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Abstract: Ince–Gaussian beams, defined as a solution to a wave equation in elliptical coordinates,
have shown great advantages in applications such as optical communication, optical trapping and
optical computation. However, to ingress these applications, a compact and scalable method for
generating these beams is required. Here, we present a simple method that satisfies the above
requirement, and is capable of generating arbitrary Ince–Gaussian beams and their superposed states
through a computer-generated hologram of size 1 mm2, fabricated on an azocarbazole polymer film.
Other structural beams that can be derived from the Ince–Gaussian beam were also successfully
generated by changing the elliptical parameters of the Ince–Gaussian beam. The orthogonality
relations between different Ince–Gaussian modes were investigated in order to verify applicability in
an optical communication regime. The complete python source code for computing the Ince–Gaussian
beams and their holograms are also provided.

Keywords: Ince–Gaussian beam; computer-generated holography; azocarbazole polymer; digital
hologram printing; optical communication; Python source code

1. Introduction

The solution to the paraxial wave equation in elliptical coordinates can be expressed
in terms of an Ince polynomial. The electromagnetic wave generated in accordance with
this solution is known as an Ince–Gaussian (IG) beam. These beams form a complete
orthogonal basis in Hilbert space and can be converted into other structural beams such as
a Laguerre–Gaussian (LG) beam (in cylindrical coordinates) and Hermite–Gaussian (HG)
beam (in cartesian coordinates), by varying their elliptical parameters [1]. Hence, IG beams
are considered as one of the most generalized beams. IG beams have advantages over LG
and HG beams due to their higher spatial degree of freedom and these beams can also be
used as a fundamental mode which can generate other complex vector optical fields [2]. IG
beams find application in various fields, such as quantum information [3], optical commu-
nication [4], optical storage [5], biological medicine [6], optical trapping [7] and non-linear
optics [8]. In order to harness the benefits of IG beams, a simple and efficient method to
generate these beams is important. A variety of different tools and methods for the genera-
tion of IG beams have been reported. An IG beam was first observed by Schwarz et al. [9]
and Bandres et al. [10] in a stable resonator. Later, Otsuka et al. [11] reported generation by
breaking the symmetry of a cavity in a solid state laser under a tightly focused pump beam.
Ren et al. [12] reported the arbitrary generation of Ince–Gaussian beams using a digital
micromirror device (DMD), which is an array of 1024 × 768 micromirrors with a switching
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frequency of 5.2 kHz. Aguirre et al. [13] used kinoform phase elements for the generation
of IG and HG beams. The generation of a helical Ince–Gaussian beam was reported by
Bentley et al. [14], who used a complex amplitude and phase mask encoded on a liquid
crystal display. Wang et al. [15] demonstrated Ince–Gaussian-beam array generation by
using a computer-generated hologram (CGH) and spatial light modulator (SLM). A second
harmonic Ince–Gaussian beam generation was reported by Wang et al. [16] by employing
a binary non-linear CGH. Ohtomo et al. [17] demonstrated a method to generate vortex,
HG and IG beams, and also the conversion of one structural beam to another using an
astigmatism mode converter (AMC).

All the existing methods, tools and techniques for generating Ince–Gaussian and
other similar structural beams require a bulky system assembled on an optical bench or
a complex fabrication method (e.g., metamaterials) [18]. We have recently shown that
compact vortex beam generators can be realized by using azocarbazole CGH [19], which is
simple and compact. In this paper, we further extend the method to incorporate the more
general IG beams and their generation. The method combines a digital hologram printing
(DHP) technique, CGH calculation and photoisomeric polymer fabrication, to generate
arbitrary IG beams and their superposition states. We printed a CGH of an IG beam on
an azocarbazole polymer film of size 1 mm2, which is simple and small compared to the
existing popular devices such as SLM. The printed hologram can be used to reconstruct an
IG beam and its superposition states without any complex optical setup. In summary, the
following advantages in the generation of IG beams can be expected when comparing to
the conventional methods that use SLM/DMD:

• The two methods reported for the generation of arbitrary IG beams are LCoS-SLM
and DMD, which have a pixel pitch of 3 microns. This results in a small diffraction
angle and they are always required to have a 4f Fourier-filtering setup to separate
out the zero-order beam from the diffracted beam. The digitally printed hologram on
azopolymers has a pixel pitch of 0.8 microns and does not require any optics in the
reconstruction setup. This provides a significant reduction in system size footprint
compared to SLM/DMD.

• The printed holograms are just 1 mm in size and can be used in an integrated optical
device (after printing), which cannot be achieved using SLM/DMD.

• Digital hologram printing allows to print large-sized holograms (25 cm) at a pixel
pitch of 0.8 microns, thereby offering a huge space–bandwidth product. This can
be beneficial in multiplexing 1000’s of beam modes, which is a crucial requirement
in information processing and communication applications. To do the same using
SLM/DMD requires spatially tiling SLMs which significantly increases the cost and
size footprint.

It is noted that azocarbazole polymer also differs from the other popular holographic
polymer called a photorefractive polymer. A photorefractive polymer is a real-time
read/write material, where both the writing beams and reading beams must be present all
the time, which increases system complexity. Since the purpose of the research reported
in this paper is to develop a compact system without any optics in the readout process,
photorefractive polymers were not considered. Moreover, the photoinduced birefringence
exhibited by the azo polymers assists in obtaining a high diffraction efficiency of 30%,
which is indeed helpful. Complications with respect to polarization states can be avoided,
if the light beams present during recording have a reasonably pure polarization state.

In order to generate the CGH of an IG beam, it is first required to compute the complex
amplitudes (of the beam cross-section) corresponding to each mode number at a particular
propagation distance. Earlier reports used proprietary software such as MATLAB [20]
and Mathematica [21] to realize these computations. Here, we implement the same using
Python3 [22], which is open source and freely available. We also provide the Python source,
in Supplementary Materials, that can reproduce all the results presented in the paper.
Intensity and phase profiles corresponding to different IG beams and their derivatives
(LG and HG) were successfully generated and verified experimentally. The superposition
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states of different IG beams that correspond to different elliptical parameters have also
been generated and their orthogonality relations were investigated.

2. Theory and Methods
2.1. Theory
2.1.1. Ince–Gaussian Beam

In this section, we will discuss the theoretical foundation of an IG beam and some of its
characteristics. The mathematical origin of this beam can be traced back to the Helmholtz
equation (also known as the wave equation), which is defined as follows,

∇2U + k2U = 0 (1)

where k is a wave number. Now, for the beam propagating in the z direction, the solution
of Equation (1) can be described as

U(x, y, z) = U0(x, y, z)eikz (2)

Combining Equations (1) and (2) under slow-varying approximation of wave function
(U0), the Helmholtz equation changes to

∂2U0

∂x2 +
∂2U0

∂y2 + 2ik
∂U0

∂z
= 0 (3)

The lowest order solution to Equation (3) yields a Gaussian beam defined as

U(r) = A
(

W0

W(z)

)
e
− r2

W2(z) e
(

i(kz+ kr2
2R(z)−ψ(z))

)
(4)

where A is normalization constant, r =
√
(x2 + y2), W(z) is the spot size of the beam(

W(z) = W0

√
1 +

(
Z

ZR

)2
)

, such as ZR is the Rayleigh range, and W0 is beam width at

z = 0, R(z) is radius of curvature
(

R(z) = Z +
Z2

R
Z

)
and ψ(z) is the Gouy phase

(
ψ(z) =

arctan
(

Z
ZR

))
. The higher order solution to Equation (1) in elliptical coordinate system

under paraxial approximation is given by

IGo
p,m(r, ε) = S

(
W0

W(z)

)
Sm

p (iζ, ε)Sm
p (η, ε)e

− r2

W2(z) e
(

i(kz+ kr2
2R(z)−(p+1)ψ(z))

)
(5)

IGe
p,m(r, ε) = C

(
W0

W(z)

)
Cm

p (iζ, ε)Cm
p (η, ε)e

− r2

W2(z) e
(

i(kz+ kr2
2R(z)−(p+1)ψ(z))

)
(6)

where S and C are the normalization constants, indices o and e denote the odd and even Ince–
Gaussian polynomial and Sp,m and Cp,m are odd and even Ince polynomials. These poly-
nomials are defined with order p and degree m, such that p and m must have the same
parity ((−1)p−m = 1) and obey the condition 0 ≤ m ≤ p for odd Ince polynomials and
1 ≤ m ≤ p for even Ince polynomials. In above equations, ζ and η denote the radial
and angular elliptical coordinates, respectively, which are defined as x = fcoshζcosη and
y = fsinhζsinη, such that ζ ∈ [0, ∞), η ∈ [0, 2π) and ε is elliptical parameter defined as

ε = 2 f 2

W2 , where f is the semifocal separation. The beam thus generated and corresponding
to the Ince–Gaussian polynomial is known as the Ince–Gaussian beam. The intensity and
phase profile of even and odd Ince–Gaussian beams are shown in Figure 1.
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Figure 1. (A) Intensity (first row) and phase (second row) profile of even Ince−Gaussian beams
(a) IGe

1,1, (b) IGe
3,1, (c) IGe

5,5, (d) IGe
8,6, (e) IGe

12,2 for ε = 2. (B) Intensity (first row) and phase (second
row) profile of odd Ince−Gaussian beams (f) IGo

2,2, (g) IGo
3,1, (h) IGo

5,5, (i) IGo
10,2, (j) IGo

12,10 for ε = 2.

The normalization constant of IG beam can be obtained using the orthogonality
relation given as ∫ ∫

(IGσ
p,m(ζ, η))×(IGσ′

p′ ,m′(ζ, η))ds = δσσ′δpp′δmm′ (7)

The linear combination of odd and even Ince–Gaussian beams form a helical Ince–
Gaussian beam, which is defined as

IGh
p,m(ζ, η) = IGe

p,m(ζ, η) + iIGo
p,m(ζ, η) (8)

Some of the helical Ince–Gaussian beams can form an elliptical vortex followed by
elliptical rings. The total number of rings of these kinds of helical Ince–Gaussian beams,
( IGh

p,m(ζ, η)), are equal to 1 + p−m
2 . The intensity and phase profile of these particular

kinds of helical Ince–Gaussian beams are shown in Figure 2.
The IG beam can be transformed into other structural beams, such as HG and LG, by

varying its elliptical parameter (ε). When ε = 0, the IGσ
p,m beam changes to LG (LGσ

n,l) beam,

such as l = m and n = p−m
2 and for ε = ∞ the IGσ

p,m beam changes to HG (HGσ
nx ,ny ) beam,

such as nx = m− 1 and ny = p−m + 1 for σ = odd and nx = m and ny = p−m for σ = even.
The transformations of IG beam to LG and HG beam for different elliptical parameter
values are shown in Figure 3. All these structural beams form a complete set in Hilbert
space, so any one beam (e.g., LG, HG, IG) can be written in terms of other beams, as shown
in Equation (9).

IGσ
p,m(ζ, η) = ∑

n,l
An,l(LGσ

l,m(r, φ)) = ∑
a,b

Ba,b(HGnx ,ny(x, y)) (9)
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where An,l and Ba,b are the coefficients that can be obtained by calculating the overlap
integral, which is given as

An,l = 〈LGσ
l,m(r, φ)|IGσ

p,m(ζ, η)〉 (10)

Ba,b = 〈HGnx ,ny(x, y)|IGσ
p,m(ζ, η)〉 (11)

such that the value of coefficients An,l and Ba,b will always be unique for a given IG beam
and will follow the condition given in Equation (12).

∑
n,l

A2
n,l = ∑

a,b
B2

a,b = 1 (12)

Hence, any one beam that forms a complete set in a given coordinate system can be
transformed into another complete beam defined in another coordinate system by using the
transformation matrix [10], whose elements can be calculated by using the overlap integral
defined in Equations (10) and (11).

Figure 2. Intensity (first row) and phase profile (second row) profile of helical Ince−Gaussian beams
(a) IGh

8,8, (b) IGh
10,8, (c) IGh

12,8, (d) IGh
14,8 for ε = 2.

2.1.2. Azocarbazole Polymer

Azocarbazole is a photoswitchable chemical compound which exhibits high efficiency
in optical data storage. The cis-trans photoisomerization of azocarbazole polymer makes
it a suitable polymeric material for hologram recording [23,24]. When this sample is
exposed to a light pattern with alternate bright and dark regions, the molecules in brighter
regions undergo isomerization and relax in a particular orientation once the light is turned
off. The direction of the molecular orientation depends on the polarization state of the
input beam, resulting in photoinduced birefringence. The molecules in the darker region
are unaffected and stay randomly oriented. Therefore, a polarized beam experiences a
difference in refractive index between the bright (exposed) and dark (unexposed) areas
when passing through the sample. This difference in refractive index corresponds to the
recorded hologram pattern. The recorded pattern remains intact until the polymer is heated
or strongly radiated. The polarization of input (writing) beams make this azocarbazole
polymer anisotropic and, hence, optically birefringent. More details on the performance of
the material for hologram recording and reconstruction can be found in Kinashi et al. [24].
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Figure 3. Transformation of Ince–Gaussian beam (center) into Hermite–Gaussian beam (left) and
Laguerre–Gaussian beam (right) at different elliptical parameter (ε) values. (A) Conversion of IGe

3,1
for ε = 2 into HG1,2 for ε = ∞ and LG1,1 for ε = 0. (B) Conversion of IGo

4,2 for ε = 2 into HG1,3 for
ε = ∞ and LG2,1 for ε = 0. (C) Conversion of IGh

6,6 for ε = 2 into HG6,0 for ε = ∞ and LG0,6 for
ε = 0.

2.2. Methods
2.2.1. Calculation of Computer-Generated Hologram(CGH)

The computer-generated hologram of IG beam is calculated using the scripting lan-
guage Python. In order to compute CGH, we need to generate the phase profile of IG
beam of interest. For calculating phase profile, we first define a meshgrid of size n× n
cm in cartesian coordinates which is divided into N × N number of pixels. We note that
a rectangular aperture is usually used to simplify the plots, though Ince–Gaussian beams
are elliptically symmetrical and correspond to an elliptical aperture. Using the values
of rectangular aperture defined in cartesian coordinates, an elliptical coordinate (ζ, η) is
defined for a fixed value of elliptical parameter (ε) [25]. After defining the elliptical co-
ordinate, we divide the simulation into two parts: (i) odd Ince beam and (ii) even Ince
beam. Each part is further divided into two sections: (i) odd indices (e.g., IGσ

3,1) and
(ii) even indices (e.g., IGσ

4,2). In each section we generate the Ince polynomial by computing
the coefficients in the summation and normalization constant [10]. After generating the
Ince polynomial, we set various parameters such as beam waist, propagation distance,
wavelength of beam, etc. Using these parameters, odd and even IG beams are generated, as
defined by Equations (5) and (6). Helical Ince–Gaussian beam can easily be computed by
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adding even and odd IG beams. In order to compute the hologram of different IG beams,
we can rewrite Equations (5), (6) and (8) in simplified form, as

IG(ζ, η) = A(x, y)eiφ(x,y) (13)

where A(x, y) is the amplitude and φ(x, y) is the phase of the IG beam in cartesian coordi-
nates. A linear phase grating (ei 2πx

d ) is multiplied with IG beam which serves as a carrier,
where d is the period of grating. The hologram is computed by adding the phases of the
IG beam and carrier beam, assuming its amplitude to be uniform across the beam cross
section. Therefore, what we are generating is known as a ‘phase hologram’ and should not
be confused with ‘phase-only’ hologram that is generated by iterative algorithms such as
Gerchberg—Saxton (GS). The holograms of different IG beams are simulated for a meshgrid
dimension of 1 cm × 1 cm with pixels values of 1200 × 1200. The elliptical parameter (ε)
is 2.0 and propagation distance is z = 0 m. The wavelength of the beam is 532 nm and
beam waist is 3 mm; hence, the calculated value of f(z) at z = 0 m is given as f(0) = 0.003 m.
The hologram is generated for a carrier frequency of 10 pixels per cycle and is shown in
Figure 4. These computer-generated holograms will be printed on azocarbazole polymers
using digital hologram printing.

Commented Python3 source files for calculating phase, intensity and hologram of
the different Ince–Gaussian beams and their superposition are provided as a Supple-
mentary Materials. They include two files: (i) 〈IGbeam.py〉—the core module, which
includes the necessary function to generate IG beams (this file needs no modification), and
(ii) 〈example.py〉—the file where user sets the parameters and then executes it to obtain the
results. The provided ‘example.py’ is pre-set to generate amplitude and phase patterns
shown in Figure 1d and the corresponding hologram pattern shown in Figure 4c, when
executed without any modification. To change to a different pattern or to generate the
superposition states, the user may follow the comments inlined in the source code.

Figure 4. Computer-generated hologram for different Ince–Gaussian beams. (a) IGo
5,3, (b) IGe

3,1,
(c) IGe

8,6, (d) IGo
6,4, (e) IGh

12,8 for ε = 2.

2.2.2. Sample Synthesis

The azocarbazole polymer film is prepared using a four-step process. In the first
step, poly(CACzE-MMA), which is composed of 3-((4-cynophenyl)azo)-9H-carbazole-9-
ethanol (CACzE) and methyl metacrylate(MMA), is mixed with CACzE and Diphenyl
Phthalate(DPP) in ratio of 9:3:1 by weight. In the second step, we dissolve the above
prepared sample into Tetrahydrofuran(THF) and stir for 48 h. The third step involves
drying the sample at 70 ◦C for another 48 h. In the last step, the sample is melted at
180–185 ◦C and pressed between glass slides, where the thickness is controlled by placing
polyimide spacer between the slides. The method of synthesis of azocarbazole polymer
film is summarized in Figure 5. The synthesized azocarbazole polymer film is shown in
Figure 6a. The thickness of the sample ranges from 30 µm to 35 µm.The sample shown in
Figure 6a has thickness of 32 µm and the total thickness of sample is 1.87 mm (including
thickness of glass slides).
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Figure 5. Process involved in the synthesis of azocarbazole polymer film.

Figure 6. (a) Photograph of the synthesized azocarbazole polymer film sample. (b) Photograph of the
sample with 9 holograms printed on film. (c) Phase contrast image of the printed hologram (scalebar
is 50 µm in length).

2.2.3. Digital Hologram Printing (DHP)

Digital hologram printing (DHP) is a technique used to print digitally calculated holograms
(such as CGH) on a material medium using an optical setup (e.g., fringe printers) [26]. A simple
schematic of the hologram printing setup which is used to print the CGH computed
in Section 2.2.1 on the azocarbazole polymer film synthesized in Section 2.2.2 is shown
in Figure 7. In this setup, the CGH is displayed on the spatial light modulator (SLM),
where the physical size of hologram is 1 cm × 1 cm. The SLM being employed is the
LC-R 1080 reflective LCOS SLM from HOLOEYE Photonics AG (HOLOEYE Photonics
AG, Berlin, Germany), which has a resolution of 1920 × 1200 pixels, a pixel pitch of 8.1 µm
and a frame rate of 60 Hz. A collimated beam coming out from the laser is split by a
polarizing beam splitter (PBS) and the reflected beam illuminates the SLM. The phase
hologram (phase modulation) pattern displayed on the SLM (phase only) is converted to
amplitude modulation when the reflected beam from SLM passes through the PBS. A 10×
demagnifying lens arrangement transfers the intensity pattern passing through the PBS
onto the sample as refractive index modulation through a process called photoinduced
birefringence. The sample is mounted on a high-precision 3-axis motion stage for accurate
position of the sample w.r.t the illuminating beam (for more details about the printing
setup, one may refer to Jackin et al. [19]). The laser power at the sample plane is measured
to be 32 mW/mm2 and the recording is performed with a 5 s exposure. Multiple holograms
are printed on different areas on a sample of size 3 cm × 3 cm and a photograph of the
printed sample is shown in Figure 6b. The printed area of one hologram on the sample is
1 mm2. The diameter of the whole sample is measured to be 2 cm and we can print upto
36 holograms (avoiding the overlap between two holograms) on one sample. The sample
shown in Figure 6b has a diameter of 1.87 cm and 9 holograms were printed on it. Figure 6c
shows the phase contrast optical microscopic image of one of the printed holograms on
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azocarbazole polymer film. The refractive index changes are clearly visible as bright and
dark areas in the sample.

Figure 7. Schematic of optical setup for digital hologram printing on azocarbazole polymer film.

3. Results

The printed hologram can be reconstructed using the simple setup shown in Figure 8.
A collimated beam from a laser of wavelength 640 nm was passed through the printed
area of the sample and the intensity pattern of the exiting radiation was observed using
a CCD. The reconstructed intensity pattern for the different odd IG beams (IGo

p,m) and
even IG beams (IGe

p,m) are shown in Figure 9a–j. The experimentally observed intensity
patterns were compared with the simulated intensity patterns and were found to be in
good agreement.

Figure 8. Optical setup for reconstruction of printed hologram on azocarbazole polymer film.

The ring-type helical Ince–Gaussian beams (IGh
p,m) were also generated using the same

setup. The experimental verification of generated intensity profiles for different helical
Ince–Gaussian beams are shown in Figure 10.

The diffraction efficiency (η(%)) for the generated IG beams was calculated using
Equation (14), given as:

η(%) =
I+1

It
× 100 (14)

where I+1 is the intensity of +1 order of the diffracted beam and It is the total transmitted
intensity, which can be measured by passing a collimated beam through the unprinted
sample. The calculated value of diffraction efficiency is 30%. This is in close agreement with
the theoretical maximum efficiency of the Raman–Nath regime, which is 33.9%. Hence, we
can conclude that the efficiency obtained from our sample is very high. The retention time
of the printed hologram on the sample is nearly 50 days, which makes the azocarbazole
polymer suitable for writing once and later reading multiple times (permanent storage).
However, with the application of heat on purpose, the written pattern can be erased, and the
sample be reused for another recording (unlike photopolymers, which are non-reusable).
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Figure 9. Intensity patterns of simulated and experimentally generated Ince–Gaussian beams (a) IGe
6,6,

(b) IGo
6,4, (c) IGo

5,3, (d) IGo
4,2, (e) IGo

3,3, (f) IGo
2,2, (g) IGe

5,5, (h) IGe
1,1, (i) IGe

2,2, (j) IGo
5,5 for ε = 2.

Figure 10. Intensity pattern of simulated and experimentally generated helical Ince–Gaussian beams
(a) IGh

8,8, (b) IGh
10,8, (c) IGh

12,8, (d) IGh
14,8 for ε = 2.

IG beams were transformed into other structural beams by changing their elliptical
parameter (ε) values. Initially, an even IG beam (IGe

2,2) and an odd IG beam (IGo
3,3) were

generated for ε = 2 and then, by changing the value of ε to 106, the IGe
2,2 beam changes

to HGe
2,0 and the IGo

3,3 beam changes to HGe
2,1. For ε = 0, the IGe

2,2 beam changes to LGe
0,2

and IGo
3,3 changes to LGe

0,3. The corresponding generated beams are shown in Figure 11.
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Figure 11. (A) Conversion of IGe
2,2 beam (second column) into HGe

2,0 beam (first column) and LGe
0,2

beam (third column) for different ε values. (B) Conversion of IGo
3,3 beam (second column) into HGo

2,1
beam (first column) and LGo

0,3 beam (third column) for different ε values.

The superposition states of IG beams were also generated, which is important in the
domain of optical communication. We generated the superposition of an IG beam for ε = 2
and ε = 0 and they are shown in Figure 12. Figure 12a shows the superposition of IGe

3,1
and IGe

3,3, while Figure 12b shows the superposition of IGo
4,4 and IGo

4,2, for ε = 2. The su-
perposition of IGo

9,9 and IGe
9,9 and the superposition of IGo

9,3 and IGe
9,3 for ε = 0 is shown in

Figure 12c,d, respectively. Figure 12c,d corresponds to the generation of a vortex and a vor-
tex with circular rings, respectively. Information can be encoded into these superposition
states and can be transmitted to the receiver who can use the orthogonality relation between
these beams to decode the information. On the other hand, plane electromagnetic beams
do not possess orthogonality and hence are difficult to separate once they are superposed
(unless angular, polarization and wavelength multiplexing, etc., are employed). Moreover,
certain modes of IG beams also possess orbital angular momentum (vortex modes), which
can be used to encode information directly in terms of topological charges.

The orthonormality constant was calculated by evaluating Equation (7) numerically
in Python. The process involved in the calculation of an orthonormality constant consists
of four steps. In the first step, the dot product between two simulated IG beams was
calculated; then, in the second step, the total number of pixels occupied by this dot product
in the region defined in the meshgrid was calculated. In the third step, the area occupied by
1 pixel was calculated by using formula ( L

N−1 )
2, such that L is the length of the meshgrid

and N is the total number of pixels. Finally, in the last step, the orthonormality constant
was calculated by multiplying the total number of pixels occupied by the dot product with
the area of one pixel.
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Figure 12. Holograms (first row) of superposition of different IG beams. Simulation (second row)
and experimental (Third Row) intensity profile of superposition of IG beams (a) IGe

3,3+IGe
3,1 for ε = 2,

(b) IGo
4,4+IGo

4,2 for ε = 2, (c) IGo
9,9+IGe

9,9 for ε = 0, (d) IGo
9,3+IGe

9,3 for ε = 0.

The investigated orthonormality relation for different configurations is shown in
Figure 13. Figure 13a,b shows the orthogonality relation between even and odd indices.
The variation in orthogonality relation with different parameters such as beam waist (Wo),
meshgrid dimension (n × n), pixels numbers (N × N) and elliptical parameter (ε) was
analysed and the results thus obtained are shown in Figure 13c–f. The logarithmic variation
in orthogonality constant with meshgrid sizes for modes IGe

5,3 and IGe
3,1 for ε = 2 can be

seen from Figure 13c for a given beam waist of 3 mm and pixel number of 512 × 512. We
found that for a meshgrid size greater than 1.3 cm × 1.3 cm, the orthogonality relation is
mostly satisfied. Figure 13d shows the variation in orthogonality constant between modes
IGe

5,3 and IGe
3,1 for ε = 2 with the pixel number for a meshgrid size of 1 cm × 1 cm and

a beam waist of 3 mm. We find that the orthogonality relation in this case deteriorates
when we increase the pixel number. Figure 13e manifests the variation in the normalization
constant (factor of 1) between modes IGo

4,2 and IGo
4,2 for ε = 2 with a varying beam waist

for a meshgrid size of 1 cm × 1 cm and pixel number of 1000 × 1000. Here, we find
that, for beam waist size less than 4 mm, the normalization relation is well satisfied and
after that, the normalization relation starts violating the ideal case. Figure 13f conveys the
variation in normalization constant with elliptical parameter between modes IGo

4,4 and
IGo

4,4 for a meshgrid size of 1 cm × 1 cm, pixels number 1000 × 1000 and beam waist
3 mm. We observe that the normalization constant is well-defined at all values of elliptical
parameters, which indicates the validation of the orthonormality relation even when the
IG beam changes to an HG or LG beam. Hence, from all these observations, we can
conclude that a perfect combination of meshgrid dimension, pixel numbers and beam waist
is important for generating IG beams and their superposed state to access their application
in optical communication.
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Figure 13. (a) Orthogonality relation between Ince–Gaussian beam of even indices for ε = 2.
(b) Orthogonality relation between Ince–Gaussian beam of odd indices for ε = 2. (c) Variation
ins log(orthogonality constant) for beams IGe

5,3 and IGe
3,1 with meshgrid size (L) for ε = 2. (d) Varia-

tion in orthogonality constant for beams IGe
5,3 and IGe

3,1 with pixels number (N) for ε = 2. (e) Variation
in normalization constant for beams IGo

4,2 and IGo
4,2 with beam waist (W0) for ε = 2. (f) Variation in

normalization constant for beams IGo
4,4 and IGo

4,4 with elliptical parameter (ε).

4. Conclusions

A combination of digital hologram printing and an azocarbazole polymer was used to
overcome the high cost, large footprint and non-scalablity of existing IG beam generators.
Intensity, phase and the corresponding CGH of different IG beams were computed using the
open source Python programming language. The simulated and experimentally generated
intensity profiles of IG beams were found to be in good agreement, which determines
that the beams were generated successfully. The conversion of an IG beam into other
structural beams, such as LG and HG, is also demonstrated by simulation and was verified
experimentally. In order to access the applicability of IG beams in optical communication,
the superposed states of different IG and LG beams were generated and their orthogonality
relations were examined. The reported compact and scalable IG-beam-generation technique
could open up new possibilities in structural-beam science. Further improvement to this
technique can be made by increasing the printing area of a hologram on polymer film, which
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will possibly increase the diffraction efficiency and assist larger mode generation. Other
structural beams defined in different coordinates, such as Bessel–Gaussian beams [27],
Mathieu–Gauss beams [28], Airy–Gauss beams [29], hypergeometric Gaussian beams [30],
etc., can also be generated using the proposed technique.

Supplementary Materials: Supporting python files are available at https://www.mdpi.com/article/
10.3390/jimaging8050144/s1.
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The following abbreviations are used in this manuscript:

IG Ince–Gaussian
HG Hermite Gaussian
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CGH Computer generated hologram
DHP Digital Hologram printing
CCD Charge coupled device
SLM Spatial light modulator
MMA Methyl metacrylate
DPP Diphenyl pthalate
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PBS Polarizing beam splitter
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