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This document provides supplementary material for the manuscript entitled: Order of magnitude risk
reduction in Computed Tomography with the unsupervised machine learning denoising. In particular, we
provide the complete mathematical formulation of 3D regularized Scalable Probabilistic Approximation
(rSPA) optimization problem and present:

• Lemma S1 - derivation of the rSPA problem formulation,

• Algorithm S1 - a subspace algorithm for solving rSPA optimization problem in pseudo-code. The 
algorithm consists of two consequent inner optimization problems; namely so-called C-problem and 
Γ-problem.

• Lemma S2 - the solvability and the computational cost of solving the C-problem,

• Lemma S3 - the solvability and the computational cost of solving the Γ-problem,

• Theorem S1 - the properties and the computational cost of solving rSPA problem. The proof 
is based on Lemma 2 and Lemma 3.
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1 Regularized Scalable Probabilistic Approximation Algorithm
(rSPA)

Formulation: Let t ∈ N3 be a multi-index of 3D voxel coordinates and

V := [V (1), . . . , V (T )] ∈ RD,T

be a 3D CT image represented as a matrix of given D-dimensional voxel colours at 3D coordinates
X := [X(1), . . . , X(T )] ∈ R3,T .

We will be searching for a probabilistic approximation ṼC,Γ of the image in terms of K latent features
characterized by K distinct color vectors {C1,k, . . . , CD,k}, with k taking values between 1 and K. Spatial
characteristics of these K latent features that we will be searching for will be provided by (a priori
unknown) latent feature probabilities Γk(t), being the probabilities of an actual (noisy) voxel V (t) to
belong to a particular latent (noiseless) feature with an index k:

ṼC,Γ := [
K∑
k=1

Γk(1)Ck, . . . ,
K∑
k=1

Γk(T )Ck] ∈ RD,T

Then, following the idea behind the Mumford-Shah functional formulation [6], spatially-persistent op-
timal probabilistic approximation ṼC∗,Γ∗ of the original image data V can be computed via the numerical
minimization of the function:

[C∗,Γ∗] = arg
C,Γ

min
Γ∈ΩΓ,C∈ΩC

L(C,Γ) =

= arg
C,Γ

min
Γ∈ΩΓ,C∈ΩC

 1

T

T∑
t=1

dist2(V (t), ṼC,Γ(t)) +
ε̄∑T

t,t′=1 αt,t′

T∑
t,t′=1

αt,t′dist2(ṼC,Γ(t), ṼC,Γ(t′))

 ,
(1)

where dist2(·, ·) is a square of some distance (e.g., Euclidean distance, l1-distance, etc.), feasible sets are
given as

ΩΓ = {Γ = [Γ(1), . . . ,Γ(T )] ∈ RK,T : Γ ≥ 0 and ∀t :

K∑
k=1

Γk(t) = 1}, (2)

ΩC = {C = [C1, . . . , CK ] ∈ RD,K : min(V ) ≤ C ≤ max(V )}, (3)

and function αt,t′ is the indicator function of the voxel neighborhood defined as

αt,t′ =

{
1 if dist(X(t), X(t′)) ≤ α0,
0 if dist(X(t), X(t′)) > α0,

with ε̄  ≥ 0 and α0 > 0 being some user-defined parameters.

Lemma S1. (rSPA as an approximate upper bound formulation for probabilistic segmentations with 
Eu-clidean distance) Approximate solutions of the problem (1,2,3) with Eulidean distance

dist(x, y) = ‖x− y‖2, (4)

can be found minimizing its upper bound

[C∗,Γ∗] = arg
C,Γ

min
Γ∈ΩΓ,C∈ΩC

L(C,Γ) =

= arg
C,Γ

min
Γ∈ΩΓ,C∈ΩC

K∑
k=1

 1

T

T∑
t=1

Γk(t)‖V (t)− Ck‖22 +
Kε̄‖Ck‖22∑T
t,t′=1 αt,t′

T∑
t,t′=1

αt,t′(Γk(t)− Γk(t′))2

 .
(5)

Moreover, L(C,Γ) ≥ L(C,Γ) ( for all C,Γ ).
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Proof. Since the square of any norm is a convex function and for any t = 1, . . . , T coefficients Γk(t) forms
the coefficients of convex combination, we can apply Jensens inequality to the first term of (1) and obtain

dist2(V (t), ṼC,Γ(t)) =

∥∥∥∥∥V (t)−
K∑
k=1

Γk(t)Ck

∥∥∥∥∥
2

2

=

∥∥∥∥∥
K∑
k=1

Γk(t) (V (t)− Ck)

∥∥∥∥∥
2

2

≤
K∑
k=1

Γk(t) ‖V (t)− Ck‖22 .

In the case of the second term, we use the properties of the sum of squares

∀u ∈ RK :

(
K∑
k=1

uk

)2

≤ K
K∑
k=1

u2
k,

∀v ∈ RD,∀α ∈ R :

(
D∑
d=1

αvd

)2

= α2

(
D∑
d=1

vd

)2

,

and we get

dist2(ṼC,Γ(t), ṼC,Γ(t′)) =

∥∥∥∥( K∑
k=1

Γk(t)Ck

)
−
(

K∑
k=1

Γk(t′)Ck

)∥∥∥∥2

2

=

∥∥∥∥ K∑
k=1

(Γk(t)− Γk(t′))Ck

∥∥∥∥2

2

≤ K
K∑
k=1

‖(Γk(t)− Γk(t′))Ck‖22 = K
K∑
k=1

(Γk(t)− Γk(t′))
2 ‖Ck‖22 .

Algorithm: Approximate solutions of the optimization problem (5,2,3) can be found using the iterative 
subspace algorithm, i.e., it is solved as a sequence of split optimization problems, see Algorithm S1.

Let V be given voxel data, K be a fixed number of latent features, and ε̄ ≥ 0 be a priori chosen regularization
parameter.
Choose a feasible initial approximation Γ0 ∈ ΩΓ and set iteration counter it = 0.

while ‖L(C,Γit)− L(C it−1,Γit−1)‖ is not sufficiently small

solve the problem with fixed Γit−1 (C-problem)

C it = arg
C

min
C∈ΩC

L(C,Γit−1) (6)

solve the problem with fixed C it (Γ-problem)

Γit = arg
Γ

min
Γ∈ΩΓ

L(C it,Γ) (7)

it = it + 1
endwhile

Return an approximation of the latent features color C it and an approximation of latent feature affiliation
probability vectors Γit.

Algorithm S1: Regularized Scalable Probabilistic Approximation algorithm (rSPA).

Lemma S2. (The properties of C-problem (6))

1. the optimization problem (6) has always solution,

2. (6) is a box-constrained convex Quadratic Programming problem (QP) with diagonal Hessian matrix
and it has analytical solution,

3. evaluation of analytical solution for solving problem (6) is O(TKD).

Proof.
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1. Let Γ = Γ̂ be fixed. We are dealing with minimization problem with continuous convex objective
function on closed set, therefore by Weierstrass Extreme value theorem [3], the problem has always
solution.

2. The objective function of problem (5) with Euclidean measure (4) is given by

L(C, Γ̂) =
K∑
k=1

[(
1

T

T∑
t=1

Γ̂k(t)‖V (t)− Ck‖22

)
+ κk‖Ck‖2

]
(8)

where we denoted constant

κk =
ε̄∑T

t,t′=1 αt,t′

T∑
t,t′=1

αt,t′(Γ̂k(t)− Γ̂k(t′))2, k = 1, . . . ,K. (9)

Since the minimization of (8) with respect to (3) is separable in k = 1, . . . ,K, we have

C∗k = arg
Ck

min
Ck∈ΩCk

(
1

T

T∑
t=1

Γ̂k(t)‖V (t)− Ck‖22

)
+ κk‖Ck‖2 = arg

Ck

min
Ck∈ΩCk

1

2
CTk AkCk − CTk bk︸ ︷︷ ︸

=fk(Ck)

(10)

with
ΩCk

= {Ck ∈ RD : min(V ) ≤ Ck ≤ max(V )}

and

Ak = σkID, σk =

(
1

T

T∑
t=1

Γ̂k(t)

)
+ κk, bk =

T∑
t=1

Γ̂k(t)V (t), (11)

where ID ∈ RD is identity matrix. Please, notice that for any non-empty cluster (i.e.,
T∑
t=1

Γk(t) >

0) σk > 0 and therefore (10) is stricly convex optimization problem on closed convex set and
consequently (10) has unique solution. If the cluster is empty, then (10) can be simplified to

C∗k = arg
Ck

min
Ck∈ΩCk

0,

which has infinite number of solutions, i.e., any C∗k ∈ ΩCk
solves the problem.

The problem (10) is (again) separable in d = 1, . . . , D and we can write

C∗d,k = arg
Cd,k

min
Cd,k∈ΩCd,k

1
2σkC

2
d,k − bd,kCdk = arg

Cd,k

min
Cd,k∈ΩCd,k

1
2C

2
d,k −

bd,k
σk
Cdk

= arg
Cd,k

min
Cd,k∈ΩCd,k

‖Cd,k − bd,k
σk
‖2 = PΩCd,k

(
bd,k
σk

)
with interval

ΩCd,k
= [min(V ),max(V )] ⊂ R

and projection onto this interval PΩCd,k
: R→ ΩCd,k

given by

PΩCd,k
(τ) := min {max(V ),max {min(V ), τ}} . (12)

3. The computation of K sums of T vectors of dimension D in (11) and (9) followed by the computation
of projection (12) is O(TKD).

Lemma S3. (The properties of Γ-problem (7))

1. Problem (7) is a convex QP on separable simplexes (i.e., with bound inequality and linear equality
constraints).

2. Assembling the objects of problem (7) is O(TKD).
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3. One iteration of Spectral Projected Gradient method for QP (SPG-QP, [7]) for solving problem (7)
is O(TK).

Proof.

1. Let C = Ĉ be fixed. The objective function of problem (5) with Euclidean measure (4) is given by

L(Ĉ,Γ) =

K∑
k=1

−( T∑
t=1

Γ̂k(t)wk,t

)
+ ξk

T∑
t,t′=1

αt,t′ (Γk(t)− Γk(t′))
2

 (13)

with constants

wk,t = − 1

T
‖V (t)− Ĉk‖22, ξk =

ε̄ dist2(Ck, 0)∑T
t,t′=1 αt,t′

. (14)

In the following, we simplify the objective function (13) into the standard QP form.

Let us denote the diagonalization of matrix into vector

γ = vec(ΓT ),

and introduce multi-index (t, k) of vector γ by

γ(t,k) = γ(k−1)T+t = Γk(t),

where γj is j-th component of γ ∈ RKT . At first, notice that quadratic term

αt,t′(Γk(t)− Γk(t′))2 = αt,t′ [Γk(t),Γk(t′)]

[
1 −1
−1 1

] [
Γk(t)
Γk(t′)

]
= γT(:,k)H(t, t′)γ(:,k),

where γ(:,k) = [γ(1,k), . . . , γ(T,k)]
T ∈ RT and the components of matrix H(t, t′) ∈ RT,T are given by

Ht1,t2(t, t′) =


αt,t′ if t1 = t and t2 = t,
αt,t′ if t1 = t′ and t2 = t′,
−αt,t′ if t1 = t and t2 = t′,
−αt,t′ if t1 = t′ and t2 = t,

0 elsewhere.

Using this notation, we are able to simplify the quadratic term of (13) into

K∑
k=1

ξk

T∑
t=1

T∑
t′=1

αt,t′(Γk(t)− Γk(t′))2 =

K∑
k=1

ξkγ
T
(:,k)

(
T∑
t=1

T∑
t′=1

H(t, t′)

)
︸ ︷︷ ︸

=Â

γ(:,k) =
1

2
γT
(

Ξ⊗
(

2Â
))

︸ ︷︷ ︸
=A

γ,

where Ξ = diag(ξ1, . . . , ξK) ∈ RK,K is diagonal matrix and ⊗ denotes matrix Kronecker product.
Matrix A ∈ RKT,KT is a block-diagonal matrix of K diagonal blocks 2ξkÂ ∈ RT,T . Let us remark
that the matrix

T∑
t′=1

H(t, t′)

forms the Laplace matrix corresponding to graph of neighborhood of vortex t (stencil). Conse-
quently, matrix Â is composed from contributions from all stencils constructed in vortexes in the
system. Such a matrix is symmetric positive semidefinite.

The objective function can be written in the form of convex quadratic function

L(Ŝ,Γ) =
1

2
γTAγ − wT γ. (15)

The feasible set (2) defines the lower bound constraints and equality constraints of the optimization
problem. This feasible set is closed and convex, the objective function (15) is continuous, therefore
using the Weierstrass Extreme value theorem [3], the optimization problem has always solution.
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2. Before solving the QP problem (15), we assemble the Hessian matrix A, linear term b, and con-
straints ΩΓ (2). The assembly of the linear term (14), where one has to sum TK values of distance
functions between vectors of dimension D. If the complexity of chosen distance function evaluation
is O(D), then the overall complexity is O(TKD).

3. Spectral Projected Gradient method for QP (SPG-QP, [7]) is an iterative algorithm for solving
minimization problems of convex quadratic function f(x) := 1

2x
TAx − bTx, f : Rn → R on closed

convex feasible set Ω ⊂ Rn defined by separable constraints with simple projections

PΩ(x) = arg min
y∈Ω
‖x− y‖. (16)

From the initial approximation x0 ∈ Ω, the process is generating the approximations xit by

xit+1 = xit + βitd
it, (17)

where dit ∈ Rn is projected gradient computed as

dit = xit − PΩ(x − αit∇f(xit)). (18)

The step-size αit is computed by Barzilai-Borwein rule [1]

αit =
〈xit − xit−1, xit − xit−1〉

〈∇f(xit)−∇f(xit−1), xit − xit−1〉
(19)

and the step-size βit is a result of Grippo, Lampariello, and Lucidi line-search method [5] for
satisfying so-called generalized Armijo criteria

f(xit + βitd
it) < fmaxτβit〈∇f(xit), dit〉 (20)

with safeguarding parameter τ ∈ (0, 1) and fmax is a maximum function value in previous m ≥ 1
iterations. The original SPG algorithm has been proposed by [2] for solving general optimization
problems and the convergence is based on satisfaction of condition (20). Recently, [7] show that in
the case of quadratic objective function, the line-search algorithm can be replaced by direct formula
which satysfies (20)

βit = min

{
1, (1− τ)ξ +

√
(1− τ)2ξ2 +

2(fmax − f(xit))

〈Adit, dit〉

}
with ξ = −〈∇f(xit), dit〉

〈Adit, dit〉
. (21)

The algorithm non-monotonically decreases the norm of projected gradient and the function value
until the stopping criteria is satisfied.

In the general case, the most time-consuming operation is the multiplication by Hessian matrix A,
all other computations includes the evaluation of scalar products. In our case, the matrix has a
special pattern; it is a block-diagonal matrix of K diagonal blocks of band matrices. Computational
complexity of multiplication with such a matrix is O(KT ). Please notice that the feasible set (2)
is separable in T and the projection onto the set can be computed independently for each column
of matrix Γ

Γ:,t ∈ {γ ∈ RK : γ ≥ 0 and
K∑
k=1

γk = 1}.

The projection onto each individual simplex is O(K), [4].

Summing up all the operations performed during one iteration of SPG-QP algorithm, the overall
computation complexity is O(TK).

Theorem S1. (The computational complexity of Algorithm 1)

1. Algorithm 1 generates the approximations with monotonically non-increasing objective function.

2. Let dist be Eulidean distance (4). One iteration of Algorithm 1 is O(TKD).
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Proof.

1. Since the iterations solves the optimization problems (6) and (7), we have

∀C ∈ RD,K : L(C,Γit−1) ≥ L(C it,Γit−1) and ∀Γ ∈ ΩΓ : L(C it,Γ) ≥ L(C it,Γit).

Choosing C = C it−1 and Γ = Γit−1, we get

L(C it−1,Γit−1) ≥ L(C it,Γit−1) ≥ L(C it,Γit).

2. The statement is the consequence of Lemma 2 and Lemma 3.

2 Parallel Regularized Scalable Probabilistic Approximation Al-
gorithm based on overlapping Domain Decomposition (DD-
rSPA)

In the case of the computation in real-world applications, we are dealing with two main challenges: the
computational demand (the number of operations that have to be performed to obtain the solution) and
the memory limitation (the amount of information which can be processed by given machine). Both of
these issues can be solved by High-Performance Computing (HPC). In this case, the algorithm runs on the
machine which consists of several computational units (cores, processors, graphics processing unit) which
are operating with distributed memory. The computational capacity of the largest supercomputers in the
world can achieve more than 1017 FLOPS (floating-point operations per second) and can operate with
several petabytes of memory. However, the massively parallel architectures cannot be efficiently utilized
without appropriate massively parallel algorithms. For example in the case of discretized solution of
partial differential equations with a huge number of variables, the original problem can be decomposed
into smaller independent subproblems using so-called Domain Decomposition methods (DD). The idea
is to solve subproblems in parallel using the individual computational units of the machine (i.e., nodes,
cores, GPUs) and the only limitations arise in the case of global communication for the satisfaction of the
continuity of global solution through domains. In practice, two different approaches are commonly used:
overlapping DD, where the subdomains overlap by more than the interface (e.g., Schwarz alternating
method or additive Schwarz method), and non-overlapping methods, where the subdomains intersect
only on their interface (e.g., Balancing domain decomposition (BDDC), or Finite Element Tearing and
Interconnecting (FETI)).

To analyze the problem of the global continuity and non-separability, suppose that we decompose the
solution into two disjoint parts Γ{1} and Γ{2}. Then the objective function of corresponding quadratic
optimization Γ-problem (15) can be written as (after appropriate permutation of indexes)

f(γ) = f(γ{1}, γ{2}) = 1
2 [γT{1}, γ

T
{2}]

[
A{1,1} A{1,2}
AT{1,2} A{2,2}

] [
γ{1}
γ{2}

]
− [wT{1}, w

T
{2}]

[
γ{1}
γ{2}

]
=

1

2
γT{1}A{1,1}γ{1} − w

T
{1}γ{1}︸ ︷︷ ︸

=f{1}(γ{1})

+
1

2
γT{2}A{2,2}γ{2} − w

T
{2}γ{2}︸ ︷︷ ︸

=f{2}(γ{2})

+γT{1}A{1,2}γ{2}.

(22) 
Using this equality, we can observe that the original minimization problem is separable into two disjoint 
minimization problems except the coupling term γ{

T
1}A{1,2}γ{2}. If we solve the problem separably to 

obtain γ{1} and γ{2} on separated computational units, we have to additionally handle with this term.
In our case, we implement the Schwartz Domain Decomposition method and separate the domain into 

overlapping domains, see Figure S1. For the demonstration, the figure presents the DD into two domains in 
1D, but the approach is easily extendable to 3D and multiple domains in each direction, see Figure S2.

In the first step of algorithm, we solve the problem in each domain separately, i.e., we solve corre-
sponding QP problem with appropriate block of the Hessian matrix and the block of linear term. Each 
domain sends the solution in overlap to the neighbouring domains and this vector is used for the com-
putation of coupling term in local objective function. This operation can be written in terms of (22) -
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{1}
{2}

overlap

Figure S1: The overlapping Domain Decomposition: the domain is separated into 
continuous overlapping parts. Each computational unit computes the corresponding local solution, 
however, the in-formation in overlap have to be communicated to satisfy the continuity of global solution 
through domains.

Figure S2: The overlapping Domain Decomposition in 3D: the simplest way how to decompose the 
3D domain into domains is to introduce overlapping rectangular cuboids. Such a decomposition simlifies 
the implementation and follows the sparsity of Hessian matrix in Γ problem.

suppose that the local unknown part of the solution is γ{d} and the rest of the solution is γ{.}. Then the 
objective function can be decomposed into (using the appropriate permutation of indexes)

f(γ{d}, γ{.}) = 1
2γ

T
{d}A{d,d}γ{d} − w

T
{d}γ{d} + f{.}(γ{.}) + γT{d}A{d,.}γ{.}

= 1
2γ

T
{d}A{d,d}γ{d} − (w{d} −A{d,.}γ{.})T γ{d} + f{.}(γ{.}).

In the local domain, the unknown of the problem is the local γ{d}, therefore the term f{.}(γ{.}) is constant, 
does not have any impact on the optimizer, and can be ignored. Please notice that the coupling matrix 
A{d,.} is a block of a sparse matrix and if the size of the overlap is sufficiently larger than the radius of 
the indicator function of the voxel neighborhood α0, then the overlap information from the neighboring 
domains is sufficient information for assembling the correct overall objective function. In the iterative 
process, we update the linear term using the information from neighbours, solve a new QP problem, and 
communicate the update of overlap to neighbours, see Algorithm S2. In each iteration, we compare the 
local solution in overlap with the solution obtained from neighbours and if the difference is sufficiently 
small, we stop the algorithm.
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1

2
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