy et al. (2017) [28] 2017 98 - - - 213
Cliche et al. [20] 2017 - - - 84 50
Jung et al. [18] 2017 - - - - 35
Dai et al. [29] 2018 83 - - - 59
Balaji et al. [23] 2018 79 - 79 - -
Paramita De [24] 2018 - - 99 - 200
Choi et al. [14] 2019 99 72 92 - 300
Liu et al. [25] 2019 79 - 88 - -
Rane et al. [30] 2021 72 - - - 516
Zhou et al. [31] 2021 85 - - - 330
Chen and Zhao [21] 2021 91 89 - 90 3600

The symbol “-” denotes that authors did not report results of data extraction.

3. Methodology

In this section, details about existing datasets of chart images are provided. The
availability and accessibility of these datasets are discussed. The details about our dataset
are given. At the end of the section, the core of the proposed algorithm is presented, and the
difference between circular-shaped chart images and grid-like chart images pre-processing
is explained.

3.1. The Dataset

Chart data extraction requires chart datasets for training and testing. Creating labeled
chart datasets is often a complex and time-consuming process. The majority of the papers
in the provided Table 1 use small, often private, datasets. Some of the presented papers
created a dataset and made it publicly available. Due to the time between the release of
a paper containing a dataset and the time of writing this article, most of the datasets are
no longer available. Some of the datasets are inaccessible due to restricted access, and
some datasets are no longer complete. Each of these datasets has a limited number of chart
types and images, which is often inadequate for chart image processing tasks. The detailed
ground truth consisting of all parameters used in chart image creation is also unavailable.
In order to solve the limitations mentioned above of existing datasets, we publicly provide
our dataset. The comparison of related datasets is presented in Table 2. The provided
datasets in Table 2 are not only from papers dealing with chart data extraction but also
from research dealing with chart image classification and chart text processing.
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Table 2. The comparison of the datasets from related work.

Related Liuetal. Siegeletal. Savvaetal. Kafleetal. Jobinetal. ot ];?‘(,;loalg) ot Ia)lé.“(,;l()azo) Our
Work [32] [33] [22] [34] [15] [35] [36] Proposed
Used for CcC CCC’DC]::FP’ C(é,DC];FP, CDE cC C%DC]:ZFPI C(é, DC];FP’ CDE
Chart type
Area - - + - + - + +
Bar + + + + + + + +
Block - - - - + - - -
Box - - - - + + + +
Bubble - - - - + - _ "
Confusion - - - - + - - -
Contour - - + - + - - -
Donut - - - - - + - +
Flow + + - - + - - -
Heatmap - - - - + - + +
Histogram - - - - + - _ +
Line + + + - + + + +
Manhattan - - - - - - + -
Map - - - - + - + -
Pareto - - + - + - - -
Pie - - + - + + + +
Polar - - - - + - - -
Radar - - + - + - - -
Scatter + + + - + + + +
Sunburst - - - - - - - +
Surface - - - - + - + -
Table + - + - + - - n
Tree - - - - + - - -
Vector - - - - + - - -
Venn - - - - + - + -
Waffle - - + - - - - +
Approximate 5000 30,000 2000 300,000 30,000 200,000 25,000 120,000

Symbol “+” states that the chart type is included in the dataset while symbol “-” denotes that authors did not
report using this chart type in their dataset. The abbreviations stand for CC—chart classification, CTP—chart text
processing, and CDE—chart data extraction.

To our knowledge, the datasets from ICDAR [35] and International Conference on
Pattern Recognition (ICPR) [36] are fully available and accessible. These datasets are
used in Competition on Harvesting Raw Tables (CHART). Their sub-tasks are chart type
classification, text detection and recognition, text role classification, axis analysis, legend
analysis, and chart data extraction. The images are not labeled nor organized by chart
type, but ground truth and annotation are provided in a separate file. This file is not easily
accessible and requires further processing to acquire a human-readable object-oriented
format. Because of the diversity of the chart images, only pie and donut charts from these
datasets are used for comparison purposes. The heatmaps can not be compared, as our
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algorithm requires a heatmap that consists of rows and columns. There are no available
datasets for comparison for the sunburst diagrams and waffle charts.

Encouraged by the challenges mentioned above, we developed a dataset containing
chart images that are fully organized and labeled. Each image in the dataset is also
supported by a text document with an object-oriented structure containing the ground truth
and metadata. The images are in “.png” format, and the resolution is 1366 x 768 pixels.
The dataset is entirely made with Plotly [37], and the total size is 5 GB. All images are
organized into two categories. The first category includes training and testing data. The
testing data category does not contain any images from training data. Each category can
be further split into simple and complex images for each chart type. The dataset split
containing simple images, e.g., pie chart, contains only pie charts whose number of pie
slices is less or equal to three. These images also always contain a title and a legend. The
complex split contains pie charts with up to 15 pie slices where title and legend are not
obligatory. In other words, the simple split contains everything required for a human to
understand and read the chart image, while a complex split often omits some elements and
has a more significant number of data points. The numerical values, colors, and texts are
randomly generated for all chart types. In Table 3. the details of our dataset are provided.

Table 3. The details of our dataset.

Number of Images

Chart Type Chart Sub-Type Train Test
Simple Complex Simple Complex
Area - 2000 2000 1000 1000
Basic horizontal 2000 2000 1000 1000
Basic vertical 2000 2000 1000 1000
. }gf;flftil 2000 2000 1000 1000
Grouped vertical 2000 2000 1000 1000
Stacked horizontal 2000 2000 1000 1000
Stacked vertical 2000 2000 1000 1000
Horizontal 2000 2000 1000 1000
Box Vertical 2000 2000 1000 1000
Bubble - 2000 2000 1000 1000
Donut - 2000 2000 1000 1000
Heatmap - 2000 2000 1000 1000
Histogram Horizontal 2000 2000 1000 1000
Vertical 2000 2000 1000 1000
Line - 2000 2000 1000 1000
Pie - 2000 2000 1000 1000
Scatter - 2000 2000 1000 1000
Sunburst - 2000 2000 1000 1000
Table - 2000 2000 1000 1000
Waffle - 2000 2000 1000 1000
Total 40,000 40,000 20,000 20,000

Symbol “-” states that the chart type does not include any sub-type.
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3.2. The Algorithm

A fully automatic low-level algorithm that accepts a raster image as input and gener-
ates an object-oriented structure of the chart in the image is proposed. The system supports
two groups of chart images, where one group consists of circular-shaped charts (pie chart,
donut chart, and sunburst diagram), and the other group includes grid-like charts (heatmap
and waffle chart). Since chart images can have a diversity of applied styles, a few restric-
tions are made. First, the input image should not contain a 3D version of a chart nor any
3D effects (e.g., shadows, highlights). Second, the input image can not include multiple
charts. Third, all chart components should have a distinct color. An illustration of the
proposed algorithm is shown in Figure 1. The algorithm consists of four steps: image
pre-processing, color edge detection, data processing, and data interface. The majority of
the proposed process is the same for all five chart types, including pie charts, donut charts,
sunburst diagrams, heatmaps, and waffle charts, and the only difference is in the third step,
data processing.

Input image

o

X

\i

Image pre-processing

Y

Color edge detection

\4

Data processing

Y

Data interface

Figure 1. The core process of the proposed algorithm.

The first step of the displayed algorithm is image pre-processing. Image pre-processing
is the most crucial step that deals with image preparation and manipulation. The main
task of this step is to prepare the input image for future analysis and chart data extraction.
Three filters are applied over the input image. The first filter is used for image color space
normalization (blue-green-red color space). The second filter reduces possible noise in the
image, which can be salt-and-pepper or amplifier noise (median blur and Gaussian blur).
The third filter makes the transition between adherent regions in the image more obvious
(sharpen kernel). The pixel brightness increases, and the edges between the distinct colors
are emphasized. This filtered image is supplied to Keras OCR v(0.8.9, where text elements
are detected. After the detection, the two images are created, one with textual elements and
the other with graphical elements. The graphical image is then converted to a grayscale
image to reduce details on the image.

The second step, color edge detection, uses the image with graphical elements from the
first step. The proposed algorithm scans image for unique colors. For each detected unique
color, a mask is created. The mask activates (logical 1) all pixels matching the unique color
and deactivates (logical 0) all other pixels. In the end, all created masks are joined, and the
narrow border of one pixel is present, indicating a border between adherent regions.
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In the third step, data processing, all calculations are carried out. Each chart type can
have numerous variations in applied styles and shapes. The color scheme and aspect ratio
of a chart vary across all images. Due to the difference in style and design, two different
data processing algorithms are required, one for circular-shaped chart images and the other
for grid-like chart images. More information about data processing is provided in the
following sections.

The acquired information is labeled, grouped, and organized in the last step, the data
interface. The system exports an object-oriented structure that other applications of interest
can consume. An example of a data interface for the sunburst diagram and heatmap is
provided in the following sections.

3.2.1. Pie, Donut, and Sunburst

Image pre-processing is performed to extract data from circular-shaped chart types
(pie charts, donut charts, or sunburst diagrams). Input raster image Figure 2a is filtered, and
all text is removed, Figure 2b. The image containing only graphical elements is converted
to grayscale, Figure 2c. Over the grayscale image, a Hough Transform for circle detection is
used. Hough Transform extracts features from an image and then, using a voting procedure,
determines the shape of the objects present in an image. The Hough Transform is performed
until no new circles are detected. With the number of detected circles, a chart type can
be determined. If only one circle is detected, the input image contains a pie chart. A
donut chart is detected if two circles are detected where the one closest to the center does
not contain any color. In case of detecting two or more circles, the sunburst diagram is
presented.

fb"

(a) Input image (b) Text processing (c) Grayscale

(d) Level 0 (e) Borders (f) Transition points

/

g

(g) Level 1 (h) Borders (i) Transition points

Figure 2. Cont.
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(j) Level 2

(k) Borders (I) Transition points

Figure 2. Processing of sunburst diagram. From input image (a), the text is removed (b), and the
image is converted to grayscale (c). In this example, the input image is divided into three levels; the
most inner circle is “Level 0” (d), the middle circle is “Level 1” (g), and the most outer circle is “Level
2” (j). Each level (or circle) contains unique colors whose borders are shown in (e,h, k). With borders
detected, a transition points can be obtained. The transition points are exact coordinates where the
pixel changes color value (fi,1).

In order to demonstrate a proposed algorithm, a sunburst diagram from the complex
dataset is used. For each circle in the diagram, a mask is created. The mask deactivates all
pixels not related to a selected circle (Figure 2d,g,j). By creating a mask for each unique
color, a border between adherent regions (slices) is detected, Figure 2e,h k. The detection of
transition points is carried out in the last step. The transition points are exact coordinates
where the pixel changes color value. An additional circle is drawn inside the created mask
to obtain these coordinates. The location where this circle crosses a border is considered a
transition point. The transition point is a size of one pixel, and a bright red circle is drawn
around it to make it more noticeable (Figure 2f,i,1).

When obtaining an (x, y) pixel value from transition points, its placement in the image
should be preserved. If the upper left corner in the raster image is considered (0, 0), the
transition points are obtained by scanning the image from left to right and top to bottom.
The result is an array with transition points incorrectly placed. Consider a Cartesian
coordinate system with points placed as in Figures 2i and 3. When scanning an image
for points, the result is: [B, A, C, D, E]. According to the array, point A is surrounded by
neighbor points B and C, which is incorrect as the actual neighbor points are B and E. In
order to preserve a natural placement of points, a center point is defined, and all other
points are sorted clockwise direction. The center point in Figure 3 is colored in red, and
in the chart image, it is the center of the circle detected with the Hough Transform. With
obtained points of interest, a slope m is calculated using formula (1):

_ Y2
T 1)

m

where (x1, y1) are center point coordinates, and (x, i) are coordinates of a transition point.
In order to calculate an angle between two points, formula (2) is used:

0 = arctan (m) 2)

where 6 is the angle. The last needed parameter for calculating the area of a sector is
distance d. The distance formula between two points is (3):

d = /1(x2 = 21)+[(v2 — 11 2 ©)

With all parameters calculated, an area of sector P is (4):

Pzé%xnxf (4)
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Figure 3. An example of reading transition points in a clockwise direction. The red transition point is
the center, and the correct output is [A, B, C, D, E]. These transition points are from Figure 2i.

In the case of sunburst diagrams, all calculated angles are laid out on the circle to
decode the relation between a parent and a child slice. All angles included within two
angles are considered child angles which translate to child slices. To better explain the
relations, consider Figure 2d,g. Figure 2d does not include any transition point which
indicates a full circle or 360° angle. Figure 2g has five angles, whose values are shown in
Figure 4. Values of the outer circle are compared to the values of the inner circle. Since the
inner circle is a full circle, and all outer angles are less than 360°, all pie slices belong to the
inner circle, or in other words, all outer pie slices are child slices of the inner parent circle.

“Level_1":{

“Sectors”:5,

“Radius”:188,

“TransitionPoints”:[[744, 511], [779, 477], [684, 228], [517, 463], [624, 537]],
“Sorted2PointAngle”:[36, 54, 100, 149, 282],

“SectorAreaPercent”:[5.0, 12.78, 13.61, 36.94, 31.67],
“SectorColorHex":[“#£fffff”, “2db6a53”, “#ce5045"”, “#7a0622", “#053061"],
“NoValueEmptyColor”:" #££ffff”,

“NumberOfEmptySectors”:1

e

Figure 4. An example of data interface for Figure 2g.

An example of a data interface for Level 1 of Figure 2g is shown in Figure 5. The
“NoValueEmptyColor” attribute is determined by comparing the background color of the
chart image with the detected color of a slice. If these two colors match, the slice is empty,
or in other words, the slice does not contain important information.

3.2.2. Heatmap and Waffle

The heatmaps and waffle charts are almost the same from the visual style perspective.
The significant difference is between two adherent regions in the border (or space). In both
chart types, the regions are described by distinct colors and a rectangular shape.
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(b)

(©) (d)

Figure 5. Processing of heatmap. (a) Input image. (b) Text processing. (c) Transition points. (d) Color
detection.

Since heatmaps are often more complex than waffle charts, a heatmap from a complex
dataset is used to demonstrate a proposed algorithm. The first part of the algorithm is
always the same. The input raster image Figure 5a is filtered, and all text is removed,
Figure 5b. The mask is created for each unique color leaving a one-pixel border between
adherent regions (rectangles), Figure 5c. Since these borders are part of a grid system, the
color transition points can easily be determined. In Figure 5c, a bright red circle is drawn
around the first row’s transition points.

Compared with the algorithm for a pie chart, donut chart, and sunburst diagram, the
reading of the coordinate values of points is always in the correct order (left to right, then
top to bottom). In order to acquire a color code of the area of interest, a simple midpoint
calculation is performed following the scheme from Figure 6. The midpoint M is calculated

using (5):
2 7 2

where (x1, y1, X2, Y2, X3, Y3, X4, Y4) are coordinate points that describe a rectangular shape.
The midpoint color is equal to the color of the area of interest. In Figure 5d, the points used
for calculating the midpoint are connected with a bright red line. The last area of interest in
a row and the last row of the heatmap are always inverted since the corners of the heatmap
do not include a single transition point.

(X1, y1) (X2, ¥2)

(X3, Y3) (X4, Ya)

Figure 6. The calculation of midpoint M. The midpoint is used in Figure 5d for color detection.

An example of a data interface for Figure 5a is shown in Figure 7. The output contains
only the points for the first row. Note that the number of transition points is seven, following
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Figure 5c. The number of midpoints is eight, following Figure 5d and matching the detected
number of columns in the heatmap.

{

“Rows”: 7,

“Columns”: 8,

“TransitionPoints”: [[[184, 31], [341, 31], [498, 31], [655, 31], [811, 31], [968, 31], [1125, 31]], [...]],
“Midpoints”: [[[107, 70], [262, 70], [419, 70], [576, 70], [733, 70], [889, 70], [1046, 70], [1125, 70]], [...]],
“SectorColorHex": [[‘#d5bc8b’, ‘#4592a5’, ‘#c9d4bc’, ‘#acc3bé’, ‘#d4b989’, ‘#d7bf90’, ‘*d4dbbe’, ‘#368da3’],
[

}

Figure 7. An example of data interface for transition points in the first row of Figure 5c.

3.2.3. Legend Detection

The legend detection is based on the results of the processed graphical image. The used
style elements in chart data extraction belong to the chart type. The rest of the unprocessed
colored elements in the image is considered to be a legend. The legend can be anywhere
in the chart surrounding but can not be a part of a chart (e.g., overlapping legend and
chart elements). The legend can also come in different shapes (markers or color scales) and
different orientations (horizontal or vertical). The detected color elements are matched with
the closest text boxes from Keras OCR. Each text box is separately processed, and string or
numerical values are detected. If a string value is detected, the algorithm looks for nearby
text boxes where the distance between the two is less than 10 pixels [30]. The nearby text
boxes are grouped, resulting in a multiword label. In the case of numerical values, the
algorithm tries to parse all obtained values and return a type of sequence: linear, quadratic,
cubic, or other. The legend detection algorithm is the same for a pie chart, donut chart,
sunburst diagram, heatmap, and waffle chart. In Figure 8, an example of parsed legend is
shown. The parsed legend is from Figure 2a.

“Legend”:{

“ColorHex":[“#a21328", “#d86450”, “#f6b698", “#{9ebe3”, “d5e7f0", “#88beda”, “#3580b9”, “#0d4178"],
“ColorName”:[“firebrick”, “indianred”, “burlywood”, “linen”, “lavender”, “skyblue”, “steelblue”, “mid-
nightblue”],

“ColorValue”:[90, 80, 70, 60, 50, 40, 30, 20],

“Type”:"Linear Sequence”

!

Figure 8. An example of data interface for legend processing of Figure 2a.

4. Chart Data Extraction Evaluation

In order to evaluate the performance of a proposed algorithm on selected chart types, a
method similar to ChartSense [18] and later adopted by Choi et al. [14] and Zhou et al. [31] is
used. All experiments are performed on the same computer and in the same programming
environment. The experiments were performed with the proposed dataset and with the
ICDAR dataset. From the ICDAR dataset, only pie charts and donut charts are used. For
each chart type and from each dataset, 100 images are randomly selected. The images that
do not contain a legend are automatically excluded.

The method evaluates an algorithm based on the success rate. The success rate is the
proportion of correctly extracted chart images and the total number of chart images in the
category. The chart image is only successfully extracted if its error rate (err) is within a set
threshold. The chart data accuracy is calculated with (6):

\8i — pil
181 7Pl < 6
Si - (©)
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where g; is the ground truth of the element, p; is the calculated value of that element, and ¢
is an error threshold value. The threshold controls the quality of exported chart data. A
lower threshold value results in higher chart data extraction accuracy. If the chart data
extraction is within the set threshold value, the image is considered correctly extracted;
otherwise, the image is not correctly extracted. The average accuracy aa is then calculated
with (7): N
— € Jo
aa = N, [%] (7)

where N is the number of correctly extracted images, and N is the total number of images
in the category (IN; = 100). In other words, the threshold value < 0.05 corresponds to an
error rate of 5%.

The number of images that correspond to a specific error rate group is shown in
Tables 4 and 5.

Table 4. Chart data extraction accuracy for our synthetic dataset.

Error Threshold Value
Chart Type
O<err<1.25 1.25<err<2.5 25<err<5 5<err<10
Pie 93 (93.0%) 5 (5.0%) 2 (2.0%) 0 (0.0%)
Donut 94 (94.0%) 5 (5.0%) 1 (1.0%) 0 (0.0%)
Sunburst 92 (92.0%) 7 (7.0%) 1(1.0%) 0 (0.0%)
Heatmap 97 (97.0%) 1(1.0%) 2 (2.0%) 0 (0.0%)
Waffle 91 (91.0%) 4 (4.0%) 3 (3.0%) 2 (2.0%)
Sum (Average) 467 (93.4%) 22 (4.4%) 9 (1.8%) 2 (0.4%)

The first number in a table is a number of images, and the second number (shown in parenthesis) is percentage.

Table 5. Chart data extraction accuracy for ICDAR synthetic dataset.

Error Threshold Value
Chart Type
O<err<1.25 1.25<err<2.5 25<err<5 5<err<10
Pie 94 (94.0%) 5 (5.0%) 1 (1.0%) 0 (0.0%)
Donut 92 (92.0%) 6 (6.0%) 2 (2.0%) 0 (0.0%)
Sum (Average) 186 (93.0%) 11 (5.5%) 3 (1.5%) 0 (0.0%)

The first number in a table is a number of images, and the second number (shown in parenthesis) is percentage.

The authors from related work, ChartSense [18], Choi et al. [14], and Zhou et al. [31],
mostly report chart data extraction results for & = 0.05. Following this rule, the demonstrated
method in this paper correctly extracts 99% of the information from five chart types. A
direct comparison of the proposed method and results from the related work can not be
made as the used methods and datasets are entirely different, and their comparison could
be considered as comparing apples to oranges. If looking only at pie chart data extraction
accuracy, the proposed algorithm achieves 98% for e = 0.05, Table 6. To our knowledge,
no other author reported extraction results for e = 0.0125. From the design perspective,
the pie chart, donut chart, and sunburst diagram share many similarities, and thus their
extraction data accuracy is similar. While the heatmaps and waffle charts share the same
grid-like design, the spacing between rows and columns of the waffle chart creates incorrect
recognition of the area of interest, impacting data extraction accuracy. When comparing the
complexity of the proposed algorithms, the heatmaps require less image pre-processing
and thus achieve a higher data extraction accuracy. Similar results are achieved with the
ICDAR dataset, as shown in Table 5. Both datasets are synthetic and share a similar design,
one created with Python Plotly v5.8.0 and the other with Python Matplotlib.
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Table 6. Chart data extraction accuracy for pie chart.

Ref. Year Accuracy [%] Dataset
Savva et al. [22] 2011 62 53
Mishchenko and Vassilieva [9] 2011 67 300
Balaji et al. [23] 2018 79 -
Paramita De [24] 2018 99 100
Choi et al. [14] 2019 92 100
Liu et al. [25] 2019 88 -
Proposed algorithm 2022 98 100

The symbol “-” denotes that authors did not report dataset size.

Additional data collection is performed with a Google image search to test the pro-
posed algorithm on real-world chart images. The newly created dataset consists of 20
images for each chart category. The collected images are manually filtered. When search-
ing, e.g., heatmap, the search returns many different chart interpretations and images not
related to the field of study. The selected images are only the charts with the closest design
to the synthetic dataset. The selected image also includes numeric information, essential
for comparison purposes. For evaluation, the same method is used as for the synthetic
dataset. The findings are reported in Table 7.

Table 7. Chart data extraction accuracy for real-world chart images. The images are collected using
Google search.

Error Threshold Value
Chart Type
0<err<1.25 125<err<25 25<err<5 5<err<10
Pie 5 (25.0%) 3 (15.0%) 7 (35.0%) 0 (0.0%)
Donut 4 (20.0%) 1(5.0%) 7 (35.0%) 2 (10.0%)
Sunburst 0 (0.0%) 3 (15.0%) 5 (25.0%) 3 (15.0%)
Heatmap 2 (10.0%) 4 (20.0%) 6 (30.0%) 0 (0.0%)
Waffle 0 (0.0%) 1(5.0%) 6 (30.0%) 3 (15.0%)
Sum (Average) 11 (11.0%) 12 (12.0%) 31 (31.0%) 8 (8.0%)

The first number in a table is a number of images, and the second number (shown in parenthesis) is percentage.

When looking at the € = 0.05, the average chart data extraction is decreased to 54%, or
in other words, every other image is successfully extracted. The decreased average accuracy
indicates that a difference from the design perspective exists between the synthetic dataset
and real-world chart images. The decreased performance is expected as the proposed
algorithm is optimized for synthetic images with minimum noise and only essential chart
elements. From Table 7, it can also be noted that 38% of tested chart images were not within
any threshold value. In these cases, the algorithm could not recognize the borders and
transition points between the areas of interest. Sunburst diagrams (40%) and walffle charts
(35%) have the lowest data extraction accuracy, but their design is also the most dependent
on the author. When calculating the midpoint of the heatmaps and waffle charts, the image
noise impacts the results. The pixel color values are not equal, and differences exist that the
human eye cannot see. Instead of taking the value of a single pixel, an average value of the
pixel neighborhood should be considered. The pixel neighborhood typically consists of
4-connected or 8-connected pixels. The connected component analysis plays an important
role in processing real-world images [38,39]. The small dataset size could also impact the
results, as this dataset is five times smaller than the dataset with synthetic chart images. The
achieved results on real-world chart images suggest that there is room for improvement of
the proposed algorithm, which we will address in future work.
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5. Discussion

The demonstrated algorithm is proven effective, but some limitations still exist. An
apparent limitation of the method is text processing. Text processing (or text removal) is
a crucial part of the proposed algorithm and also often the weakest point. This is due
to the use of an out-of-the-box OCR engine. Therefore, the quality of text processing
is not discussed in this work. In most cases, when text is simple and limited to one
word, the OCR engine detects the text with high confidence. In cases when the text
element is across a darker colored background or crosses the border between two areas of
interest, the part of the text is missing, or the whole text element is skipped, and manual
interaction is required. The observed situation is where OCR works as intended, without
any recognition limitations when evaluating the proposed algorithm. OCR engines such as
Google Tesseract, Microsoft OCR, or Amazon Rekognition can be tested to improve the
quality of text processing. Although these engines are trained on many images, they still
may end with numerous recognition limitations on chart images. Future research could
examine the training of an open-source OCR engine specifically on chart images since the
text elements are of different sizes, orientations, and font styles.

When evaluating the circular-shaped chart images, the whole process depends on
the Hough Transform, which requires a lot of fine-tuning. The Hough Transform’s main
advantage is detecting partial circles, which are a standard part of sunburst diagrams. An
apparent limitation of the Hough Transform is that it can not detect multiple circles with
the same center from the initial image scan; instead, multiple image scanning is required.
Another limitation involves the thickness of the borders. If the circle border is thick, the
Hough Transform can detect two borders (inner and outer), impacting circle detection, and
additional validations are required. Small circles and small pie slices with similar color
schemes can go undetected in the grayscale image, as they might be accidentally merged
with neighboring areas. In order to deal with this problem, the colored image and grayscale
image should be compared for the number of circles and number of slices. Instead of using
the Hough Transform, the Convolutional Neural Network (CNN) can be trained to detect
circles and draw a bounding box around detected ones. The bounding box would have the
same center as a circle, and the distance from the center to the border would be equal to the
circle’s radius.

Another challenge is seen in the grid-like chart images. In case when two adherent
areas of interest share the color code, the border between the areas and the transition points
are not recognized. By conducting additional calculations, the borders can be artificially
created as long as the first and last row positions are known and the dimension (height
and width) of one area of interest. The CNNs can also be trained to detect colored regions,
significantly reducing the number of required calculations.

The results provide an excellent fit to the synthetic dataset, but the quality can be
enhanced by providing an additional dataset of real-world chart images. The borders and
transition points are detected only in the subset of real-world chart images. Without these
elements, further calculations can not be made; thus, data extraction can not be achieved.
The proposed algorithm is flexible, and many parameters can be fine-tuned. The higher
number of chart images of the same type but with different designs can be covered by the
number of changeable parameters. Building a suitable dataset is required to adopt the
proposed algorithm better on real-world chart images. The real-world dataset of chart
images would also benefit other areas of chart exploration, such as chart classification, chart
text processing, and chart description generation.

To summarize, the recommendations for future studies are:

Training open-source OCR engine on chart images;

Implementation of CNN for region detection;

Quantitative comparison of a proposed algorithm with the algorithm that uses CNN;
Repeating the research on a large-scale dataset that contains real-world chart images;
Increase the number of supported chart types.

G L
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6. Conclusions

This paper focuses on chart data extraction using low-level features. To our knowledge,
this is the first report of an algorithm whose core process is shared among five chart types:
pie charts, donut charts, sunburst diagrams, heatmaps, and waffle charts. In this work, a
new, fully automatic low-level algorithm that uses a raster image as input and generates
an object-oriented structure of the chart of that image is presented. The main novelty
of the proposed approach is in chart processing on binary images instead of commonly
used pixel counting techniques. Moreover, a synthetic, large-scale dataset containing
120,000 chart images organized into 20 categories is created and made publicly available
to the research community [https://doi.org/10.6084/m9.figshare.19524844.v1 (accessed
on 6 April 2022)]. The achieved average data extraction accuracy on the synthetic dataset
can be considered state-of-the-art within multiple error rate groups. When discussing the
5% error rate, 99% of tested chart images are within the threshold value. The sunburst
diagrams, heatmaps, and waffle charts have never been explored before, and this is the first
research that presents comparable numbers. Real-world chart images were also tested, but
the decrease in performance is noticeable due to diversity in the design of chart images and
the small dataset size. Despite the limitations, these findings are valuable in light of future
research on chart data extraction.

An application and experimental analysis of the suitability of the proposed algorithm
on real-world chart images is one of the most important subjects for further research.
Currently, no real-world chart dataset is publicly available. The research presented in this
work is a good starting point for further research, where the focus will be on the creation of
real-world datasets and the increase in the number of supported chart types.

In our future work, we will continue studying the use of binary images in other chart
types. We believe that the presented algorithm with binary masks can be used with any
chart type. With the increased number of supported chart types, we will refine our model so
that it can eventually extract data from general chart images and not be limited by design.
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