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Abstract: Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by
providing numerical values on which diagnostic assessment or predictions of tissue properties can
be based. However, qMRI measurements typically take more time than anatomical imaging due
to requiring multiple measurements with varying contrasts for, e.g., relaxation time mapping. To
reduce the scanning time, undersampled data may be combined with compressed sensing (CS)
reconstruction techniques. Typical CS reconstructions first reconstruct a complex-valued set of
images corresponding to the varying contrasts, followed by a non-linear signal model fit to obtain
the parameter maps. We propose a direct, embedded reconstruction method for T1ρ mapping. The
proposed method capitalizes on a known signal model to directly reconstruct the desired parameter
map using a non-linear optimization model. The proposed reconstruction method also allows directly
regularizing the parameter map of interest and greatly reduces the number of unknowns in the
reconstruction, which are key factors in the performance of the reconstruction method. We test the
proposed model using simulated radially sampled data from a 2D phantom and 2D cartesian ex
vivo measurements of a mouse kidney specimen. We compare the embedded reconstruction model
to two CS reconstruction models and in the cartesian test case also the direct inverse fast Fourier
transform. The T1ρ RMSE of the embedded reconstructions was reduced by 37–76% compared to
the CS reconstructions when using undersampled simulated data with the reduction growing with
larger acceleration factors. The proposed, embedded model outperformed the reference methods on
the experimental test case as well, especially providing robustness with higher acceleration factors.

Keywords: compressed sensing; embedded reconstruction; model-based reconstruction; quantitative
MRI; T1rho mapping

1. Introduction

Magnetic resonance imaging (MRI) is one of the most important tools for the clinical
diagnosis of various diseases due to its excellent and versatile soft tissue contrast. Clinical
MRI is based on expert interpretation of anatomical images of varying contrasts and
thus tends to retain a level of subjectivity. Quantitative MRI (qMRI) methods, such as
measurements of different relaxation times, allow reducing the subjectivity by providing
numerical values on which diagnostic assessment or predictions of tissue properties can be
based on.

However, such quantitative MRI measurements necessarily take more time than
standard anatomical imaging. For example, in T1ρ mapping [1,2], typically, 5–7 sets of
measurements with varying spin lock times are collected to estimate the T1ρ map. Such
measurements will thus take 5–7 times longer than acquiring similar anatomical images,
often approaching 10 min for a stack of quantitative 2D images.

T1ρ imaging is based on tilting the magnetization into the xy-plane and then locking
the magnetization with a spin-lock pulse of a certain amplitude and duration. Quantitative
mapping, i.e., the measurement of the T1ρ relaxation time constant, is realized by repeating
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the T1ρ preparation with several different durations of the spin-lock pulse and collecting the
full MR image for each of these preparations. The T1ρ MRI contrast is particularly sensitive
to molecular processes occurring at the frequency (ω1) of the spin-lock pulse corresponding
to the amplitude of the pulse: ω1 = γB1, where γ is the gyromagnetic ratio, which ties the
magnetic field strength (of the radio frequency (RF) pulse) B1 to its resonance frequency.
Generally, spin-lock pulses operate at and are limited to frequencies that correspond to slow
molecular processes that are often both biologically important and altered in disease-related
changes. The T1ρ relaxation time has been reported as a promising biomarker for numerous
tissues and diseases, such as different disorders of the brain [3,4], cardiomyopathy [5], liver
fibrosis [6], musculoskeletal disorders [2,7,8] and many others. For a broader overview
of T1ρ relaxation and its applications, the reader is referred to the reviews by Gilani and
Sepponen [1], Wang and Regatte [7] and Borthakur et al. [2].

Staying still in the scanner for extended periods of time can prove to be challenging,
for example, for pediatric patients. The excessively long data acquisition times are also oper-
ationally impractical because they lead to a small number of studies that can be performed
daily with a single MRI device. Quantitative MRI and T1ρ imaging in particular can thus
greatly benefit from using undersampled measurements, which are a natural and efficient
way to reduce the scanning time for a single qMRI experiment. When using undersampled
data, conventional MR image reconstruction methods, such as regridding [9], may lead to
insufficient reconstruction quality. The usage of compressed sensing (CS) [10,11] methods,
where an iterative reconstruction method is used together with a sparsifying transform of
the image, has proven highly successful with undersampled MRI data [12].

Usage of CS methods for T1ρ imaging have been previously studied, for example,
in [13–16]. In [13], the authors used principal component analysis and dictionary learning in
the first in vivo application of CS to T1ρ reconstruction. In [14], the authors used spatial total
variation (TV) together with Autocalibrating Reconstruction for Cartesian sampling (ARC)
to accelerate the measurements. In [15], the authors compared 12 different sparsifying
transforms in 3D T1ρ mapping. The regularization model combining spatial TV with
second-order contrast TV was found to perform the best, with satisfactory results with an
acceleration factor (AF, i.e., the number of datapoints in full data divided by the number of
data used in the reconstruction) up to 10 when using cartesian 3D sampling together with
parallel imaging. In [16], both cartesian and radial data were reconstructed using various
different regularization methods. The authors reached acceptable accuracy with AF up to 4
for the cartesian data, whereas with the radial data, the accuracy was acceptable with AF
up to 10.

When using CS for T1ρ mapping, the image series with varying spin-lock durations
TSL is first reconstructed, followed by a pixel-by-pixel non-linear least squares fit of a
monoexponential (or a biexponential) signal model to the reconstructed image intensity
data to obtain the desired T1ρ relaxation time map. Since the exponential signal model
combining the T1ρ and varying TSL is well known, a direct, embedded model may also
be used to reconstruct the desired T1ρ map directly from the k-space measurement data
without the intermediate step of reconstructing the separate intensity maps corresponding
to different TSL. Figure 1 shows a schematic of the CS T1ρ mapping method as well as the
direct, embedded model.

The direct one-step reconstruction utilizing the embedded model has clear advan-
tages over the sequential two-step reconstruction model. First, it reduces the number of
unknowns in the reconstruction problem significantly; for example, for measurements with
seven spin-lock times, the number of unknowns may be reduced from 14N (one complex
image for each contrast) to just 3N (T1ρ, S0 and a single phase map), where N is the number
of pixels or voxels in a single image. Secondly, it allows the regularization of the parameter
map of interest, i.e., the T1ρ parameter map in the case of T1ρ mapping instead of posing
regularization on the complex-valued images corresponding to different contrasts in the
intermediate step. Thirdly, since the signal model is embedded in the reconstruction, there
is no need to decide what type of a contrast regularization model fits the data best.
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Figure 1. Schematic of the two-step CS T1ρ mapping method and the embedded, direct T1ρ map-
ping method.

A disadvantage of the embedded model is that it transforms the MRI inversion into a
non-linear problem, which is not necessarily convex and thus requires proper initialization.
The resulting non-linear and possibly non-convex optimization problem can, however,
be solved conveniently with, for example, the non-linear primal-dual proximal splitting
algorithm [17].

Alternatively, various deep learning approaches have also been proposed for different
aspects of quantitative MRI. For example, in [18], the authors propose the use of deep
learning neural networks to reduce the number of contrasts required for an accurate
model fit in myocardial T1 mapping. Additionally, a model-guided self-supervised deep
learning MRI reconstruction framework for direct T1 and T2 parameter mapping has been
proposed [19]. For an overview of the usage of deep learning in MR relaxometry, see [20].

In this work, we propose an embedded parameterization model to directly reconstruct
the T1ρ, S0, and phase maps from the k-space measurement data and use the non-linear
primal-dual proximal splitting algorithm to solve the problem. The proposed model is
tested with 2D simulated radial phantom data and 2D cartesian ex vivo mouse kidney data.
The proposed embedded model is compared with two CS models: one with spatial TV
and TV over the TSL contrasts, which, we believe, is generally the most commonly used
CS model in MRI, and a second CS model with spatial TV and second-order contrast TV,
which in [15] was found to perform the best out of 12 different CS models for T1ρ mapping.
The first CS model is labeled “CS S1+C1”, and the second CS model is labeled “CS S1C2”
throughout the paper. The models are named slightly different since in the first model,
the spatial and contrast TV components are separate with two different regularization
parameters, and in the second model, the spatial TV and the second-order contrast TV
are under the same root with a single regularization parameter. In the cartesian test case,
results from a direct inverse fast Fourier transform (iFFT) model are also shown as a
reference. Reconstructions from both the CS models and the iFFT model are followed by
the mono-exponential pixel-by-pixel T1ρ fit.

2. Reconstruction Methods
2.1. Embedded T1ρ Model

The signal model in T1ρ mapping is

Sc,k = S0,k exp(−TSLc /T1ρk ), (1)

where Sc,k is the signal intensity with spin-lock time TSLc , where c denotes the contrast index
and k denotes the pixel index, and S0 is the proton density map, i.e., the signal intensity
when TSL = 0. For the recovery of the T1ρ map, k-space measurement data are collected by
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scanning the target with multiple spin-lock times TSLc . The measurement model mapping
the S0, T1ρ, and the phase map θ to the k-space measurements then reads

m = K(S0, T1ρ, θ) + e, (2)

where the vectors S0, T1ρ, and θ ∈ RN are the parameter maps to be reconstructed, and the
complex measurement vector m ∈ CCM is composed of k-space data with C spin-lock times,
each consisting of M measurements. Further, we denote the complex-valued measurement
noise by e ∈ CCM and the non-linear forward model by K : R3N → CCM.

The non-linear forward model can be further decomposed to

K(S0, T1ρ, θ) = AB(D(S0, T1ρ, θ)), (3)

where A is the block-diagonal matrix containing the Fourier transform operations. In
the case of cartesian measurements, the blocks of A read Ac = UcF , where Uc is the
undersampling pattern used with the measurements with contrast index c, and F is the
Fourier transform. In the case of non-cartesian measurements, we approximate the forward
model using the non-uniform fast Fourier transform (NUFFT [21]), i.e., Ac = PcFLc, where
Pc is an interpolation and sampling matrix, and Lc is a scaling matrix. Furthermore, D
maps the S0 and T1ρ parameter maps to magnitude images as

D(S0, T1ρ, θ) =


S0 � exp(−TSL1 /T1ρ)

...
S0 � exp(−TSLC /T1ρ)

θ

 :=


r1
...

rC
θ

, (4)

where � is the Hadamard product, i.e., elementwise multiplication, and the exponentiation
and the division of the scalars TSLi by the vector T1ρ are to be interpreted as elementwise
operations. Moreover, B maps the magnitude and phase components of the images to real
and complex components and can be expressed as

B(r1, ..., rC, θ) =


r1 � cos θ
r1 � sin θ

...
rC � cos θ
rC � sin θ

. (5)

Here too, the sin and cos are to be interpreted as elementwise operations. Note that if
the phase maps vary between contrasts, the model can be easily modified to reconstruct
separate phase maps for all contrasts instead of reconstructing only a single phase map.
In a typical T1ρ measurement, however, the contrast preparation is usually well-separated
from the imaging segment, and thus, the phase can be expected to be the same between the
otherwise identical image acquisition segments.

In the embedded reconstruction, we use total variation regularization for the S0 and
T1ρ maps and L2-norm regularization for the spatial gradient of the phase map. TV
regularization has been shown to be one of the best performing approaches with CS in T1ρ

mapping [15], and thus, for a fair comparison, it was chosen as regularization for the S0
and T1ρ maps. Additionally, gradient L2 regularization was used for the phase map since
the phase maps are most often smooth. We also limit the S0 and T1ρ parameter maps above
a small positive value. With these, the minimization problem reads

min
S0,T1ρ ,θ

||K(S0, T1ρ, θ)−m||22 + α1TVS(S0) + α2TVS(T1ρ)

+ α3||∇Sθ||22 + δa1(S0) + δa2(T1ρ) (6)
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where TVS denotes spatial total variation,∇S is the spatial discrete difference operator, and
δai are step functions with an infinite value below the parameter ai and 0 above or equal to
the parameter. Further, α1, α2, and α3 are the regularization parameters for the S0, T1ρ, and
phase maps, respectively, and a1 and a2 are the small positive constraints on the S0 and T1ρ

maps, respectively.

Solving the Embedded T1ρ Reconstruction Problem

The non-linear, non-smooth optimization problem in Equation (6) is solved using the
non-linear primal-dual proximal splitting algorithm proposed in [17], which is described in
Algorithm 1 in its most general form. Here, the non-linear mapping H : R3N → CCM+6N

contains the non-linear forward model K and the discrete difference matrices. The algorithm
applied to the embedded T1ρ reconstruction is described in more detail in the Appendix A.

Algorithm 1 Non-linear primal-dual proximal splitting presented in [17] (Algorithm 2.1)

Choose ω ≥ 0 , and τ, σ

s.t. τσ(supk=1,...,i

∥∥∥∇H(xk)
∥∥∥2
) < 1.

while Not reached stopping criterion do
xi+1 := (I + τ∂G)−1(xi − τ[∇H(xi)]∗yi)
x̄i+1 := xi+1 + ω(xi+1 − xi)
yi+1 := (I + σ∂F∗)−1(yi + σH(x̄i+1))

end while

In our implementation, x = (S0
T, TT

1ρ, θT)T, and we initialize the S0 and phase parts of
x0 using iFFT or adjoint of NUFFT of the TSL = 0 measurements. T1ρ was initialized to a
constant value of 20, and the dual variable y was initialized to 0. Initializing the S0 map
with a constant value instead of the iFFT or adjoint of NUFFT, the algorithm generally fails
to converge to feasible solutions, whereas initializing the T1ρ map with different feasible
values, the algorithm converges to nearly the same solution with differences mainly in
convergence speed.

In addition, we use varying primal step sizes for the different blocks of the embedded
reconstruction, i.e., different τi parameters for the S0, T1ρ, and phase updates [22]. This es-
sentially replaces the scalar step length parameter τ in Algorithm 1 with the diagonal matrix

T =

 τ1 IN 0 0
0 τ2 IN 0
0 0 τ3 IN

. (7)

The step parameters τ1, τ2, and τ3 are derived from the norm of the corresponding
block of the matrix ∇H. Here, however, we only use the non-linear part K of H to estimate
the step lengths, as the linear part of H has only a minor impact on the norm of ∇H. We
set the parameter σ to σ = 1/ max(τi) and use ω = 1 for the relaxation parameter.

Since the block-diagonal matrix A is linear and can be normalized to 1, we have
‖∇K‖ = ‖JB JD‖. Furthermore, the product of the Jacobians writes

JB JD =



diag(cos θ)E1 diag((TSL1 /(T1ρ � T1ρ))� cos θ � r1) −diag(sin θ � r1)

diag(sin θ)E1 diag((TSL1 /(T1ρ � T1ρ))� sin θ � r1) diag(cos θ � r1)

diag(cos θ)E2 diag((TSL2 /(T1ρ � T1ρ))� cos θ � r2) −diag(sin θ � r2)

diag(sin θ)E2 diag((TSL2 /(T1ρ � T1ρ))� sin θ � r2) diag(cos θ � r2)
...

...
...

diag(cos θ)EC diag((TSLC /(T1ρ � T1ρ))� cos θ � rC) −diag(sin θ � rC)

diag(sin θ)EC diag((TSLC /(T1ρ � T1ρ))� sin θ � rC) diag(cos θ � rC)


, (8)

where Ei = diag(exp(−TSLi /T1ρ)) and ri = S0 � exp(−TSLi /T1ρ). Now, since the matrix
JB JD consists of only diagonal blocks, and the index of the maximum value is the same for
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all Ei, it is straightforward to estimate the τi from the norms of the maximum values of the
column-blocks of Equation (8) yielding

τ1 =

√√√√ C

∑
i=1

∥∥exp(−TSLi /T1ρ)
∥∥2

∞ (9)

τ2 =

√√√√ C

∑
i=1

∥∥ri � (TSLi /(T1ρ � T1ρ))
∥∥2

∞ (10)

τ3 =

√√√√ C

∑
i=1

∥∥S0 � exp(−TSLi /T1ρ)
∥∥2

∞. (11)

In addition, we calculate the norms in every iteration and update the used τi and σ if
the step is smaller than the previously used step.

In our experience, these step lengths may, however, prove to be too small, and in some
cases, larger step lengths, especially for the T1ρ update step, may be used to obtain faster
convergence. In this work, we used a multiplier of 50 for the T1ρ update step τ2 in the radial
simulation. Note that the step length criterion of Algorithm 1 still holds with the multiplier
since τ2 · σ remains small due to the selection of σ.

2.2. Compressed Sensing Reference Methods

We compare the embedded model to two CS models, which include a complex valued
reconstruction of the images with different spin-lock times, followed by a pixel-by-pixel
non-linear least squares fit of the monoexponential signal model to obtain the T1ρ and S0
parameter maps. The first CS reconstruction model uses spatial total variation together
with first-order total variation over the varying TSL contrasts (labeled CS S1+C1), and the
second one uses spatial total variation together with second-order total variation over the
varying TSL contrasts (labeled CS S1C2).

The measurement model for a single contrast image is

mc = Acuc + ec, (12)

where the superscript c denotes the contrast index, mc ∈ CM is the k-space data vector
for contrast index c, uc ∈ CN is the image vector, ec ∈ CM is the complex valued noise
vector, and Ac is the forward model, which depends on the measurement sequence and
undersampling pattern and is described in more detail in Section 2.1.

With the measurement model of Equation (12), spatial total variation, and total varia-
tion over the contrasts, the CS minimization problem reads

u∗ = arg min
u
‖Au−m‖2

2 + αTVS(u) + βTVC(u), (13)

where A is a block-diagonal matrix containing the forward transforms Ac corresponding to
each image, u ∈ CNC is all the images vectorized, such that C is the number of contrasts,
and m ∈ CMC is all the k-space measurements vectorized. Further, TVS denotes spatial total
variation, TVC denotes total variation over contrasts, and α and β are the regularization
parameters of spatial and contrast TV, respectively.

The second CS minimization problem, which uses the single regularization parameter
version of combined spatial TV and second-order contrast TV, reads

u∗ = arg min
u
‖Au−m‖2

2 + αTVSC(u), (14)

where
TVSC(u) = ∑

k

√
(∇xu)2

k + (∇yu)2
k + (∇2

cu)2
k ,
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where ∇x and ∇y are the horizontal and vertical direction spatial discrete forward differ-
ence operators, respectively, ∇2

c is the second order contrast direction discrete difference
operator, and k is an index that goes through all the pixels in the set of images.

Both of the minimization problems (Equations (13) and (14)) are solved using the
popular primal-dual proximal splitting algorithm of Chambolle and Pock [23].

Finally, in the CS models (and the iFFT model), we fit the mono-exponential T1ρ signal
equation

[T∗1ρ,k, S∗0,k] = arg min
T1ρ ,S0

∥∥|uk| − S0 exp(−TSL/T1ρ)
∥∥2 (15)

pixel by pixel to the reconstructed intensity images obtained by solving either Equation (13)
or Equation (14). Here, |uk| = |u1

k |, ..., |uC
k | is the vector of reconstruction intensity values

at pixel location k with TSL contrasts 1 to C, and similarly, TSL is the vector of TSL values
of contrasts 1 to C. Note that the final S0 estimate is obtained from the mono-exponential
model fit instead of taking the intensity values from the reconstructions with TSL = 0.

3. Materials and Methods
3.1. Simulated Golden Angle Radial Data

The simulation of the radial measurement data was based on the Shepp–Logan phan-
tom in dimensions 128× 128, which was zero-filled to dimensions 192× 192. The T1ρ

values of the target were set to between 20 and 120. The intensity with TSL = 0 was set to
a maximum of 1, and the phase of the target was set 2πx/192, where x is the horizontal
coordinate of the pixel. The images of the simulated T1ρ, S0, and phase maps are shown
in Figure 2. To generate the varying TSL measurements, spin lock times of 0, 4, 8, 16, 32,
64, and 128 ms were used. For each TSL, 302 (i.e., ∼192 · π/2) golden angle [24] spokes
were generated. This corresponds to full sampling for equispaced radial spokes with image
dimensions 192× 192 in the sense that the distance between spokes at their outermost
points satisfies the Nyquist criterion [25]. Finally, complex Gaussian noise at 5 % of the
mean of the absolute values of the full noiseless simulation was added to the simulated
measurements.

Figure 2. The simulated T1ρ, S0, and phase parameter maps for the radial golden angle T1ρ phantom
simulation.

3.2. Cartesian Data from Ex Vivo Mouse Kidney

Experimental ex vivo data from a mouse kidney was acquired from a separate study.
The data were collected in compliance with ethical permits (ESAVI/270/04.10.07/2017)
at 9.4 T using a 19 mm quadrature RF volume transceiver (RAPID Biomedical GmbH,
Rimpar, Germany) and VnmrJ3.1 Varian/Agilent DirectDrive console. T1ρ relaxation data
were collected using a refocused T1ρ preparation scheme [26] with a spin-lock frequency
of 500 Hz and TSL = 0, 8, 16, 32, 64, and 128 ms. The T1ρ-prepared data, i.e., T1ρ-weighted
images, were collected using a fast spin echo sequence with a repetition time of 5 s,
effective echo time of 5.5 ms, echo train length of 8, slice thickness of 1mm, field-of-view of
17 × 17 mm and acquisition matrix of 192 × 192. Eventually, only spin-lock times up to



J. Imaging 2022, 8, 157 8 of 18

64 ms were used in the reconstruction as the signal intensity of the longest spin-lock time
was close to the noise level and had minimal or no effect on the reconstruction.

3.3. Reconstruction Specifics

The radial data from the 2D phantom were reconstructed with the embedded model
and the two CS models with acceleration factors of 1, 5, 10, 20, 30, 50, and 101 (rounded to
the nearest integer). In T1ρ imaging, the images measured with varying spin-lock times
are expected to have high redundancy in the sense that the images are expected to be
structurally similar with decreasing intensity as TSL increases, making complementary
k-space sampling warranted. In complementary k-space sampling, the subsampling with
any measured contrast is different from the others, meaning that each sampling adds to
spatial information gained at other contrasts. The golden angle radial sampling is especially
well suited for this as the measurements are inherently complementary (i.e., each new spoke
has a different path in the k-space compared to the previous ones), and each measured
spoke traverses through the central (low-frequency) part of the k-space, which contains
significant information on the intensity level of the images. Thus, we sampled the golden
angle data such that, for example, with an acceleration factor of 0, the first contrast used the
first 30 spokes out of the 302 total, the second contrast used spokes 31 through 60 and so
on to achieve complementary k-space sampling. Examples of the radial sampling pattern
for an acceleration factor of 20 and the cartesian sampling pattern for acceleration factor of
5 are shown in Figure 3.

Figure 3. Sampling patterns of the angles of the sampled spokes of the radial simulation data with
acceleration factor 20 (Left) and the indices of the sampled rows of the cartesian ex vivo data with
acceleration factor 5 (Right).

In the embedded model, the phase regularization parameter was set to a constant
value at 0.01, and the other regularization parameters were varied over a wide range. In
the CS models, the regularization parameters were also varied over a wide range to find
the best parameters. The reconstructions shown use the regularization parameters that
yielded the smallest T1ρ RMSE with respect to the ground truth phantom.

The NUFFT operator used in the radial data reconstructions was implemented using
the Michigan Image Reconstruction Toolbox (MIRT) [27]. The interpolator used was the
minmax:kb interpolator with a neighbourhood size of 4 and scaling factor of 2.

The cartesian ex vivo mouse kidney data were reconstructed with the embedded,
the iFFT, and the two CS methods with acceleration factors of 2, 3, 4, and 5 (rounded to
the nearest integer). Undersampling was conducted by taking a number of full k-space
rows corresponding to the desired acceleration factor since cartesian data collection in MRI
scanners is carried out line by line. For the undersampled reconstructions, 1/4 of the total
sampled k-space rows were taken from around the center to include zero frequency and
enough low-frequency data in all contrasts. Half of the rest 3/4 were taken from the top
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part and the other half from the bottom part. To achieve complementary sampling, the
rows from the top and bottom parts were selected such that all rows were first selected
once in random order before continuing to sample from the full set of rows again (Figure 3).

In the ex vivo test case, too, the phase regularization parameter of the embedded model
was set to a constant level, which was 0.0001, and the other parameters of the embedded
and both CS models were varied over a wide range to find the optimal T1ρ estimate. The
embedded model reconstructions were compared to the embedded reconstruction with
full data, and likewise, the CS and iFFT model reconstructions were compared to the
corresponding reconstructions with full data as the true T1ρ map is not available. Thus, the
RMSEs reflect each model’s relative tolerance for undersampling compared to the situation
where fully sampled data are available for the particular reconstruction model.

4. Results
4.1. Simulated Golden Angle Radial Data

With the radial simulated phantom data, all the methods produce reconstructions
with similar RMSEs when using full data (acceleration factor 1). With undersampled data,
the embedded model outperforms both the CS models as measured by RMSE of both the
T1ρ (Figure 4) and S0 (Figure 5) maps with all acceleration factors and the improvement
increases with larger acceleration factors.

Figure 4. The T1ρ maps of the radial simulation reconstructed with the embedded model and the
two CS models and the RMSEs of the reconstructions as compared to the true values used in the
simulation. The top row contains the CS S1+C1 model and the middle row the CS S1C2 model T1ρ

parameter maps obtained from the monoexponential fit of Equation (15), and the bottom row contains
the embedded model reconstructions. Columns 2–5 show the T1ρ parameter maps at acceleration
factors of 5, 10, 30, and 101. Images are cropped to content.
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Figure 5. The S0 maps of the radial simulation reconstructed with the embedded model and the
two CS models, and the RMSEs of the reconstructions as compared to the true values used in the
simulation. The S0 maps shown here are from the same reconstructions as the T1ρ maps shown in
Figure 4. The top row contains the CS S1+C1 model, and the middle row the CS S1C2 model S0

parameter maps obtained from the monoexponential fit of Equation (15), and the bottom row contains
the embedded model reconstructions. Columns 2–5 show the S0 parameter maps at acceleration
factors 5, 10, 30, and 101. Images are cropped to content.

The T1ρ maps computed using the CS models are also visibly noisier as the model
does not allow direct regularization of the T1ρ map (Figure 4). With an acceleration factor of
101, reconstructions of both CS models start to break down, whereas the embedded model
reconstruction still reconstructs the target reasonably well, with RMSE values below those
of the the CS models at an acceleration factor of 20–30 (Figures 4–6).

Figure 6. The RMSEs of the T1ρ (left) and S0 (right) maps of the radial simulation with the embedded
model and the two CS models at acceleration factors 1, 5, 10, 20, 30, 50, and 101.

4.2. Cartesian Data from Ex Vivo Mouse Kidney

In the cartesian ex vivo test case, the performance of the embedded and CS models in
their relative tolerance for undersampling is similar with an acceleration factor of 2, and
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both CS models perform slightly worse than the embedded model with an acceleration
factor of 3 (Figures 7–9). With an acceleration factor of 4, the performance of the CS models
is already clearly worse than the performance of the embedded model, and while both of
the CS models fail in the reconstruction with an acceleration factor of 5, the embedded
model still produces similar tolerance for undersampling as with the smaller acceleration
factors. The undersampled iFFT reconstructions shown for reference perform worse than
the CS or the embedded model reconstructions with all the acceleration factors.

Figure 7. The T1ρ maps of the cartesian ex vivo mouse kidney data with the iFFT, CS S1+C1, CS S1C2,
and embedded models, as well as the RMSEs as compared to the corresponding model reconstructions
with full data. The top row contains the iFFT, the second row the CS S1+C1, and the third row the CS
S1C2 model T1ρ parameter maps obtained from the monoexponential fit of Equation (15), and the
bottom row contains the T1ρ maps obtained from the embedded model reconstructions. Columns 1–4
show the parameter maps corresponding to acceleration factors 1, 3, 4, and 5. Images are cropped
to content.
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Figure 8. The S0 maps of the cartesian ex vivo mouse kidney data with the iFFT, CS S1+C1, CS S1C2,
and embedded models, as well as the RMSEs as compared to the corresponding model reconstructions
with full data. The S0 maps shown here are from the same reconstructions as the T1ρ maps shown
in Figure 7. The top row contains the iFFT, the second row the CS S1+C1, and the third row the CS
S1C2 model S0 parameter maps obtained from the monoexponential fit of Equation (15), and the
bottom row contains the S0 maps obtained from the embedded model reconstructions. Columns 1–4
show the parameter maps corresponding to acceleration factors 1, 3, 4, and 5. Images are cropped
to content.
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Figure 9. The RMSEs of the T1ρ (left) and S0 (right) maps of the cartesian ex vivo mouse kidney data
with the embedded, CS S1+C1, CS S1C2, and iFFT models at acceleration factors 2, 3, 4, and 5.

5. Discussion

In this work, we proposed a non-linear, embedded T1ρ model for direct quantitative
T1ρ reconstruction. The model is solved using the non-linear primal-dual proximal splitting
algorithm [17]. We compared the embedded model reconstructions to two compressed
sensing reconstructions followed by a mono-exponential T1ρ fit in a radial simulated test
case and a cartesian ex vivo test case. In the cartesian test case, we also show results from
iFFT reconstructions followed by the T1ρ fit.

In the simulated test case, where the RMSE metric with respect to the true target image
is available, the embedded model outperformed both of the CS models with improvement
increasing towards the higher acceleration factors. In the experimental test case with
Cartesian ex vivo mouse kidney data, the RMSEs reflect the relative tolerance of the method
with respect to the case where the fully sampled data were available for that particular
method. In this case, the embedded model and the CS models had similar RMSEs for an
acceleration factor of 2, and for higher acceleration factors, the embedded model clearly
exhibited better tolerance for undersampling, indicating that the embedded model would
allow the usage of higher acceleration factors than the CS models.

We believe the main factor for the better performance of the embedded model, espe-
cially with higher acceleration factors, is the reduction in the reconstructed parameters.
In the simulation, in the standard CS approach, there are 14N unknowns, where N is
the number of pixels in a single image, whereas in the embedded model, there are 3N
unknowns. This is a reduction of 79% in the number of reconstructed unknowns. The same
also holds true for the experimental case, where the reduction is 70%. Thus, when utilizing
the embedded model, the problem is less undersampled—in the sense of the number of
unknowns compared to the number of measurement points—than when using the CS
models.

The two CS models perform quite similarly with the second-order contrast TV model
CS S1C2 performing slightly better overall than the CS S1+C1 model in the simulated test
case. The same observation can be made in the cartesian test case up to an acceleration
factor of 4. In the Cartesian test case, the CS S1+C1 model has a smaller RMSE than CS
S1C2 with an acceleration factor of 5, but in this case, both of the CS models failed to
produce useful T1ρ or S0 maps. From the practical point of view, the second-order contrast
TV model with the implementation described in [15] is also more convenient than the CS
S1+C1 model as it requires selecting only a single regularization parameter.

The embedded model is, however, slower to compute than the CS models. For example,
our code implementation running on MATLAB (R2017b, The MathWorks, Inc., Natick, MA,
USA) using an Intel Xeon E5-2630 CPU took 104 min for the embedded model and 26 min
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for the CS S1+C1 model with the radial simulation data with AF = 5. For the experimental
cartesian data, the difference was bigger: for example, for AF = 2, the embedded model
took 75 min to compute, while the CS S1+C1 model converged to stopping criterion in
under a minute. The computation times could, however, be shortened, for example, by
optimizing the code, running the code on a GPU, and also loosening the stopping criteria
since we ran the iterations with rather strict criteria.

In the radial simulated test case, the embedded model reconstructs the target quite
well even with an acceleration factor of 101, using only three spokes per TSL contrast, and
21 spokes in the whole reconstruction. In the cartesian test case, the acceleration factors
that can be reached are much smaller. Even though the target used in the radial simulation
is rather simple, it is evident that the radial sampling pattern, particularly with the golden
angle sampling where k-space spokes are complementary and go through the center part of
the k-space, allows much higher acceleration factors than a cartesian line-by-line sampling
pattern. This is due to the undersampling artefacts in radial sampling (i.e., streaking) being
more noise-like in the transform domain than the undersampling artefacts that arise in
cartesian sampling [28,29]. This finding is aligned with the findings of [16].

Testing the proposed embedded model with radial experimental data, in vivo data,
3D data, and parallel imaging data are interesting future works, and our hypothesis is that
similar results, where the embedded model outperforms the CS models, are to be expected.
In addition, the embedded T1ρ model could be tested with other regularizers, such as
total generalized variation [30], which balances between minimizing the first- and second-
order differences of the signal, making the results less piecewise constant, an issue for TV
regularization, which is visible in the embedded reconstructions in, e.g., Figure 7. Other
regularizers, which could alleviate the over-smoothness, include, for example, non-local
means [31] or dictionary learning [32].

As the contrast manipulation scheme of the signal acquisition and the quantitative
signal equation are the only major aspects that change between different qMRI contrasts,
the proposed method can easily be adapted to fit other qMRI cases as well. Besides other
qMRI methods, other aspects where embedded modelling could offer further benefits
are T1ρ dispersion imaging [33,34], where the data are acquired at multiple spin-locking
amplitudes, and reducing RF energy deposition by asymmetric data reduction for the
different spin-lock times (i.e., less data for long spin-lock pulses). More generally, shorter
scan times may allow for higher spin-lock durations and/or higher amplitude pulses, as
the specific absorption rate of RF energy can be minimized via acquiring less data for the
most demanding pulses. Alternatively, multi-contrast embedded modelling could offer
further avenues for data reduction.

6. Conclusions

In this work, we proposed an embedded T1ρ reconstruction method, which directly
reconstructs the T1ρ, S0, and phase maps from the measurement data. The reconstruction
method also allows direct regularization of these parameter maps, and thus, a priori
information about the parameter maps may be incorporated into the reconstruction. We
also showed that the proposed method outperforms two compressed sensing models in
two test cases, especially when using higher acceleration factors.
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Appendix A. Algorithm Details

The minimization problem we are solving using NL-PDPS reads

min
S0,T1ρ ,θ

||K(S0, T1ρ, θ)−m||22 + α1TVS(S0) + α2TVS(T1ρ)

+ α3||∇Sθ||22 + δa1(S0) + δa2(T1ρ). (A1)

For the algorithm, the minimization problem is written as

min
u

F(H(u)) + G(u), (A2)

where u = (S0
T, TT

1ρ, θT)T := (uT
1 , uT

2 , uT
3 )

T, and

H(u) =
[

K(u)
∇Du

]
, where ∇D =



∇x 0 0
∇y 0 0
0 ∇x 0
0 ∇y 0
0 0 ∇x
0 0 ∇y

, (A3)

where ∇x and ∇y are discrete forward differences in the horizontal and vertical directions.
With the primal variable u and the non-linear forward mapping H, the saddle-point
formulation of the problem then writes

min
u

max
v

G(u) + 〈H(u), v〉 − F∗(v), (A4)

where v is the dual variable.
Further, the functional F is divided into 4 parts matching the parts of the minimization

problem as

F1(p1) =
1
2
‖p1 −m‖2

2 (A5)

F2(p2) =α1‖|p2|‖1 (A6)

F3(p3) =α2‖|p3|‖1 (A7)

F4(p4) =α3‖p4‖2
2, (A8)

10.5281/zenodo.6477557
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and the pi are obtained by

p1 =K(u) (A9)

p2 =∇Su1 :=
[
∇xu1
∇yu1

]
(A10)

p3 =∇Su2 :=
[
∇xu2
∇yu2

]
(A11)

p4 =∇Su3 :=
[
∇xu3
∇yu3

]
. (A12)

Here, the |p2| and |p3| denote the isotropic gradient magnitudes, i.e., for example for |p2|,
the elements are (|p2|)i =

√
(∇xS0)

2
i + (∇yS0)

2
i . Similarly, the functional G has two parts,

which read

G1(u) =δa1(S0) (A13)

G2(u) =δa2(T1ρ). (A14)

Now, the proximal operators (also called the resolvent operators) of the convex conju-
gates of Fi, i.e., F∗i , and of G1 and G2 read

(I + σ∂F∗1 )
−1(v1) =

v1 − σm
1 + σ

(A15)

(I + σ∂F∗2 )
−1(v2) =

v2

max(1, |v2|/α1)
(A16)

(I + σ∂F∗3 )
−1(v3) =

v3

max(1, |v3|/α2)
(A17)

(I + σ∂F∗4 )
−1(v4) =

v4

σ/(2α3) + 1
(A18)

(I + τ∂G1)
−1(u) =P1,a1(u) =

{
u1, u1 ≥ a1

a1, u1 < a1
(A19)

(I + τ∂G2)
−1(u) =P2,a2(u) =

{
u2, u2 ≥ a2

a2, u2 < a2
, (A20)

where the dual variable v is split into four parts. With these, we can write Algorithm A1.
The step lengths τi are chosen by Equations (9)–(11).

Algorithm A1 Embedded T1ρ with NL-PDPS, adapted from [17] [Algorithm 2.1]

Choose ω ≥ 0 , and τ`, σ

s.t. τ`σ(supk=1,...,i

∥∥∥[∇H(xk)]`

∥∥∥2
) < 1.

T = diag(τ1 IN , τ2 IN , τ3 IN).
while Not reached stopping criterion do

ũi+1 ← ui − T[∇H(ui)]∗[viT
1 viT

2 viT
3 viT

4 ]T

ui+1 ← P2,a2(P1,a1(ũ
i+1))

ūi+1 ← ui+1 + ω(ui+1 − ui)

vi+1
1 ← (I + σ∂F∗1 )

−1(vi
1 + σK(ūi+1

1 ))

vi+1
2 ← (I + σ∂F∗2 )

−1(vi
2 + σ∇Sūi+1

2 )

vi+1
3 ← (I + σ∂F∗3 )

−1(vi
3 + σ∇Sūi+1

3 )

vi+1
4 ← (I + σ∂F∗4 )

−1(vi
4 + σ∇Sūi+1

4 )
end while
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