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Abstract: (1) Background: Segmentation of the bladder inner’s wall and outer boundaries on Magnetic
Resonance Images (MRI) is a crucial step for the diagnosis and the characterization of the bladder state
and function. This paper proposes an optimized system for the segmentation and the classification of
the bladder wall. (2) Methods: For each image of our data set, the region of interest corresponding
to the bladder wall was extracted using LevelSet contour-based segmentation. Several features
were computed from the extracted wall on T2 MRI images. After an automatic selection of the
sub-vector containing most discriminant features, two supervised learning algorithms were tested
using a bio-inspired optimization algorithm. (3) Results: The proposed system based on the improved
LevelSet algorithm proved its efficiency in bladder wall segmentation. Experiments also showed
that Support Vector Machine (SVM) classifier, optimized by Gray Wolf Optimizer (GWO) and using
Radial Basis Function (RBF) kernel outperforms the Random Forest classification algorithm with a
set of selected features. (4) Conclusions: A computer-aided optimized system based on segmentation
and characterization, of bladder wall on MRI images for classification purposes is proposed. It can
significantly be helpful for radiologists as a part of spina bifida study.

Keywords: magnetic resonance imaging; bladder wall segmentation; texture analysis; sequential
floating selection; optimization; classification

1. Introduction

Spina bifida, a congenital malformation visible from birth and characterized by poor
development of the nervous system and the spine, could have several consequences on
various organs and can lead to a multiple handicap. In the United States, about 1427 babies
are born every year suffering from spina bifida [1], whereas in India, spina bifida rates are
significantly higher, at 1.9 per 1000 births [2]. According to “France Assos Santé”, which
brings together 84 national associations campaigning for the rights of patients and users,
the number of patients with spina bifida in France is estimated to be 25,000 [3]. Spina bifida
generates complex and variable disabilities from one individual to another. Depending on
its severity, symptoms and patient needs, its management falls under multiple medical and
surgical specialties.

Spina bifida is a neuro-spinal pathology whose clinical–pathological consequence
is characterized by damage to the lumbosacral nerves. This has multiple neurological
consequences, including bladder involvement with regard to the innervation of the main
muscle of the bladder, but also on the bladder sphincters. This dyssynergy between
these different muscle groups is the cause of bladder malformations, with thickening and
irregularity of the bladder walls visible on the bladder imaging. This parietal damage
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is in fact the result of an antagonistic effect between a pathological detrusor wanting
to evacuate urine from the bladder, and hyperactive bladder sphincters preventing the
expulsion of urine.

Hence, the interest of studying the bladder wall characterization in order to identify
useful information supporting the medical team decision. Indeed, a spina bifida case
considered severe by specialists requires surgery intervention, unlike non-severe cases.

In order to characterize the bladder wall and to differentiate different spina bifida
cases, a segmentation step is firstly crucial after the pre-processing step.

For this purpose, several segmentation strategies have been published in the litera-
ture [4–6]. As is also known, segmenting the inner bladder border is much easier than
the outer one [7]. This is why, in many previous publications, only the inner border is
segmented using an algorithm, whereas the outer border is segmented manually. Nonethe-
less, an automatic or semi-automatic segmentation of the bladder wall is already proposed
in some previous publications. Contour-based segmentation methods have shown their
robustness through several previous studies, especially Level-set segmentation, which is
widely applied in bladder wall segmentation. Actually, in [8,9], and to segment inner and
outer bladder boundaries, the authors proposed an adaptative shape prior constrained
directional level set model with the exploitation of the prior knowledge of region infor-
mation and bladder wall minimum thickness. A minimum thickness constraint of 1 mm
is adopted to avoid an overlap between the outer and the inner zero level set. An adap-
tative T1-weighted images level set segmentation strategy is also proposed by Duan et al.
in [7]. Authors propose a coupled level set framework (two collaborative level set func-
tions with an adaptative clustering algorithm) able to segment the inner and the outer
bladder wall borders simultaneously for thickness measurement. The proposed framework
was also compared to the Chan-Vese LS model [5], a segmentation algorithm based on
level sets and designed to segment objects without clearly defined boundaries. A unified
expectation-maximization (EM) approach with coupled level-set (CLS) constraints and a
novel adaptative Markov Random Field model was also proposed by Hao Han et al. in [10]
in order to segment the bladder wall in magnetic resonance imaging-based virtual cys-
toscopy. CLS was developed in order to preserve the continuity of the wall surface and to
reduce the influence of artefacts adjacent to the bladder. Siqi Chen and Richard J. Radke [11]
have also proposed a level-set segmentation approach based on both shape and intensity
of prior information characterizing the image information using the intensity distributions
inside the contour, outside it and over the entire region. In another more recent study [12],
Wenjun Chi et al. segmented the bladder wall in MRI using coupled level set methods.
Both of T1-W and T2-W modalities were used to detect inner and outer boundaries. Thus,
there are many level-set based segmentation studies that have shown promising and robust
results. Level set was also combined with deep-learning neural network in some recent
studies in order to segment the urinary bladder such as in [13], in which Kenny H. Cha
et al. developed a computerized system for bladder segmentation. This system starts with
a deep learning convolutional neural network (DL-CNN) helping in the differentiation
between the inside and the outside of the bladder and providing a seamless mask useful
for guiding level set algorithm used here only to refine the segmentation. Deep learning
completed by level sets was also the segmentation strategy of Gordon et al. in [6,14]. In fact,
aiming to detect the inner and outer bladder wall in CT urography, authors firstly construct
a DL-CNN likelihood map used after that as an energy term in the energy equation of a
cascade level set methods. Many recent studies also proposed segmentation approaches
uniquely based on deep learning [4,15–17] providing important segmentation results, but
deep learning approaches often require a large database to afford the most reliable results.

After a successful segmentation step eventually compared to a ground truth provided
by specialists, the next step is generally bladder characterization, for that many feature
categories could be computed from the region of interest already extracted.

In order to discriminate bladder tumors from normal wall tissues, Xu et al. in [18]
used three-dimensional texture features computed from MRI data. A total of 58 features
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were extracted from each Volume of Interest (VOI) such as gradient, curvature maps, 3D
Haralick features and Tamura features. Effectively, four groups of texture features are
used in their study, features computed from gray level co-occurrence matrix (GLCM), gray
level-gradient co-occurrence matrix (GLGCM), gray-level-curvature co-occurrence matrix
(GLCCM), and Tamura features. Texture features were also used in [19], by Shi et al. in order
to characterize bladder carcinoma and bladder wall based on the exploration of textural
characteristics on MRI data. Five categories of texture features were extracted, namely
features based on the probability distribution of image intensity, Tamara features, features
based on auto-covariance coefficients, features derived from GLCM and GLGCM matrices.

To the best of our knowledge, a complete segmentation, characterization and classifica-
tion system for spina bifida staging using MRI data was developed in few research projects.
As an example, we can cite the study of Khene et al. [20], in which contrast-enhanced
Computed Tomography (CT) scans texture parameters, related to gray-level histogram
and gray-level co-occurrence matrix, were used by the authors as urodynamic features for
a spina bifida study in adult patients. Nevertheless, among the limitations of this study,
bladder wall is segmented manually, and a few texture features were evaluated using
“MaZda” tool [21].

This manuscript’s major objective is to propose a new semi-automated Computer
Aided Diagnosis (CAD) System for accurate spina bifida staging classification on MRI
images based on LevelSet bladder wall segmentation followed by feature extraction. Two
automatic feature selection algorithms SBFS and SFFS are then used to determine the
sub-vector containing the most significant features based on a sequential search strategy
(more details in Section 2.3.2). These significantly different features are then analyzed using
Support Vector Machine and Random Forest classifiers in order to determine their accuracy
distinguishing severe spina bifida cases and non-severe ones as shown in Figure 1 below:
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The remainder of this paper is organized as follows: first, details about the study data
are provided. Next, the bladder wall segmentation methodology is described. Then, the
proposed characterization strategy and employed features are fully explained. After that,
experimental results are outlined and finally, discussion and conclusions are given.

2. Materials and Methods
2.1. Bladder MRI Data and Acquisition Techniques

This research project is part of a cooperation with the North Marseille Hospital,
Timone children CHU and Conception Hospital CHU, Marseille, FRANCE. After approval
by the Ethics Committee, 35 patients equivalent to 176 images were included in our study.
Inclusion criteria were over 50 years of age patients requiring pelvic MRI for benign
prostatic hypertrophy, consecutively included in the cohort. Exclusion criteria were a
history of pelvic surgery (including bladder or prostate surgery) or vesical neoplasia.

All the analyses were performed on T2-weighted sagittal acquisitions using a 1.5-Tesla
MRI scanner (Magnetom Amira, Siemens, Erlangen, Germany) with the following parame-
ters: repetition time/echo time: 3630/90 ms; slice thickness: 3 mm; flip angle: 90◦; matrix
size: 448 × 336 mm2, field of view: 320 × 320 mm2. A T2-weighted sequence without fat
saturation was used for two main reasons. On the one hand, it is a widely studied sequence
used in clinical practice, on the other hand its characteristics allow a good resolution of
contrast between urine, detrusor muscle and peri-vesical fat. The segmentation and anno-
tation were done by radiologist with 6 years of experience. Each image was anonymized,
collected, and stored for further processing in the digital imaging and communication in
medicine (DICOM) format.

The use of the criterion of prostatic hypertrophy as an indication to perform MRI
allows to classify patients in two classes: positive class and negative class regarding the
thickening of their bladder walls. Positive class bladders were those in which obstructive
pathological bladder wall was diagnosed on MRI acquisition. The remnographic criteria
for a pathological bladder were present of at least one bladder diverticulum or irregular
thickening of the bladder walls. A regular circumferential thickening could also be consid-
ered as pathological if it had a significant supra-physiological value (>6 mm). The presence
of a focal thickening was not considered to be an obstructive pathological bladder, because
of the insufficient spatial resolution of a 3-mm-thick MRI acquisition, and the possibility of
the presence of a thickening that was tumoral and not related to obstructive thickening.
Negative class bladders were those in which no focal or diffuse thickening of the bladder
walls was demonstrated. The 176 acquisitions were divided into 97 images for negative
class and 79 images for positive class.

Given that this study included patients with prostatic hypertrophy whose bladder
wall thickness depends on the urine volume, a water-drinking protocol is followed during
patient preparation. For adult patients, they are usually made to drink a 50 cL bottle
one hour before the examination after urination. For these patients, bladder filling after
drinking will depend on two main factors: more or less complete bladder emptying during
their urination, and renal function and therefore the speed of “creation” of urine which
is variable for each person. Concerning children, before each MRI, urological surgeons
carried out a warm saline filling of their bladder to 80% of their theoretical bladder capacity
in mL (corresponding to (age + 1) + 30). Urologists leave the bladder tube in place and
perform a first sequence to check that they could clearly see the bladder, then T2 sequences
in the 3 planes and 3D sequence.

2.2. Bladder Wall Segmentation

In T2-weighted MR images, the bladder wall has low-signal intensity and its appear-
ance is different from the high-signal intensity urine and peri-vesical fat’s. If the images
are not severely influenced by noise, the inner boundary can be identified correctly based
on the large intensity gradient of active contour methods [22]. In this paper, a deformable
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model is proposed to segment the bladder wall. It can effectively handle the variation of
intensity in MR images.

Therefore, in order to obtain a mask of the bladder wall that will be used for character-
ization and determination of spina bifida gravity, we have developed our algorithm which,
based on the LevelSet, makes it possible to obtain the inner contour followed by the outer
contour of the bladder, taking into account a certain neighborhood of each pixel.

• Overview of Level Set Method

LevelSet (LS) method, commonly used in the literature as contour based segmentation,
was initially proposed in 1988, as a geometric deformable model, by Osher and Sethian [23],
in order to implicitly describe evolving surfaces in 3D (or curves in 2D). Mathematically, let
Ω ⊂ RN be the data domain, an N dimensional surface C is implicitly expressed by a scalar
Lipschitz continuous function:

φ(x1, x2, . . . , xn) : Ω→ R N

The contour evolution can be described by:

dφ
dt

+ F|∇φ | = 0 (1)

Here, |·| is the Euclidean norm and the nabla symbol ∇ represents the gradient.
F = Fimage + Fgeometry; Fimage is the image force and Fgeometry is the geometry force [7,24].
The length of C with LS φ is represented as,

Length {C} =
∫

Ω
|∇H(φ(x, y)|dxdy=

∫
Ω

δ(φ(x, y))|∇(φ(x, y)
∣∣∣∣dxdy (2)

Such as (x, y) is the coordinates, δ(z) is the Dirac delta function and H(z) represents
the Heaviside function [24] described as follows:

H(z) =
{

1, z ≥ 0
0, z < 0 (3)

(3)

• Proposed Segmentation Approach

To start the treatment of the bladder wall, we need to reduce the noise influence. For
that purpose, we smoothed every image in our data set by applying the basic morphological
operations, dilation and erosion as shown in Figure 2 below. We specify that morphological
operations were used only to facilitate segmentation. Moreover, we took care not to lose
the information by extracting the attributes, used after that during the classification, from
the non-denoised images.

After that, we initialize the Inner Level-Set Function (ILSF), used for the inner bladder
wall border segmentation, inside the bladder lumen. This ILSF evolves until matching the
inner border by LS model.

Then, and so as to facilitate and improve the outer boundaries detection, we enhanced
the contrast of the image using the neighborhood pixel values (Equation (4)) and standard-
ized the wall intensity knowing that the intensity of the bladder wall between the inner
and the outer boundaries is usually homogeneous [8,9].

The initialization used for wall’s external contour segmentation, is the result of the
internal contour segmentation.

Assuming that usually bladder wall thickness does not exceed a few pixels and that the
outer border has generally a similar shape as the inner one, apart from some abnormalities,
we have limited search area for the outer border taking into account the maximum wall
thickness (1 mm) [8,9,25].

In(x, y) =
Ii(x, y)−M1

M2 −M1
·Mx (4)
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where Ii(x, y) stands for the gray pixel intensity in the original image; In(x, y) is the pixel
intensity in the new contrast enhanced generated image; Mx is the maximum gray level
value of the original image; M1 and M2 are, respectively, the minima and the maxima of
the initial image among a neighborhood pixel in a window of 9 × 9. When M1 is equal to
M2, otherwise, in the case of a region of constant intensity, we keep the intensity Ii (x, y).
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2.3. Classification Methodology
2.3.1. Global Feature Vector Construction

In order to identify characteristic image features that could reflect the difference
between severe or not-severe spina bifida cases, masks of regions of interest (ROIs) were
first applied to the T2 MRI dataset to extract only the wall. From this bladder wall, we
extracted several attributes from cartesian and also from polar coordinates.

• Features based on the probability distribution of image intensity: five features

Using pixel gray level values of each segmented bladder wall, texture analysis also
consists of calculating first order statistical parameters. Indeed, from the histogram and the
cumulative histogram representing the segmented region, we computed different features,
namely, the mean ( f0), the variance ( f1), the “kurtosis” ( f2), the “skewness” ( f3) and the
area under cumulative histogram ( f4).

Skewness, effectively, measures the asymmetry of an histogram such as a zero value
is an indication of a symmetrical distribution around the mean [20]. We suppose that, in
thickened bladders that are poorly compliant, histograms are generally more skewed then
the normal bladders characterized by less heterogeneous tissues [20,26].

Among the histogram-based features, we can also effectively calculate kurtosis, which
describes histogram flatness. Thus, we speculate that an increased kurtosis is usually related
with the bladder wall increased intensity variation, which can indicate microstructural
changes [20,27].

• Textural features derived from the gray level cooccurrence matrix (GLCM):
twenty features

Based on extracted ROIs, several texture features were computed using the GLCM
matrix (Haralick features) in order to explore textural characteristics within different types
of tissues. GLCM is effectively used to calculate the second order texture information.
Therefore, we first need to create a Gray-Level Co-Occurrence Matrix in which each element
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represents the probability of two pixels with a given gray level intensity and separated
by a given distance [19]. From this matrix several statistics can be derived after offsets
specifications. Based on GLCM matrix, a total of the 20 features were computed in this
study as described in Table A1 in the Appendix A.

• Features based on the wall Shape and Orientation: 9 features

After the delimitation of the internal and the external contours of the bladder wall, we
computed nine morphological parameters of shape and orientation, based on the external
mask, as described in Table A2 in the Appendix A.

• Wall Thickness in polar coordinates: 1 feature ( f34)

Several studies have shown that bladder wall thickness can be a meaningful mea-
surement for medical bladder characterization. The normal bladder is effectively usually
thin and smooth if it is moderately distended [22]. For that reason, we are interested in
this study by evaluating the thickness of the wall as a function of the angle θ in polar
coordinates as shown in Figure 3 below.
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To obtain a representation of the MR image in polar coordinates, we started by deter-
mining the bladder’s center of mass, denoted by C =

[
Cx, Cy

]T ∈ R2. Then, the intensity of
a pixel (r, θ) in the image in polar coordinates is:

Ip (r, θ) = I(x, y) (5)

where the pixel position correspondence is given by

X = Cx + r cos θ y= Cy + r sin θ (6)

• Boundaries similarity: 5 features

Since spina bifida disease can be characterized by deformities on the bladder wall, we
also thought of representing the shape of the two contours by measuring the Euclidean
Distance between the center of mass of the bladder and each point of the contours in order
to characterize the similarity between the inner and the outer bladder contour shapes as
shown in Figure 4 below. An interpolation have be done in order to represent the two
curves in the same coordinate system with the same number of points.
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Once we have plotted the two curves corresponding to the inner and the outer bound-
aries of the bladder, we calculate five attributes as follows:

X Difference of areas under the two curves ( f35);
X Sum of Squared Difference between the two curves ( f36);
X Sum of Absolute Difference between the two curves ( f37);
X Mean distances: Average difference for the same abscissas ( f38);
X Max Distance: Maximum distance between the two curves in point-to-point compari-

son for the same abscissas ( f39).

A total of 40 attributes are computed and concatenated in an attribute vector X used
as input for two supervised classifiers: support vector machine and Random Forest after a
crucial step, which is automatic feature selection.

2.3.2. Feature Selection

Each extracted attribute can be suitable for a well-defined application providing a
strong power of discrimination between different classes. However, none can be abso-
lutely effective combined with other attributes in all types of applications. Moreover,
the presence of some attributes in the input vector fed to the classifier can even degrade
classification efficiency.
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Thus, so as to optimize the classification error and reduce the processing time, we
have chosen to use a sequential search strategy by applying two automatic feature selection
algorithms SBFS “Sequential Backward Floating Selection” and SFFS “Sequential Forward
Floating Selection” [22].

SFFS start from the empty set Y0 = {ø} and sequentially ass a feature X+ that gives the
highest performances (accuracy) when it is combined with the already selected sub-set of
features Yk until all 40 attributes are tested.

SBFS algorithm starts with the full set of extracted attributes (size = 40), and sequen-
tially removes the feature X− related to the smallest decrease in the objective function’s
value; in other words, we remove the feature that gives the lowest performance [22,28].

Regarding our application, we chose to test all the possible combinations with the
evaluation of classification accuracy based on two supervised classification algorithms.

2.3.3. Gray Wolf Optimization-Support Vector Machine (GWO-SVM)

• SVM Classifier

SVM is a supervised machine learning classifier successfully used in medical field.
It was introduced in 1990 by Vladimir Vapnik [26]. The basic principle of this classifier
is to search the hyperplane that separates two classes, maximizing the margin between
them [29,30]. This margin represents the Euclidean distance between the optimal hyper-
plane and the nearest point of the training set. In case of non-linearly separable data, SVM
transforms the data representation space into a one of larger dimension.

The SVM decision rule is [31]:

f (x) = sign(
N

∑
i=1

αiyiK(xi, x) + b) (7)

where (x1, x2, . . . , xN) vectors in space xi ∈ Rd with their labels (y1, y2, . . . , yN) such as yi∈
(+1,−1)N . α = (α1, . . . , αN) represent the N non-negative Lagrange multipliers, b is a bias,
x represents the input vector and K is the Kernel function.

With SVM classifier we can use a kernel function among the existing different types:
linear, polynomial, Gaussian Radial Basis Functions (RBF), etc. The most widely used
is RBF because of its capacity to deal with highly nonlinear training data and because
mathematically; it is less complex then the polynomial kernel for example [32]. The
Gaussian RBF kernel can be arithmetically denoted as:

K
(
xi, xj

)
= exp (

∣∣∣∣xi − xj
∣∣∣∣2

2 γ2 ) (8)

where γ is the thickness of the gaussian RBF kernel function [32].

• Grey Wolf Optimizer (GWO)

SVM has been shown to be effective for different applications. Nevertheless, good
performances depends on the choice of the most adequate values of its parameters. Testing
different possible pair of parameters is an exhaustive operation. This is why there is an
increasing tendency to use automatic optimization algorithms.

According to literature, Gray Wolf Optimization (GWO) algorithm is the best one that
makes balance between exploration or global research and exploitation or local research [33].
It has also simple structure, fewer parameters and strong and rapid convergence compared
to other bio-inspired algorithms like particle swarm optimization (PSO) or genetic algorithm
(GA) [34].

GWO is a new meta heuristic technique and swarm intelligence algorithm that was
first proposed by Mirjalili et al. [33] and adapted to estimate SVM parameters for different
applications such as the classification of color image [35] and gender classification [36].
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Nevertheless, although it has been used for some medical applications, to the best of our
knowledge, it has never been applied for bladder wall characterization.

This optimization algorithm, adopted to locate the best position or solution in a fixed
search space, is inspired from the grey wolves’ hunting and searching behaviors and
social hierarchy.

The best position or the first optimal solution is associated to alpha α gray wolf,
located at the top food chain and responsible for decision making and leadership [37]. The
second and third optimal solutions are, respectively, beta β and delta δ. The rest of the
solutions are set to omega ω. During the search process, the wolfs position managed by the
Formulas (9) and (10), updates constantly.

D =
∣∣C·Xp(t)− X(t)| (9)

X(t + 1) = Xp(t)− A·D (10)

Such as A = 2 · a · r1 − a and C = 2 · r2. Where t is the current iteration, Xp is the
prey position, X is the position of a gray wolf, r1 and r2 are random vectors and a linearly
decreases from 2 to 0. Therefore, based on Formulas (9) and (10) we can calculate Dα, D β,
Dδ, X1, X2 and X3 corresponding to alpha, beta and delta wolves, respectively. Then, the
final position of wolves ω is defined by Formulas (11):

X(t + 1) = | (X1 + X2 + X3)

3
| (11)

Thus, SVM parameters C (penalty factor) and γ (associated to the RBF kernel) can be
optimized thanks to the GWO optimization algorithm after n iterations and updates.

For that we first start by selecting a part of dataset as the training set and use the
remaining feature vector for test step in order to verify SVM recognition accuracy. After
that, we initialize GWO parameters such as the number of wolf packs, the number of
iterations and the research space dimensions. The goal is to maximize the accuracy. Global
optimal SVM parameters found by GWO correspond to the outputs when reaching the
maximum number of iterations as shown in Figure 5.
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2.3.4. Random Forest

Decision trees are among the most popular supervised learning-based classifica-
tion that have been widely adopted to solve problems in the medical image processing
field [4,13,15]. In 2001, Leo Breiman proposed an extension of decision trees with random
forests [38,39], made up of a set of decision trees where each of these trees is interested in a
random subset of samples. In this paper we have proposed to compare the classification
performances of the random forests algorithm and those of the GWO-SVM approach.

3. Results
3.1. Segmentation Results

In order to characterize the bladder wall, we first started with its segmentation. For
that purpose we used the semi-automatic contour based segmentation algorithm: LevelSet.
Our segmentation strategy was already described with details in Section 2.2.

Thanks to the good contrast between the bladder lumen and the wall, the inner
border is firstly and generally easily segmented based on the intensity contrast information.
However, outer border segmentation, is more complicated because of the variability in the
contrast on the surrounding tissues.

After the inner contour segmentation step, and in order to improve outer contour
segmentation results, we proposed to generate a contrast enhanced image (Equation (4))
on which we extract the external contour. We also added some modifications on the
LevelSet algorithm so as to limit the search area for the outer border since the wall thickness
usually does not exceed a certain threshold value estimated as few pixels, as explained in
Section 2.2 [8,9,25]. After contrast enhancement, we apply a pixel intensity standardization
(Figure 6d), which consists on filling the region delimited by the internal contour of the
bladder with gray level intensities between the maximum intensity and the minimum
intensity of the bladder wall. Although Level Sets segmentation is not fully automated
because it requires an initialization inside the bladder, which evolves until reaching the
internal bladder wall, we have tried several sizes of initializations, which always gave the
same results.

Segmentation results are illustrated in Figure 6 below.
Segmentation results on our database were considered satisfactory by the medical

team (some examples are presented in Figure 7 below). Manual segmentation considered
as a ground truth was done by the medical team using a matlab algorithm that we have
developed to be used by radiologists in our laboratory. As medical image segmentation is
a crucial preprocessing step, comparing the quality of the semi-automatic segmentation
with ground truth is an essential part. Therefore, in order to get a statistical validation, we
have computed some metrics usually used for evaluating medical image segmentation,
namely, Dice coefficient (DICE), mutual information and mean overall error rate, as shown
in Table 1 below. The mutual information between two random variables [40] is defined
as the measure of dependency between them. The Dice coefficient [41], called the overlap
index and described in Equation (12), is the most used to validate medical segmentation:

DICE =
2|Sg ∩ St|
|Sg|+ |St|

(12)

Table 1. Comparison results between ground truth and level set segmentation.

Metric Mean Dice Mean Mutual Information Mean Overall Error Rate

Value 0.826 0.801 0.262

Such as Sg represents the ground truth segmentation and St is the segmentation to
be evaluated.
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Figure 6. Segmentation procedure using our proposed algorithms: (a) Contour initialization inside
the bladde, (b) the inner boundary segmented by the level set algorithm, (c) contrast enhanced
generated image, (d) pixel intensity change inside the bladder according to the average intensity
in the bladder wall, (e) inner segmentation result as initialization for the outer boundary research,
(f) the outer boundary segmented, (g) inner and outer contours and (h) bladder wall extracted.
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Segmentation comparison results presented in Table 1, confirm the medical team
validation and show the efficiency of our contour-based segmentation strategy. These good
segmentation results allow as to have a reliable characterization thereafter.

It is important to notice that in this study, we used a local data base provided by the
hospital, which explains the difficulty of comparing our results with other research carried
out on other databases and under other conditions.

After the validation of our bladder wall segmentation results, we started the character-
ization by calculating 40 attributes described in Tables A1 and A2 in the Appendix A (from
f0 to f39). In order to test the feasibility of using statistically significant features for the
differentiation of severe and not-severe spina bifida cases, classification study was further
performed. The assessment of bladder involvement or not (severe or not severe data) was
made by considering several elements, in particular the thickness of the bladder wall, the
irregularity or otherwise of the wall, the presence of trabeculations, etc. These elements
were interpreted by two radiologists specialists with 7 and 23 years of experience.

We prepared our features data to be fed into the classifier by normalizing values
between −1 and 1 because features have different ranges. Two feature selection algorithms
(SBFS and SFFS) were also used in order to select the best feature subset giving the best
classification performances with SVM, GWO-SVM and Random Forest classifiers.

Given its high performances and its generalization capability, a support vector machine
classifier was first used in this study. Moreover, for the kernel function, we compared RBF,
linear and polynomial kernels. In fact, even if generally the gaussian RBF kernel performs
better than other kernel types, in this study we have chosen to confirm it experimentally.

Overall, 80% of data was used in the training step and 20% for testing, and 5-fold- cross-
validation procedure was followed. All features were effectively randomly divided into five
subsets, so that the SVM classifier is trained by nine subsets and tested by the remaining
subset. This procedure is repeated so that each of the five subsets is used once for testing.
This procedure is so important and is able to ameliorate the classification performances.

In order to optimize SVM parameters using RBF kernel, we propose in this paper
to apply the bio-inspired optimization method GWO. As output, our GWO function
provides the best values of C and γ giving the best classification accuracy of the support
vector machine.

After an automatic feature selection of the most significative features using two
different algorithms (SBFS and SFFS) and testing three types of kernels, SFFS selection
algorithm with GWO-SVM classifier and RBF Kernel and a combination of 29 attributes
gave the best accuracy score of 94.4% as shown in Table 2 and Figure 8.
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Table 2. Support vector machine classification results using different kernels (the definition of the
features can be found in Tables A1 and A2 in the Appendix A).

Classification
Method Kernel Type

Feature
Selection

Algorithm
Accu. Sensi. Speci. Preci. Best Features Sub-Set

SVM RBF
SFFS 0.9167 0.8947 0.9412 0.9444

20 attributes { f6, f7, f11, f12, f13, f14, f21,
f22, f0, f1, f25, f26, f28, f30, f32, f33, f34, f35,

f37, f38}

SBFS 0.9167 0.9 0.9375 0.9474 9 attributes { f7, f14, f22, f28, f29, f32, f33,
f35, f38}

GWO-SVM RBF

SFFS 0.944 0.9474 0.9412 0.9474

29 attributes { f6, f8, f10, f11, f12, f13, f14,
f15, f19, f20, f21, f22, f23, f24, f0, f1, f2,
f25, f26, f27, f30, f31, f33, f4, f35, f36,

f37, f38, f39}

SBFS 0.9394 0.9412 0.9375 0.9412
21 attributes { f6, f9, f10, f11, f14, f17, f19,

f20, f21, f22, f23, f0, f3, f25, f26, f27, f28,
f31, f32, f34, f36}

SVM

Linear

SFFS 0.9167 0.9375 0.9 0.884
25 attributes { f6, f7, f9, f10, f11, f12, f13,
f15, f16, f17, f18, f19, f20, f21, f23, f2, f25,

f28, f31, f32, f33, f4, f36, f37, f39}

SBFS 0.8889 0.944 0.833 0.85 19 attributes { f6, f7, f9, f11, f13, f17, f18, f19,
f20, f21, f22, f0, f1, f27, f28, f29, f37, f38, f39}

Pomynomial
SFFS 0.833 0.904 0.733 0.826 9 attributes { f10, f13, f22, f23, f1, f25, f30,

f31, f39}

SBFS 0.805 0.8333 0.77 0.7895 4 attributes { f13, f16, f29, f33}

3.2. GWO-Support Vector Machine Results

As explained previously, we applied GWO algorithm to optimize the SVM-RBF opti-
mization. Results demonstrate that, to achieve the best performances (accuracy score of
94.4%, sensitivity of 94.74%, specificity of 94.12% and precision of 94.74%), GWO fixed the
regularization parameter C = 9.6517 and gamma γ = 0.015.

The best sub-set of features giving the highest accuracy rate, englobe 14 GLCM texture
attributes (contrast, prominence, dissimilarity, energy, entropy, homogeneity, maximum
probability, variance, difference variance, difference Entropy, Information measure I of
correlation, Information measure II of correlation, Inverse Difference Normalized, Inverse
difference moment), mean, variance, kurtosis and area under cumulative histogram, six
attributes representing shape and orientation (Area, circularity, eccentricity, solidity, round-
ness, axis ratio) and all of the five attributes describing the boundaries similarity.
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3.3. Random Forest Results

After an automatic feature selection of the most significative features using two differ-
ent algorithms, SBFS selection algorithm with Random Forest classifier and a combination
of 10 attributes gave the best accuracy score for this classifier of 91.67% as shown in
Figure 9 below.
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The best sub-set of features giving the highest accuracy rate for the Random Forest
classifier, a sensitivity of 94.44%, a specificity of 88.8% and a precision of 89.4%, englobe
4 GLCM texture attributes (contrast, correlation, difference variance, Inverse Difference
Normalized), the variance of the associated histogram, four attributes representing shape
and orientation (Area, orientation, perimeter, axis ratio) and the difference of areas under
the two curves representing the inner and the outer boundaries of the bladder as shown
in Table 3.

Table 3. Random forest classification results (the definition of the features can be found in
Tables A1 and A2 in the Appendix A).

Classification
Method

Feature
Selection

Algorithm
Accu. Sensi. Speci. Preci. Best Features Sub-Set

Random
Forest

SFFS 0.8889 0.8947 0.8824 0.894 8 attributes{ f2, f9, f16, f25, f27, f28, f34, f38}
SBFS 0.9167 0.9444 0.888 0.894 10 attributes{ f1, f2, f14, f18, f21, f24, f27, f28, f32, f35}

4. Discussion

The goal of the proposed approach is to provide an accurate segmentation and opti-
mized characterization of the bladder wall in magnetic resonance imaging, which represents
a computer-aided spina bifida diagnosis able to facilitate the radiologist’s decision.

First, results prove that the proposed segmentation method based on Level Set algo-
rithm is able to give a good and efficient segmentation of the inner and the outer boundaries
compared to the ground truth. Our segmentation protocol can be helpful for radiologists
avoiding the fastidious traditional manual segmentation, especially for specific cases where
bladder walls are so thin.



J. Imaging 2022, 8, 151 16 of 19

Several features computed from a segmented bladder wall in T2-W MRI adults dataset
in cartesian and polar coordinates have been evaluated. The best classification performance
was obtained with a combination of 29 attributes including texture, shape, orientation and
boundaries similarities.

A comparison between three SVM kernel types proved that RBF kernel gives the best
accuracy score. Results have also shown that SVM outperforms Random Forest classifier
when using RBF kernel. It has also been proved that the optimization of SVM parameters
using the bio-inspired algorithm GWO was useful increasing SVM classification accuracy
from 91.67% to 94.4% when using RBF kernel and SFFS feature selection algorithm.

We chose, in this project, a contour-based segmentation instead of a deep learning
model because, at the beginning of this project, we had a small data base provided by our
medical staff. Moreover, conventional methods based on the extraction and selection of
attributes and then classification are also chosen in this project because our objective is to
understand the correlation between the calculated attributes and the spina bifida disease
severity, which cannot be provided by deep learning models considered as black boxes.

Thus, using a classification protocol including two classes, we showed experimentally
that it is possible to give an efficient discrimination tool sensitive to sufficiently reveal the
differences between severe, non-severe spina bifida cases.

5. Conclusions

In this paper, we propose a new bladder wall segmentation strategy, which is efficient
for diagnosis of spina bifida severity. The proposed approach, based on the Level Set algo-
rithm with image contrast enhancing and limiting the search area, can effectively handle
the inner and the outer boundaries segmentation and the effective characterization of the
bladder wall. A GWO-SVM compared with Random Forest approach is also performed.
The proposed method was applied to an MRI data base as a part of spina bifida study. Ex-
perimental results proved the ability of our characterization method to distinguish between
severe and non-severe spina-bifida. Our evaluations also show that MRI texture analysis
related to the gray-level histogram and GLCM matrix of bladder wall associated with other
features describing the shape, orientation, wall thickness and boundaries similarities could
be an interesting noninvasive tool in the identification of high risk spina bifida patients.

In our further work, we would like to test our method on a larger dataset so as to
make using the deep learning more significative. We also would like to further investigate
in the 3D bladder MRI segmentation with shape prior constraint, and to take into account
new features as 3D textural features.
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Appendix A

Table A1. Definition of gray-level co-occurrence matrix (GLCM) descriptors.

Feature Group Feature Id Feature Description

GLCM

f5 Auto-Correlation

f6 Contrast

f7 Correlation

f8 Prominence

f9 Shade

f10 Dissimilarity

f11 Energy

f12 Entropy

f13 Homogeneity

f14 Maximum Probability

f15 Variance

f16 Sum Average

f17 Sum Variance

f18 Sum Entropy

f19 Difference variance

f20 Difference Entropy

f21 Information measure I of correlation

f22 Information measure II of correlation

f23 Inverse Difference Normalized

f24 Inverse difference moment

Table A2. Details of the computed morphological parameters.

Attribute Explication

Area ( f25 ) Number of pixels in the studied region.

Circularity ( f26 )
This parameter compares the ROI shape and a cercle. It is computed as follows:

C = 4Π x Area
Perimeter2

Eccentricity ( f27) Eccentricity of the ellipse with the same second moments as the region.

Orientation ( f28)
Represented by the angle between the x-axis and the maximum diameter of the best ellipse having the

same second-moments as the region.

Perimeter ( f29) Distance around the region’s boundary.

Solidity ( f30) Solidity = Mask Area
Area o f the convex envelope

Roundness ( f31)

This factor is used to describe the shape and can be represented by this formula:
4 × Area

Π × maximum diameter2

-Roundness is close to 1 with circular shape
-Roundness is close to r1

r2
in the case of elliptical shape

-Otherwise: irregular shape
Such as r1 and r2 represent respectively half of the minor axis and the major axis

ENC ( f32)

Elliptical Normalized Circumference: We compare the bladder mask’s shape with ellipse closest to its
shape.

ENC = Best ellipse perimeter
ROI perimeter

Ratio between the major and the minor
axis lengths ( f33)

This Ratio between the maximum width and the maximum length characterizes the external
bladder shape.
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