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Abstract: Digital Elevation Models (DEMs) of planet Mars are crucial for many remote sensing
applications and for landing site characterization of rover missions. Shape from Shading (SfS) is
known to work well as a complementary method to greatly enhance the quality of photogrammetri-
cally obtained DEMs of planetary surfaces with respect to the effective resolution and the overall
accuracy. In this work, we extend our previous lunar shape and albedo from shading framework
by embedding the Hapke photometric reflectance model in an atmospheric model such that it is
applicable to Mars. Compared to previous approaches, the proposed method is capable of directly
estimating the atmospheric parameters from a given scene without the need for external data, and
assumes a spatially varying albedo. The DEMs are generated from imagery of the Context Camera
(CTX) onboard the Mars Reconnaissance Orbiter (MRO) and are validated for clear and opaque
atmospheric conditions. We analyze the necessity of using atmospheric compensation depending on
the atmospheric conditions. For low optical depths, the Hapke model without an atmospheric com-
ponent is still applicable to the Martian surface. For higher optical depths, atmospheric compensation
is required to obtain good quality DEMs.

Keywords: Mars; shape from shading; atmosphere; digital elevation model; Hapke model

1. Introduction

The topography of planetary surfaces provides essential information for a wide field
of applications. For example, geomorphologic analysis requires high-resolution Digital
Elevation Models (DEMs), but the analysis of hyper-spectral data also benefits greatly
from accurate DEMs. To correct hyper-spectral data for photometric effects and thermal
emission, a detailed DEM and, in particular, accurate slopes are vital. Furthermore, the
planning of rover missions relies on DEMs to assess landing sites and possible hazards
associated with steep terrain. In recent years the interest in rover missions to Mars, in
particular, has again increased significantly. In 2021, both the National Aeronautics and
Space Agency’s (NASA’s) Perseverance Rover and the Chinese National Space Agency’s
(CNSA’s) Zhurong rover successfully landed on the Martian surface. The Rosalind Franklin
rover of the European Space Agency (ESA) was planned to be launched to Mars in 2022,
but has been postponed to a later date. The Martian surface is covered by a thin and non-
negligible atmosphere that increases the model complexity of intensity-based reconstruction
methods. This study contributes in two ways. First, it adopts the previous framework of
Grumpe and Wöhler [1], which was developed for Lunar DEM generation, and tailors
it to Martian conditions. Therefore, the Hapke reflectance model is combined with an
atmospheric model, yielding a state-of-the-art Shape from Shading (SfS) procedure. The
relevant parameters can either be completely retrieved from the image or supplied from
independent atmospheric measurements. Secondly, we investigate the performance of the
procedure depending on the atmospheric conditions and parameter choices. This step has
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largely been neglected by previous studies on intensity-based Martian 3D-reconstruction
and is crucial to evaluate the performance of SfS on Mars.

1.1. DEM Generation for Planetary Surfaces

In general, there are three major methodological approaches that are used to generate
DEMs of planetary surfaces, i.e., ranging techniques, photogrammetric approaches and
shading-based methods. Laser-altimetry samples the surface with laser pulses and the
time-of-flight of the photons is translated into range measurements. The resulting DEMs
have a high vertical fidelity and an extensive coverage of the planet is achieved. However,
the lateral resolution is limited due to a comparatively coarse sampling of the surface
(e.g., LOLA: 59 m/pix [2], MOLA: 463 m/pix [3]). Photogrammetric approaches, or stereo
vision, use two or more images taken from different perspectives to infer a DEM, usually
based on bundle adjustment. These methods do not require any physical reflectance model
and are known to yield a good absolute height estimate. The state-of-the-art frameworks
commonly employed in the planetary community are the Ames Stereo Pipeline [4] and
BAE Systems’ SOCET SET ® [5]. Both rely on blockmatching to obtain tie-points for the
bundle-adjustment procedure. Extensive regions of the planets are covered by regolith,
which naturally appears textureless. The lack of texture may cause mismatching, which
yields a variety of reconstruction artifacts such as spikes, holes where no matches could be
generated and stair-like structures termed pixel-locking [6]. These stereo artifacts effectively
lower the resolution of the DEM to several times below the pixel resolution.

Shading-based methods require a reflectance model to connect radiance measurements
and surface gradients. They also need proper initialization to ensure convergence. This
additional effort is justified by obtaining a DEM of pixel level resolution with a very accurate
reconstruction of slopes and heights and the elimination of stereo artifacts, especially in
textureless areas (e.g., [7]). In order to enhance the quality of DEMs, recent approaches have
successfully combined low resolution DEMs from photogrammetry and laser-altimetry
with SfS, among others, on either the Moon (e.g., [1,8–10]), Mercury (e.g., [11]) or on Mars
(e.g., [12–18]). The rationale is that the low resolution DEM provides a good absolute height
estimate and SfS is used to refine the surface such that the whole procedure combines the
advantages of both approaches.

Recently, various works have explored machine-learning techniques to directly infer a
relationship between measured image intensities and surface height (e.g., [19–21]). These
approaches are purely data-driven and do not incorporate physical information. How-
ever, the training procedures implicitly learn the atmospheric conditions present in the
training data, but the atmospheric influence has not been explicitly investigated in these
works. Consequently, machine-learning approaches will also benefit from investigating the
influence of the atmosphere on the reconstruction.

1.2. Shape from Shading in Planetary Remote Sensing

Galileo Galilei stated that surfaces that are tilted away from the sun appear darker
and parts that face the sun appear brighter [22].This is probably the first time that surface
shading was used to analyze the topography of a planetary body, and it has been used ever
since. With the rise of more rigorous physical approaches and an increase in computational
power, numerous approaches have been developed that use illumination geometry and
shading to quantify the surface slope and topography, primarily of the Moon. In planetary
science, these techniques are often termed photoclinometry, and the earliest approaches
are given by Rindfleisch [23], Wildey [24], and Kirk [25]. A highly recognized technique
from the computer vison community is the SfS method of Horn [26], which allows for the
integrated recovery of slopes and heights. The surface reconstruction problem is encoded in
terms of variational calculus and hence it is solved by minimizing a functional that penalizes
the deviations between the shaded surface and the input image. To ensure integrability of
the estimated surface, an additional regularization term is introduced. Further constraints
were introduced by Shao et al. [27] to elastically tie the surface to a low frequency constraint
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surface, which improves the absolute vertical fidelity. Grumpe and Wöhler [1] generalized
the variational approach and introduced a formalism to concurrently estimate the surface
heights and the local reflectance properties in terms of the Hapke reflectance model, i.e., the
albedo. Other recent approaches, which share many structural similarities, are, for example
Wu et al. [9], Jiang et al. [18], and Alexandrov and Beyer [10]. Wu et al. [9] and Alexandrov
and Beyer [10] use LRO-NAC images of the Moon and make use of the Lunar-Lambert
model. The latter method additionally allows for multiple images. Jiang et al. [18] adopt
the algorithm of Grumpe and Wöhler [1] and use the Mars-specific reflectance model
and the Mars ReCo algorithm from Ceamanos et al. [28] to estimate the reflectance and
atmospheric parameters.

1.3. Shape from Shading Applied to Mars

SfS has been applied to the Martian surface for forty years, and over time, different
approaches of an increasing level of sophistication have been presented. This section
provides a brief review of previous approaches for SfS applied to Mars and points out the
methodical challenges and open questions addressed by this paper.

Previous approaches primarily differ in the reflectance model, the specific implemen-
tation of the SfS algorithm and the dataset that determines the actual resolution. Early
works applied photoclinometry to Mariner 9 images [24] and SfS to Viking imagery [12,13].
Dorrer et al. [29] and Dorrer et al. [14] employ SfS to refine stereo DEMs, which are derived
from the High-Resolution Stereo Camera (HRSC) onboard the Mars Express orbiter [30].
O’Hara and Barnes [16] propose the Large Deformation Optimization Shape from Shading
(LDO-SfS) technique for recovering the surface shape without initialization. All approaches
use simple reflectance models such as Lambert or Oren–Nayar [31], and mostly assume a
constant albedo, if any, and do not model any atmospheric effects (e.g., [16]). Gehrke [15]
is the first to address atmospheric effects on Mars in the context of surface reconstruction.
The work combines facet stereo vision with SfS, applied to HRSC imagery. The Lunar-
Lambert model is used for radiometric modeling, and the optical depth of the atmosphere
is estimated from two HRSC images acquired under different observation angles.

Jiang et al. [18] were the first to propose a scheme for an integrated stereo and SfS
approach on CTX images (up to 5 m/pix) with atmospheric compensation. They em-
ploy their previous reflectance model [28] to build a thorough physical reflectance and
atmospheric model based on additional multi-angle CRISM measurements to estimate the
model parameters. Compared to the photogrammetric reconstruction, the DEM results
show improvement and are consistent with a sparse set of MOLA points. In a subsequent
publication, Douté et al. [32] extend their approach to work with HiRISE imagery; due
to the lack of validation data, the Isotropic Undecimated Wavelet Transform (IUWT) is
employed for a consistency-check.

Despite the overall viability and adequate results of SfS on Mars, we identify two
methodological challenges and one open question related to atmospheric compensation.
First, all previous works, and most recently the approach of Jiang et al. [18], assume con-
stant albedo throughout the scene. If a more sophisticated area with locally varying albedo
is examined, Jiang et al. [18] perform clustering and divide the scene into multiple re-
gions with constant albedo. Even though algorithms for SfS with locally varying albedo
exist (e.g., Wu et al. [9] and Grumpe and Wöhler [1]), they have not yet been fully ex-
plored for Mars. Secondly, modeling the atmosphere remains challenging and largely
unexplored. Many studies have simply neglected atmospheric effects and Gehrke [15]
only estimated the optical depth. The approach of Jiang et al. [18] requires external data to
estimate the parameters of the reflectance model and the atmospheric model. Significant
additional processing is required for obtaining the image parameters. Due to the lack of
such data, Jiang et al. [18] assume globally averaged parameters. In general, it would
be beneficial to directly estimate the atmospheric parameters from the image data such
that no external information is necessary. Thirdly, Jiang et al. [18] employed an atmo-
spheric model for their SfS implementation, but did not provide any further analysis of
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the influence of atmospheric conditions on the reconstruction results. In fact, they utilized
images acquired under extremely clear atmospheric conditions with an optical depth of
τ ≈ 0.16 (G20_025904_2209_XN_40N102W), τ ≈ 0.08 (B20_017600_1538_XN_26S183W),
and τ ≈ 0.19 (B21_017786_1746_XN_05S222W), as can be retrieved from the maps of
Montabone et al. [33]. Hess et al. [7] combined an atmospheric model with the SfS pro-
cedure from Grumpe and Wöhler [1] and Grumpe et al. [8]. They provided a short com-
parison with and without an atmospheric model for the first scene from Jiang et al. [18]
(G20_025904_2209_XN_40N102W). Even the model without atmospheric compensation
produced good results. However, none of the previous works have analyzed the influence
of atmospheric modeling on SfS results for varying atmospheric conditions. Therefore, it
remains unclear whether the effort of atmospheric compensation is always necessary and
how the SfS procedure performs under increasing atmospheric opacity.

This work addresses these methodical challenges and the open question. The atmo-
spherically compensated shape and albedo from shading approach extending on Grumpe
and Wöhler [1] is outlined. The method employs Bayesian optimization for atmospheric
parameter estimation. Further, this work aims to investigate whether external atmospheric
parameters from, e.g., Montabone et al. [33] or Montabone et al. [34] are necessary or if
these parameters can be directly retrieved from the scene. In order to systematically analyze
the influence of varying atmospheric conditions on the performance of Martian SfS, three
images of the same region as in Hess et al. [7] and Jiang et al. [18], but with good (τ ≈ 0.16),
medium (τ ≈ 0.61), and bad (τ ≈ 0.94) atmospheric conditions [33,34] are used.

2. Methods

The core idea of Shape from Shading (SfS) is to use the shading information of a given
surface to infer its shape or, more rigorously, a radiance image I is used to estimate the
surface shape, which can be represented by a scalar potential z. The SfS reconstruction
task comes with four requirements, which are (1) a radiance image I, (2) a task-specific
reflectance model R, (3) a reconstruction algorithm and (4) a low-frequency initialization
of the surface. For Mars, radiance images acquired by the Mars Reconnaissance Orbiter
(MRO) serve as the shading input I (Section 2.1). Our newly devised Martian reflectance
model R maps surface gradients to reflectance values and thus links the shape to the
shading of the surface (Section 2.2). Further, location and observation time specific model
parameters are estimated, which is crucial for the accurate description of the planet’s
photometric behavior. The atmospheric parameters are retrieved in a one-shot estimation
with Bayesian optimization. The surface reconstruction problem is essentially ill-posed
because a surface’s gradient field with two components as well as the single-scattering
albedo are estimated from a single radiance image using the SfS algorithm of Grumpe and
Wöhler [1] (Section 2.3). The shape of the surface and the albedo are updated in each of
the pyramid levels until the SfS in the final pyramid level is carried out on full resolution
images. The regularization requires a stereo-derived DEM as a low frequency constraint
that is also used to estimate the atmospheric parameters once before the hierarchical SfS
scheme. The full procedure is outlined in Section 2.4.

2.1. Datasets

The Mars Reconnaissance Orbiter (MRO) [35] carries, among other sensors, two cam-
eras that are suited for SfS due to their high resolution and the range of usual observation
angles. The High Resolution Imaging Science Experiment (HiRISE) [36] narrow angle
camera captures images of selected target sites with a resolution of 25 cm/pix at best. The
Context Camera (CTX) [37] contextualizes HiRISE imagery [36] at 5 m/pix resolution at
best. CTX imagery covers the whole planet and many sites have been mapped by multiple
images such that stereo reconstruction is possible. HiRISE only sparsely maps the planet
and, often, there is no available stereo pair. Before processing, the raw data are calibrated to
the reflectance factor I/F with ISIS3 [38]. The initial stereo DEMs and the HiRISE DEM for
validation are calculated using the Ames stereo pipeline [4]. Additionally, the dust optical
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depth maps of Montabone et al. [33] and Montabone et al. [34], which are based mainly on
data from the Mars climate sounder also onboard the Mars Reconnaissance Orbiter, can
be used.

2.2. Reflectance Model

The reflectance model links the surface geometry to the radiance acquired by the
sensor and, hence, serves as the crucial element of the SfS method. To model the reflectance
properties of planet Mars, a photometric model for planetary surfaces (Section 2.2.1) is
combined with an atmospheric model (Section 2.2.2).

2.2.1. Photometric Models for Planetary Surfaces

Shepard [39] gives an overview of photometric models in planetary remote sens-
ing. The simplest but crudest approximation is to assume an isotropic surface and apply
Lambert’s reflectance model, as done by Dorrer and Zhou [13] and Hartt and Carlotto [12].

The empirical Lunar-Lambert model is a weighted superposition of Lambert’s law and
the Lommel–Seeliger law with an additional phase function to address anisotropy, and was
originally tailored to the Lunar surface [40]. Wu et al. [9] and Alexandrov and Beyer [10]
use the Lunar-Lambert model for the Moon and Lohse et al. [41] and Gehrke [15] adopt it
to Mars. The models of Shkuratov et al. [42] and Hapke (summarized in Hapke [43]) rely
on a more rigorous derivation. They are advantageous since they take physical properties
into account and are proven to work well for particulate materials. The Hapke model,
especially, has sound quantitative support and can be regarded as the standard model for
planetary photometry. Nevertheless, some shortcomings are discussed by Shepard and
Helfenstein [44] and Shkuratov et al. [45].

In the earth remote sensing community, the semi-empirical kernel method is commonly
employed to approximate the bi-directional distribution function (BRDF) of a surface by a
weighted superposition of kernels [46]. These kernels are chosen from a catalog according
to the scene type under investigation. Jiang et al. [18] combine Ross-Thick and Li-Sparse
(RTLS) kernels for Mars as described by Ceamanos et al. [28]. The performance of this
method was compared to the Hapke model, showing a good agreement in common cases,
but stronger deviations, especially under large incidence angles [28].

This approach relies on the Hapke model as the de-facto standard of photometric
planetary analysis, which has successfully been employed for SfS [1,8]. Several formulations
of the Hapke model exist. The Anisotropic Multiple Scattering Approximation (AMSA) of
the Hapke model is given by:

rAMSA(µ0, µ, g) =
w

4π

µ0

µ0 + µ
{p(g, λ)BSH(g) + M(µ0, µ)}BCB(g). (1)

The model is a function of a variety of photometric and geometric parameters. The
main parameter is the single-scattering albedo w. Additionally, the opposition effect is
modeled with the terms BSH(g) denoting the Shadow Hiding Opposition Effect (SHOE),
and BCB(g), for the Coherent Backscatter Opposition Effect (CBOE). Both terms depend
on two parameters each: one parameter for the strength of the opposition surge (BS0/BC0)
and another parameter that describes the shape or width of the effect (hs/hc). In the model,
multiple scattering within the medium is accounted for by the approximation M(µ0, µ),
which is given by:

M(µ0, µ) = L1(µ0)[H(µ)− 1] + L1(µ)[H(µ0)− 1] + L2[H(µ)− 1][H(µ0)− 1]. (2)

The geometry is defined by the cosines of the incidence and the emission angle
µ0 = cos(i) and µ = cos(e), respectively. The angle g is termed the phase angle and is
measured between the incoming light direction and the direction of the emitted light. The
material dependency is addressed by the phase function p(g) and the single-scattering
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albedo w. The phase function can be expressed in terms of Legendre polynomials with the
material specific Legendre coefficients bn:

p(g, λ) = 1 +
∞

∑
n=1

bn(λ)Pn(cos(g)). (3)

Alternatively, the double-Henyey–Greenstein function can be used to approximate the
phase function with only two material-specific parameters b and c:

p(g) =
1 + c

2
1− b2

(1− 2b cos (g) + b2)
3/2 +

1− c
2

1− b2

(1 + 2b cos (g) + b2)
3/2 . (4)

The Ambartsumian–Chandrasekhar H-function is defined as

H(x) = 1 +
w
2

xH(x)
∫ 1

0

x′

x + x′
dx′. (5)

It is not analytically solvable, but viable approximations [43] exist:

H(x) =
{

1− wx
[

r0 +
1− 2r0x

2
ln

1 + x
x

]}−1

(6)

with

γ =
√

1− w (7)

r0 =
1− γ

1 + γ
. (8)

The remaining terms for L1 and L2 are defined by:

L1(µ) = 1 +
∞

∑
n=1

AnbnPn(µ), (9)

L1(µ0) = 1 +
∞

∑
n=1

AnbnPn(µ0), (10)

L2 = 1 +
∞

∑
n=1

A2
nbn. (11)

The coefficient An is calculated by evaluating the following definition

A0 = 0 (12)

An =
(−1)(n+1)/2

n
1 · 3 · 5 · · · n

1 · 2 · 4 · · · (n + 10)
, n ∈ {2k|k ∈ N+}. (13)

2.2.2. Atmospheric Model

Mars is encircled by a thin, but non-negligible atmosphere, which alters the radiance
emerging from the planet’s surface. The mean surface pressure on Mars is approximately
6.3 hPa, but is highly variable compared to Earth [47]. The atmosphere consists almost
entirely of CO2 (≈95%) [47], but the largest effect on the optical opacity of the atmosphere
is caused by finely grained dust (effective radius approximately 1.4–1.7µm [48]). Especially
during the latter part of the Martian year, winds faster than 30 m/s [49] can raise large
amounts of dust, leading to a higher optical depth. The effects that arise from the presence
of an atmosphere are addressed by embedding the reflectance model into an atmospheric
model. The atmospheric model, which serves the purpose of accurate surface estimation,
must be physically plausible and accurate, while staying at a manageable level of com-
plexity. These requirements can be balanced by making a set of assumptions, which can
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roughly be grouped into either arising from the geometry of the atmospheric model or
from the physical effects that govern the interaction between light and the atmosphere.

The Martian atmosphere can be modeled as a horizontally stratified layer on top
of a flat planetary surface. The geometrical constraints for our atmospheric model are
accompanied with three simplifying assumptions. (1) Because the region of interest is rather
small compared to its distance to the orbiter and to the sun, we omit small angular changes
and assume constant orbiter zenith angles and constant solar zenith angles. (2) Further, the
topographical changes within the region of interest are small compared to the thickness of
the atmosphere, which allows us to neglect them as well. (3) Unlike Earth, Mars usually
does not exhibit strong weather changes on local scales and hence we can assume constant
atmospheric parameters for our region of interest. If cases arise in which local weather
events are present or very strong topographic changes occur, they may be addressed
individually by dividing the region of interest into smaller segments. A sketch of the
atmospheric slab model can be found in Figure 1.

Figure 1. Scheme of the atmospheric model. Left: geometric definitions. Right: atmospheric effects.

The total radiation that arrives at the image sensor is, in principle, a superposition
of reflected and scattered radiation and thermally emitted radiation. Because the spectral
ranges of CTX (500–700 nm [37]) and HiRISE (400–1000 nm, more specifically, 550–850 nm
for the red channel [36], exclusively used in this work) imagery are in the visible region,
thermal contributions in the infrared range are not relevant. The reflected and scattered
light of a planet Isensor which arrives at the sensor is commonly modeled [50] as the
superposition of three contributing processes, i.e., directly reflected light Idirect, reflected
skylight Isky and path-scattered light Ipath

Isensor = Idirect + Isky + Ipath. (14)

The processes that govern the contributions are sketched in Figure 1 (right) and are
outlined in the following paragraphs.

Directly Reflected

The Lambert–Beer law [51,52] states that the incoming light JTOA, which travels along
a path S through the atmosphere with extinction E(s), is attenuated exponentially. If
the optical depth τ of the atmosphere is defined as the line integral of the extinction E
evaluated along a line N normal to the surface, we need to divide by the cosine of the solar
zenith angle µs0 to project it to the path of oblique illumination S. The top-of-atmosphere
irradiance is denoted by JTOA and the irradiance that reaches the Martian surface JGND is
given by

JGND = JTOAe−
∫

S E(s)ds = JTOAe−
∫

N E(z)dz
µs0 = JTOAe−

τ
µs0 . (15)
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The radiance JGND is reflected by the Martian surface and travels back to the orbiter’s
image sensor along the line V under the orbiter zenith angle θse. The cosine of this angle is
denoted as µs. En route, the light is attenuated a second time, such that Idirect becomes

Idirect = JTOAe−τ
(

1
µs0

+ 1
µs

)
r(µ0, µ, g). (16)

Skylight

Parts of the incoming radiance JTOA are scattered by the atmosphere and act as a
diffuse source of illumination, termed skylight. The skylight JTOAζ illuminates the Martian
surface diffusely and is reflected into the direction of the sensor. This process can be directly
modeled by employing the hemispherical-directional reflectance rhd, which links diffuse
illumination to a collimated detector:

Isky = JTOAζrhd(θi, θe, g)e−
τ

µs . (17)

The factor ζ describes the fraction of light that is actually scattered by the atmosphere to
serve as diffuse skylight. The factor is obtained empirically in the parameter estimation step
of our method. Following Nicodemus [53] and Hapke [43], the hemispherical-directional
reflectance can be obtained by integrating the bi-directional reflectance r over the upper
half sphere:

rhd(θe) =
∫ π/2

θe

∫ π/2

φ
r(θi, θe, g)µ sin(θi)dφdθi. (18)

The bi-directional reflectance r can be implemented by Hapke’s model (Equation (1)).
It is feasible to assume that the narrow peaks of the opposition effects have a neglectable
contribution to the whole integral over the upper half sphere. Therefore, we can set BSH = 1
and BCB = 1 and arrive at a simpler formulation of Hapke’s model. The integral then
evaluates to

rhd(µ) =1− γH(µ) +
∞

∑
n=1

bn{Pn(µ) + An[H(µ)− 1]}

×
{

w
2

bn/2c
∑
k=0

(−1)k (2n− 2k)!
(n− k)!(n− 2k)!k!2n

·
[

µn−2k+1((log(µ)− log(µ + 1)) · (−1)n−2k)

+
n−2k

∑
j=0

(−µ)j

n− 2k + 1− j

]

+ An

[
1

H(µ)
− γ

]
− An

w
2

[
1− µ

(
ln

1 + µ

µ

)]}
.

(19)

Path-Scattered

Finally, some parts of the light are scattered by the atmosphere into the direction of the
sensor due to “Rayleigh scattering and aerosol and particulate Mie scattering and [it] is reasonably
assumed to be constant over the entire scene” [50]. Thus, we state

Ipath = χJTOA. (20)



J. Imaging 2022, 8, 158 9 of 43

2.2.3. Full Model and Parameter Estimation

Summarizing the components (Equations (16), (17) and (20)) yields the full atmo-
spheric model:

rM =
Isensor

JTOA

=
(

e−
τ

µs0 rd(θi, θe, g, w) + ζrhd(θi, θe, g, w)
)

e−
τ

µs + χ.
(21)

The full reflectance model rM depends on 16 parameters summarized in Table 1,
which can be grouped into three distinct sets, i.e., geometric, atmospheric and material
parameters. To accurately perform SfS, it is crucial to correctly obtain the reflectance
parameters for a given scene and avoid interdependencies between parameters. The
parameter determination is done in three ways. One set of parameters is given by a priori
knowledge and, therefore does not need to be estimated. The second set of parameters
is determined using a one-shot estimation based on the initial DEM and the image (see
Section 2.2.4 for details). These are the atmospheric parameters in particular. The remaining
geometric and material parameters are iteratively updated throughout the SfS method.

Table 1. All physical and geometric parameters of the reflectance model and atmospheric model. The
shadow hiding opposition effect and the coherent backscatter opposition effect are abbreviated as
SHOE and CBOE, respectively.

Group Parameter Description Method Resolution Values

A
Priori

O
ne-Shot

Iterative

C
onstant

Pixelw
ise

Fixed

R
ange

µ0s Cosine of sun zenith
µs Cosine of orbiter zenith

Geometric θi Incidence angle
θe Emission angle
g Phase angle

w Single-scattering albedo 0.35 ≤ w ≤ 0.95
b Backscattering p(g) 0.12
c Asymmetry p(g) 0.6

Material BS0 SHOE strength 3.1
hs SHOE shape 0.11

BC0 CBOE strength 0
hc CBOE shape 0
θ Average roughness 0◦

τ Optical depth 0.1 ≤ τ ≤ 3.0
Atmospheric ζ contribution rhd 0 ≤ ζ ≤∼ 0.2

χ Background illum. 0 ≤ χ ≤∼ 0.02

Geometric

The geometric parameters µs0 and µs describe the cosine of the sun zenith angle and
the orbiter’s zenith angle. Given the small angle approximation, they can be assumed to be
constant over the entire image and are inferred from the ancillary data of the CTX or HiRISE
imagery. The geometric parameters µ, µ0 and g are derived from the illumination vector,
the observation vector and the normal vector of a pixel of the DEM. All three parameters
require a DEM, but the parameters are also the input for the reflectance model, which is
actually used to estimate the DEM. Due to this coupling, the geometric parameters µ, µ0
and g, as well as the albedo w, are estimated during the iterative shape and albedo from
shading procedure (Section 2.3).



J. Imaging 2022, 8, 158 10 of 43

Material

The single-scattering albedo w is the most important material parameter and de-
scribes the ratio of reflected and incoming light that interacts with a single particle. It
is generally assumed that the albedo varies locally, and hence it is estimated pixel-wise
within the iterative shape and albedo from shading procedure. The initial albedo w0 is
assumed to be constant over the entire image and estimated once before the SfS proce-
dure. Johnson et al. [54] retrieved Hapke’s single-scattering albedo w for different surface
materials from pancam measurements of the Opportunity rover. In the red wavelength
range for the CTX camera (500–700 nm) and the HiRISE camera (550–850 nm), the albedo
is in the interval 0.35 ≤ w ≤ 0.85. Laboratory measurements of Martian dust analogs
(HWMK919) even yield albedos of up to w = 0.95 in the crucial wavelength range [55].
Thus, physically plausible albedo values on Mars are somewhere in the broad interval of
0.35 ≤ w ≤ 0.95. The phase function p(g) describes the phase-angle dependent scattering
behavior of particles and can be approximated by the double-lobed Henyey–Greenstein
function. This function depends on the backscattering parameter b and the asymmetry
parameter c, which are related by the so-called hockeystick relation [56]. The parameters
b and c are located on this curve depending on the material. However, as done in pre-
vious work (e.g., [1]), there is a working assumption to equip the phase function with
constant parameters. For the Moon, we used globally averaged b = 0.21 and c = 0.7
from Warell [57]. For Mars, Fernando et al. [58] set b = 0.3 and 0.6 ≤ c ≤ 1.0 for various
materials observed by the pancam of Opportunity and Spirit. Johnson et al. [54] found
slightly smaller values: c ≈ 0.5. A globally averaged phase function based on CRISM
and OMEGA observations was determined by Vincendon [59], who found b = 0.12 and
c = 0.6. Given these data, we set c = 0.6 and adopt b = 0.12. Fernando et al. [58] also
determined the roughness for various Martian materials, as seen by Spirit’s pancam. The
unweighted average roughness of these materials is θ = 14.4◦. Vincendon [59] derived a
global roughness of θ = 17◦. For this study, we omit the roughness to be able to compare
the model with and without atmospheric compensation, because the roughness is not
considered in the hemispherical-directional reflectance.

Atmospheric

The optical depth τ and the weights ζ for the diffuse illumination and χ for the path
scattered radiance are assumed to be constant over the entire image and the estimation is
performed once before the SfS algorithm is carried out. The optical depth of the Martian
atmosphere undergoes seasonal variations and is usually in the range of 0.3 ≤ τ ≤ 0.7 [60].
The pancam of Opportunity rover reported values in the range of 0.43 ≤ τ ≤ 0.53 at
its exploration site [60] and the 880 nm channel of the Spirit rover camera encountered
values around τ = 0.3 [61] for roughly a quarter of the Martian year. During the dust
storm season later in the year, the optical depth rises well above τ ≥ 1 and may reach
levels up to τ ≥ 3 [61], such that the atmosphere becomes opaque. The region of interest
investigated in this work is at a higher latitude than the rovers, and the optical depth
is usually lower compared to the equator [33]. For a reasonable reconstruction, we set
0.1 ≤ τ ≤ 3 as boundaries. The weight ζ is approximately the relative importance of the
hemispherical reflected light compared to the directly reflected radiance. We do not expect
the hemispherical reflected light to be stronger than 20 % of the directly reflected light.
Consequently, we set ζ to be between 0 and 0.2. In contrast to ζ, χ is an additive term.
In the case of a global dust storm, almost all received radiance can be attributed to path
scattered radiance—the surface is invisible. In most cases, however, it should only be a
minor factor compared to the total radiance, which is in the order of 3× 10−2 to 6× 10−2.
Therefore, we expect χ to be smaller than 2× 10−2.
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2.2.4. One-Shot Parameter Estimation

The atmospheric parameters and the initial mean albedo w0 are assumed to be constant
over the scene and are estimated once before the SfS method and are not updated in the
SfS scheme. Then, the parameters are adjusted such that the rendered image matches the
measured I/F data from the CTX or HiRISE instrument. These atmospheric parameters
that best reconstruct the image data are used throughout the SfS. The resulting albedo
serves as a global initialization, which is then refined locally within the SfS algorithm.
Some challenges were encountered when devising a scheme for parameter retrieval and, as
follows, the solutions to these challenges form the final scheme:

Firstly, pixel-locking is a stereo artifact that yields stair-like structures at slopes, e.g.,
at crater walls. Consequently, the gradient of these areas oscillates between a value that
is either too steep or too flat compared to the real slope. The surface reflectance model
depends on the surface inclination towards the sun, which is derived from the gradients of
the DEM. If the reflectance takes oscillating gradients, it predicts an oscillating reflectance,
which is not observed on the planet. To mitigate this effect, a Gaussian filter with a standard
deviation of 2 is applied to the initial DEM in MATLAB ® such that the stairs are smoothed
out and the gradient becomes oscillation-free.

Secondly, the problem is ill-posed. Changes in the observed I/F value can originate
from atmospheric effects, albedo changes or changes in the surface slope. For example,
choosing a lower albedo or higher optical depth can darken the overall scene. The model
relies on the assumption that the scene is described by constant atmospheric parameters
and that the albedo changes are of lower spatial frequency. Most of the variations in
brightness are explained by the shape of the surface. To disentangle these effects, it is best
to use many different data points to cover the variations in the model. This is achieved by
sampling areas with significant slope variations. Nonetheless, albedo changes can account
for a change in I/F. To improve the parameter retrieval, it is best to sample areas with
nearly constant albedo.

This also means that the parameters cannot be obtained entirely automatically. Experi-
ence and prior knowledge about the formation and the atmospheric conditions of the scene
at time of acquisition are necessary. Physically reasonable boundaries for the parameters
need to be chosen to constrain the optimization procedure. To address the given challenges,
the following scheme for parameter retrieval is devised:

(1) The initial stereo DEM is filtered with a Gaussian filter to suppress pixel-locking;
(2) An I/F image is rendered from the smoothed, downsampled DEM using the com-

bined atmospheric and reflectance model;
(3) Training profiles are sampled, which should:

(a) not cross severe stereo artefacts such as spikes and holes,
(b) cover enough variations of slopes (e.g., shadows, as well as bright facets

oriented towards the sun),
(c) have a constant albedo. This is seen if the image has brightness variations

which are not correlated with slope variations;

(4) A Bayesian optimization algorithm in MATLAB ® (bayesopt) is used to impose con-
straints on the parameters and to avoid terminating in a local minimum (e.g., [62–64]).
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2.3. Shape from Shading

SfS uses the shading of an object to infer its shape. It is commonly formulated as an
optimization problem, but using one 2D image to estimate a 3D shape is essentially ill-
posed (e.g., [25,26]). Including information from a lower resolution DEM can help constrain
the procedure (e.g., [27]). The model includes three regularization terms [1], namely, the
integrability error and the deviation of absolute heights [27] and gradients of the DEM
from the initial DEM compared at a lower frequency. Choosing appropriate weights for
these regularization terms is essential for the procedure to converge. The parameters are
listed in Table 2. The values of τS f S and δ are chosen such that the weighted errors are of a
similar order of magnitude as the intensity error. The weight for the integrability error is
chosen such that it is the smallest value possible without the procedure to diverge. In this
way, most details are reconstructed, and the resulting surface does not become too smooth.
The technique is described by Grumpe and Wöhler [1] and Grumpe et al. [8]. A summary
can be found in Appendix A.

Table 2. Parameters for the regularization terms of the Shape from Shading (SfS) scheme.

SfS Parameter Regularization Term Value

γ Integrability Error Chosen individually
τS f S Absolute Heights Error 1× 10−2

δ Gradients Error 1× 10−2

σ Width of the Gaussian low pass 10 pix

2.4. Full Framework

The complete procedure is summarized in Figure 2. The initial data product from
the CTX or HiRISE image pair is calibrated using ISIS3 ((1) in Figure 2). The images are
calibrated to spectral radiance and both images of a pair are projected to the same simple-
cylindrical map projection. With ISIS3, the orbiter and sun position can be retrieved with the
campt command. These meta-data are used to calculate the vectors pointing to the orbiter
(~v) and to the sun (~s) for each pixel. The radiance images are then used to generate the
stereo DEM using the Ames stereo pipeline ((2) in Figure 2). Based on the low-pass filtered
stereo DEM and the calibrated images, the atmospheric parameters (τ, ζ, χ) are estimated
with Bayesian optimization ((3) in Figure 2). One ISIS3 calibrated radiance image and the
initial DEM are reduced to a Laplacian pyramid representation. In this study, the procedure
starts at the third pyramid level, which corresponds to 1/8th of the full resolution. In the
next iteration, the resulting SfS DEM from the 3rd pyramid level is enlarged to 1/4th of the
full resolution and is used as the initial DEM. The low frequency component of the albedo
(Gaussian filter width σ) is estimated using the combined atmospheric and reflectance
model ((4) in Figure 2) based on the surface gradients and the illumination and viewing
conditions. The resulting albedo and the previously calculated atmospheric parameters
are then used for the reflectance modeling in the SfS framework of Grumpe et al. [8] ((5) in
Figure 2). The regularization constraints have to be weighted with hand chosen parameters.
Depending on the choice of these regularization parameters the SfS algorithm converges
faster or slower. If the regularization parameters are chosen poorly or the radiative transfer
model is inadequate, the SfS might diverge. After convergence, the resulting DEM is then
fed back into the procedure, serving as an initialization for the next higher pyramid level
representation, except for the refinement at full image resolution. After applying SfS at the
full resolution of the image, the refined DEM is the final result.
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Hapke model for parameter optimization 
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Is final pyramid level?
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Figure 2. The complete SfS scheme. Steps in the orange dashed box are executed for each pyramid
level at, e.g., 1/16, 1/8, 1/4, 1/2 and at full resolution.



J. Imaging 2022, 8, 158 14 of 43

3. Results and Discussion

We carried out the following experiments to investigate the influence of the atmo-
spheric conditions on the reconstruction procedure. We selected three CTX images for
different atmospheric conditions listed in Table 3 for a region in the northeast of Alba
Patera. The images were selected based on the corresponding dust optical depth (DOD)
according to Montabone et al. [33] and Montabone et al. [34] at the region of interest at the
time the images were taken. The DOD values from 9.3µm were converted to the visible
range by applying the factor 2.6 [33]. Therefore, these values can be seen as a general
reference value, but are associated with significant uncertainties (see also, [33,34]). The
images selected this way are displayed in Figure 3. It can be seen that the image for the
good atmospheric conditions is significantly brighter compared to the other two images
and shows higher contrast. This dichotomy is highlighted when plotting the histogram of
the radiance values of the different images (see Figure 4). Visually, the difference between
the CTX images K13_058554_2232_XN_43N103W and K13_058475_2232_XN_43N103W is
small, but in the histogram, it can be seen that the image K13_058475_2232_XN_43N103W
for τ = 0.94 corresponds to a higher optical depth, meaning it is generally darker and
exhibits lower contrast.

Table 3. CTX images used in this work. Dust Optical Depth (DOD) in the visible wave-
length range from Montabone et al. [33] and Montabone et al. [34]. Region of interest: latitude
42.850° N to 42.95° N and longitude −102.89° E to −102.75° E. G20_025904_2209_XN_40N102W
and G20_025970_2217_XN_41N102W were used for generating the initial stereo DEM.
G20_025904_2209_XN_40N102W was not used for the SfS generation.

Image ID MY SOL DOD Phase Angle

G20_025904_2209_XN_40N102W 31 141 0.267 47.25°
G20_025970_2217_XN_41N102W 31 146 0.160 31.45°
K13_058554_2232_XN_43N103W 34 611 0.615 80.85°
K13_058475_2232_XN_43N103W 34 607 0.945 66.94°

We limited the region of interest to the area where a HiRISE stereo pair is available
to obtain a DEM that can be considered a ground truth reference because of the higher
resolution of the HiRISE images. The stereo DEMs are calculated using the Ames stereo
pipeline [4]. The CTX stereo DEM that is used as an initialization at Laplacian pyramid
level 3 is filtered with a Gaussian low pass filter (σ = 2) to remove the strongest stereo
artifacts and is shown in Figure 5. We used the initial DEM at full resolution, but filtered,
to estimate the atmospheric parameters in Section 3.1. The HiRISE DEM is reduced to CTX
resolution. Nonetheless, stereo artifacts are clearly visible in the shaded and color-coded
DEM in Figure 5, especially at the slope in the west towards the lowest parts in the center
and the north. Therefore, we selected profiles in the southern and eastern parts of the
image, marked by the red lines in Figure 5. These profiles cover a variety of terrain, but
are not affected as much by stereo artifacts. An offset is individually fitted for all different
models and profiles to minimize the absolute deviation from the HiRISE ground truth.

The quality of the results is crucially dependent on the weight of the integrability
error (γ), as described in Section 2.3. Therefore, we will analyze two values of γ, which we
determine by using the heuristic described in Section 2.3 once for the AMSA model and
once for the model with atmospheric compensation.
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Figure 3. Images of the region of interest inside of the crater northeast of Alba Patera.
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Figure 4. Radiance distributions for the three selected CTX images. The higher the optical depth
becomes, the darker the images and the lower the contrast.
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Figure 5. Initial DEM based on CTX stereo image pair and ground truth DEM based on HiRISE stereo
image pair. Red lines indicate the profiles that will be investigated in this work.
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All images are co-registered to image G20_025970_2217_XN_41N102W, and for eval-
uation, all images are subsequently co-registered to the HiRISE stereo DEM. We used a
piece-wise linear transformation instead of a projective transformation because the dis-
parities due to the different perspectives seem to be smaller for the piece-wise linear
transformation. The selected profiles for evaluation are also not strongly affected by pos-
sible differences in perspective. However, these differences would strongly influence the
measured RMSE. Therefore, we limit our analysis to the selected profiles.

Thus, we define image G20_025970_2217_XN_41N102W to have good atmospheric
conditions (see Section 3.2), image K13_058554_2232_XN_43N103W to have medium atmo-
spheric conditions (see Section 3.3) and image K13_058475_2232_XN_43N103W to have bad
atmospheric conditions (see Section 3.4). In Section 3.1, the atmospheric parameters are
calculated once using the fixed optical depth from the maps of Montabone et al. [33] and
Montabone et al. [34] and once with freely adaptable optical depth.

3.1. Parameter Estimation

The radiative transfer modeling relies on the reflectance model of Hapke [43] and the
atmospheric model introduced in Section 2.2.2. For the atmospheric model (AMSA ATM),
three parameters must be determined that are assumed to be constant over the image. For
the three images, we carried out the procedure outlined in Section 2.2.4 using the profiles
shown in Figure A1 (Appendix B).

The first image G20_025970_2217_XN_41N102W represents excellent atmospheric
conditions and is thus considered a reference image for the parameter determination. We
use the value for τ from Montabone et al. [33] to determine the other parameters, namely
w0, ζ and χ. The so determined mean single-scattering albedo is then used for the other
images because the albedo should not change between the observations, and in order to
remove mathematical dependencies between the optical depth and the single-scattering
albedo. The resulting parameters are listed in Table 4. The fit between the model and the
measured radiance values is displayed in Figure 6. The red surface represents the model for
all possible normal vectors in the DEM. The x- and y-axes represent the x- and y-component
of the surface normal vectors, respectively. The orientation of the surface is dependent on
the illumination and viewing directions. However, all three images are taken under similar
viewing and illumination conditions because the Mars Reconnaissance Orbiter’s orbit is
sun-synchronous. The shape of the surface is defined by the parameters of the model. If τ,
ζ and χ are equal to zero, the modeled radiance values above 90° incidence angle (shadows)
becomes zero, making it equal to the Hapke model without atmospheric compensation.
The larger ζ and χ become, the brighter the shadows become. The higher τ becomes, the
darker the overall image becomes.

Table 4. Parameters obtained by Bayesian optimization in MATLAB ® based on sample profiles in
the three images with free and fixed values of τ. The fixed values are taken from Montabone et al. [33]
and Montabone et al. [34]. For G20_025970_2217_XN_41N102W, τ is fixed and all other parameters
are free. The resulting mean albedo w0 from that image is 0.81, and is consequently used as a fixed
mean albedo for the other images.

Product ID w τ ζ χ RMSE

G20_025970_2217_XN_41N102W (τ fixed) 0.81 0.16 0.00198 0.0043 0.0024
K13_058554_2232_XN_43N103W (τ free) 0.81 0.49 0.09983 0.01187 0.00084
K13_058554_2232_XN_43N103W (τ fixed) 0.81 0.61 0.099 0.0121 0.00062
K13_058475_2232_XN_43N103W (τ free) 0.81 0.59 0.099 0.0114 0.00079
K13_058475_2232_XN_43N103W (τ fixed) 0.81 0.94 0.1159 0.0199 0.00106
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Figure 6. The estimated best fit model with atmospheric parameters is displayed in red and the
measured I/F values for the normal vectors based on the initial DEM are represented by the black dots.
The x-axis represents the x-component of the normalized normal vector and the y-axis represents the
y-component of the normalized normal vector based on the initial DEM. Line patterns in the black
point cloud are the result of stereo artifacts in the initial DEM.

We reduced the 3D representation to a 2D representation for the other two images.
Because of the observation geometry of the scene, the main variation of the model is along
the x-component of the surface normal vector (nx). Therefore, we plot I/F dependent on nx,
as seen in Figure 7. Because there is some dependence on y, for the 2D representation, we
omit all measured values for which the surface normal vector has an inclination of above 1°
and below −1° in y-direction. Furthermore, we plot the model for +1° and −1° inclination
in the y-direction as the dashed lines.

The parameter values for the second image K13_058554_2232_XN_43N103W with
medium atmospheric conditions are calculated once with a fixed value of τ = 0.61 and
once with a free optical depth. The respective best fit values for the parameters are listed
in Table 4, and the modeled and measured radiance values as described in the previous
paragraph are displayed in Figure 7. Because the overall brightness is lower in these images,
the total RMSE is also generally smaller. Figure 7 shows that the two models are very
similar, but for τ = 0.61, the contrast is even further reduced compared to the free estimate
of 0.49. Similarly, for the image K13_058475_2232_XN_43N103W, the estimated optical
depth of 0.59 is smaller compared to the parameter from Montabone et al. [34] (τ = 0.94).
The quality of the fit for fixed τ appears to be inferior because the model becomes very flat.
This is also visible in the RMSE of 0.00106 compared to the 0.00079 for the optimization
with free τ (see Table 4).
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Figure 7. 2D representations of the atmospheric model for the different parameters for the images
K13_058554_2232_XN_43N103W and K13_058475_2232_XN_43N103W. The plots correspond to the
planar intersection of the 3D representation (similar to Figure 6) and are created by omitting all points
with a normal vector inclination of above 1° and below −1° in y-direction. The red line represents the
model for ny = 0.

3.2. Good Atmospheric Conditions

For the first image G20_025970_2217_XN_41N102W, taken at a time with a low optical
depth, the models with atmospheric compensation and the simple AMSA model are very
similar, as can be seen in Figure 6, i.e., the shadows are estimated to be almost zero for the
AMSA ATM model as well. The resulting DEMs for the same γ of 1× 10−3 are shown in
Figure 8. Qualitatively, no difference between the two color-coded DEMs can be observed.
The shading with a fixed albedo overlaid on the color-coded DEM looks sharp and shows
the small features that are also visible in the image. The visible quality of the DEM arguably
exceeds the HiRISE stereo DEM, where stereo artifacts still pose a problem even when
reduced to CTX resolution.
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Figure 8. Results for image G20_025970_2217_XN_41N102W (a) without and (b) with atmospheric
compensation. Here, no difference between the two DEMs is visible in the colorcoded shaded DEM.

When investigating the profiles in Figures 9 and 10 for heights and slopes, respectively,
both are almost identical. Compared to the HiRISE ground truth, a similar level of detail is
visible in the profiles, especially highlighted by the slopes. Some slopes, however, seem to
be exaggerated by the SfS procedure. There appears to be a mismatch between the absolute
heights of the ground truth and the initial DEM in column 1200. This mismatch is also
visible in the absolute heights of the SfS results. The RMSE values are similar between the
atmospheric and simple AMSA model (see Table 5), but the model with an atmospheric
term consistently performs slightly better.
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Figure 9. Resulting absolute heights compared for the two profiles investigated for image
G20_025970_2217_XN_41N102W.

Table 5. Comparison of the Root Mean Square Errors (RMSEs) for the examined lines in the DEMs
based on image G20_025970_2217_XN_41N102W. The HiRISE DEM is the reference DEM to which
the other DEMs are compared to. The initial DEM is the CTX stereo DEM, which is refined with the
AMSA or AMSA ATM model.

Row/Column Model Optical Depth γ RMSE Heights RMSE Slopes

Row 820
Initial - - 2.704 2.111
AMSA - 1× 10−3 3.563 1.947

AMSA ATM 0.16 1× 10−3 3.273 1.934

Column 1200
Initial - - 12.430 2.568
AMSA - 1× 10−3 12.230 1.819

AMSA ATM 0.16 1× 10−3 12.184 1.787

3.3. Medium Atmospheric Conditions

The second image represents medium atmospheric conditions. According to the maps
of Montabone et al. [34], the optical depth corresponds to τ = 0.61. We applied SfS for
all combinations of γ = 3× 10−3 or γ = 3× 10−4 and for the model with atmospheric
compensation τ = 0.61 or τ = 0.49. The value γ = 3× 10−3 was determined by selecting
the smallest value for which the AMSA model did not diverge and γ = 3× 10−4, similarly,
for the AMSA ATM model. The RMSE values for the examined profiles for all combinations
are listed in Table 6.

For γ = 3× 10−4, the simple AMSA model diverges almost entirely, such that the
changes are discarded and the previous level Laplacian pyramid representation is carried
over to the next higher pyramid level. Therefore, the error of the AMSA DEM is almost
identical to the error of the initial DEM. Otherwise, both the model with an atmospheric
compensation term and the simple AMSA model did not improve the absolute heights.



J. Imaging 2022, 8, 158 22 of 43

The slopes improve for the model with an atmosphere for both values of γ in the case of
column 1200, and only for γ = 3× 10−4 in the case of row 820. For this image, the optical
depth of 0.61 produces consistently better results compared to τ = 0.49.
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Figure 10. Resulting slopes compared for the two profiles investigated for image
G20_025970_2217_XN_41N102W.

The resulting color-coded DEMs for γ = 3× 10−3 and the fixed τ = 0.61 are displayed
in Figure 11. The AMSA DEM appears to be blurred compared to the initial DEM. Addi-
tionally, some artifacts are visible in the top left. Small details are visible, but the overall
shape of the DEM seems to be distorted. For the AMSA ATM DEM created using the
atmospherically compensated reflectance model, small details are generally visible. Some
details are less pronounced compared to the good atmospheric conditions, e.g., the small
crater in the western rim of the central basin. The DEMs for the AMSA ATM model with
γ = 3× 10−4 appear to be sharper in general (see Figure A7).

The profiles of the absolute heights (Figure 12) show that the AMSA DEM on a
large scale has been flattened. According to the slopes (Figure 13), small details are still
reconstructed, but are less pronounced. In contrast, the atmospheric model stays close to
the initial DEM and small details are reconstructed. However, the small crater around pixel
1150 in row 820 is not reconstructed, and the large channel around pixel 1300 is not as deep
as expected by the HiRISE ground truth. The slope at the eastern edge of the image is also
too flat. Otherwise, a similar level of detail as the HiRISE ground truth can be achieved, as
illustrated by the slopes. In column 1200, the main features are all represented in the SfS
with atmospheric correction DEM.
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Figure 11. Results for image K13_058554_2232_XN_43N103W (a) without and (b) with atmospheric
compensation. The results for γ = 3× 10−3 and, in the case of the SfS with atmospheric compensation,
τ = 0.61 are shown.

Table 6. Comparison of the Root Mean Square Errors (RMSEs) for the examined lines in the DEMs
based on image K13_058554_2232_XN_43N103W. γ = 3× 10−3 is the best value for the AMSA model
and γ = 3× 10−4 is the best value for the AMSA ATM model determined by the heuristic described
in Section 2.3.

Row/Column Model Optical Depth γ RMSE Heights RMSE Slopes

Row 820

Initial - - 2.704 2.111
AMSA - 3× 10−3 5.370 2.499
AMSA - 3× 10−4 2.668 2.144

AMSA ATM 0.49 3× 10−3 3.978 2.349
AMSA ATM 0.61 3× 10−3 3.606 2.317
AMSA ATM 0.49 3× 10−4 4.229 2.107
AMSA ATM 0.61 3× 10−4 4.009 2.094

Column 1200

Initial - - 12.430 2.568
AMSA - 3× 10−3 13.308 3.084
AMSA - 3× 10−4 12.551 2.616

AMSA ATM 0.49 3× 10−3 13.337 2.508
AMSA ATM 0.61 3× 10−3 13.227 2.429
AMSA ATM 0.49 3× 10−4 13.088 2.269
AMSA ATM 0.61 3× 10−4 13.096 2.171
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Figure 12. Resulting absolute heights compared for the two profiles investigated for image
K13_058554_2232_XN_43N103W. The comparison is between the results for γ = 3 × 10−3 and
the fixed optical depth of τ = 0.61.
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Figure 13. Resulting slopes compared for the two profiles investigated for image
K13_058554_2232_XN_43N103W (γ = 3× 10−3 and τ = 0.61).
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3.4. Bad Atmospheric Conditions

Generally, the results for the bad atmospheric conditions are comparable to the pre-
vious image. The detailed results are listed in Table 7. Similar to the previous image, the
AMSA model did diverge for γ = 3× 10−4, and for γ = 3× 10−3, the DEM has become
too flat. For the model with an atmospheric correction, the errors are generally smaller for
τ = 0.59 compared to the fixed value of τ = 0.94. This is in contrast to the previous image,
where the fixed optical depth produced better results.

Figure 14 shows the DEMs for γ = 3× 10−4 and τ = 0.59. The AMSA DEM looks like
the initial DEM because it diverged, and the initial DEM was kept. Visually, the AMSA
ATM DEM looks slightly sharper than the DEM with γ = 3× 10−3 for the previous image.
Small details are recovered.

When investigating the absolute height profiles in Figure 15, it can be seen that some
of the features are exaggerated, but the small crater, the channel and the slope in the east
are again slightly too flat. Nonetheless, even for these poor conditions, a high level of detail
can be reconstructed. The slopes for the profile in column 1200 (see Figure 16) are generally
accurate for the atmospherically compensated SfS. Furthermore, the slopes in row 820 are
accurate and detailed except for the high slopes in the areas mentioned above.
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Figure 14. Results for image K13_058475_2232_XN_43N103W (a) without and (b) with atmospheric
compensation. The results for γ = 3× 10−4 and, in the case of atmospheric compensation, τ = 0.59
are displayed.
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Table 7. Comparison of the Root Mean Square Errors (RMSEs) for the examined lines in the DEMs
based on image K13_058475_2232_XN_43N103W. γ = 3× 10−3 is the best value for the AMSA model
and γ = 3× 10−4 is the best value for the AMSA ATM model determined by the heuristic described
in Section 2.3.

Row/Column Model Optical Depth γ RMSE Heights RMSE Slopes

Row 820

Initial - - 2.704 2.111
AMSA - 3× 10−3 6.798 2.533
AMSA - 3× 10−4 2.659 2.143

AMSA ATM 0.59 3× 10−3 2.882 2.182
AMSA ATM 0.94 3× 10−3 2.709 2.129
AMSA ATM 0.59 3× 10−4 3.692 2.040
AMSA ATM 0.94 3× 10−4 4.893 2.523

Column 1200

Initial - - 12.430 2.568
AMSA - 3× 10−3 13.201 3.153
AMSA - 3× 10−4 12.561 2.619

AMSA ATM 0.59 3× 10−3 12.774 2.356
AMSA ATM 0.94 3× 10−3 12.641 2.454
AMSA ATM 0.59 3× 10−4 13.068 2.075
AMSA ATM 0.94 3× 10−4 13.640 2.449
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Figure 15. Resulting slopes compared for the two profiles investigated for image
K13_058475_2232_XN_43N103W (γ = 3× 10−4 and τ = 0.59).



J. Imaging 2022, 8, 158 27 of 43

100 200 300 400 500 600 700 800 900 1 000 1 100

0

5

10

15

pixel position

sl
op

e
[d

eg
re

e]

column 1200

400 600 800 1 000 1 200 1 400 1 600

0

5

10

15

pixel position

sl
op

e
[d

eg
re

e]

row 820

AMSA AMSA ATM ground truth HiRISE initial

Figure 16. Resulting slopes compared for the two profiles investigated for image
K13_058475_2232_XN_43N103W(γ = 3× 10−4 and τ = 0.59).

3.5. Discussion

Under good atmospheric conditions, i.e., small values of τ, the atmospheric correction
model does not have a perceivable effect. This behavior is illustrated by the fact that the
DEMs constructed with the AMSA and the AMSA ATM model, respectively, are largely
identical for the first image.

There is a discrepancy between the HiRISE stereo and the CTX stereo DEM, which
served as an initialization and constraint for our SfS scheme. Because these low frequency
differences cannot be corrected by the SfS, this effect propagates to the results as well. Both
DEMs are created with the same method using the Ames stereo pipeline, but are derived
from different data sets. This mismatch could be due to several reasons. Kirk et al. [65]
evaluated the differences of stereo DEMs based on HiRISE and CTX images and found
that vertical precision depends on the image noise as well as illumination and terrain
roughness for different image resolutions. We have thoroughly co-registered the DEMs,
but there might still be small differences that could contribute to the deviations of absolute
heights. Another factor that might influence the vertical accuracy of the stereo DEMs are
the SPICE-kernels and the map projection step in ISIS. For example, small inaccuracies in
the positioning of the camera can lead to systematically different height estimates.

The behavior of our DEM construction system changes for moderate atmospheric
conditions. The reconstruction algorithm using the AMSA model without atmospheric
correction does not converge. In contrast, the AMSA ATM model recovers a level of
topographic detail that is similar to the HiRISE ground truth DEM. We run the procedure
with a fixed τ taken from Montabone et al. [34] and estimate τ directly from the scene. The
estimated τ is slightly smaller compared to the value from Montabone et al. [34], but is
still consistent with medium atmospheric conditions. The quality of the resulting DEMs is
almost the same given the RMSEs and the visual inspection. This highlights the robustness
of the procedure against slight variations of the optical depth. Rather, the selection of γ
appears to have a larger impact on the level of detail recovered.
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Under bad atmospheric conditions with further increasing optical depth, the AMSA
model without atmospheric correction does not lead to a meaningful solution. Again, the
AMSA ATM model yields a DEM that still shows a remarkable level of detail given the
challenging atmospheric conditions. The optical depth estimated by the AMSA ATM model
(τ = 0.59) is smaller than the value of Montabone et al. [34] (τ = 0.94). However, the
optical depth directly estimated from the image data produces a measurably better DEM
for this image. In general, the AMSA ATM model can estimate the atmospheric parameters
directly from the image data without the need for external measurements.

These results have general implications for intensity-based Martian 3D-reconstruction.
A reconstruction procedure without explicit atmospheric modeling might be a viable
approximation for excellent atmospheric conditions, as the influence of the atmosphere
can largely be neglected. For increasing optical depth, atmospheric modeling is necessary.
We found that the atmospheric parameters can be directly estimated from the scene. Some
recent 3D-reconstruction approaches employ machine learning (ML), which is entirely data-
driven. Consequently, the ML model has to learn the entire relationship between image
intensity and heights (or slopes), which also encompasses atmospheric influence. Our
study implies that the ML practitioner should either limit the training and application to
images taken only under good atmospheric conditions, or aim for a dataset that adequately
captures imagery with various optical depths.

The proposed combined model of surface reflectance and atmosphere has proven to
be suitable for reconstructing the surface of Mars and bears several advantages compared
to earlier methods. The model parameters have a physical representation and can be
interpreted intuitively. Surface reflectance is modeled with the widely used and state-of-
the-art Hapke model [43], in contrast to simpler models such as Lambert or Oren–Nayar
(e.g., [13,14,16]) employed in earlier approaches. The single scattering albedo is not assumed
to be constant, but rather is updated throughout the SfS scheme accounting for local albedo
variations present on Mars. The atmospheric parameters can be estimated directly from the
image data instead of using complicated retrieval algorithms relying on external data sets.

4. Conclusions

In this study, we describe a framework for the Shape from Shading based construction
of DEMs of the Martian surface using CTX images. Our method is based on the Hapke
AMSA model [43], which is enhanced by a correction of atmospheric effects that takes
into account the optical depth of the atmosphere, the influence of surface illumination by
the bright sky and the path-scattered component leading to a largely uniform intensity
background (AMSA ATM model). The atmospheric parameters can be estimated from
the image data alone using Bayesian optimization without the need to refer to external
data sources. The optical depth values estimated by our method are mostly comparable
with those independently measured in Montabone et al. [33] and Montabone et al. [34].
For a clear, dust-free atmosphere, the difference between the DEMs constructed with the
AMSA ATM model and with the simple AMSA model is negligible. For a more dust-laden
atmosphere leading to moderate or bad atmospheric conditions, the reconstruction with
the AMSA model without atmospheric correction does not show a reasonable convergence
behavior, so no well-defined DEM can be obtained. In contrast, the AMSA ATM model
yields a high-resolution DEM, which shows a similar level of detail as the image for all
considered atmospheric conditions. Consequently, the developed AMSA ATM model
allows for the construction of high-resolution DEMs across a broad range of atmospheric
conditions on Mars.
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Appendix A

Here we briefly review the method given by Grumpe and Wöhler [1]. The normal
vector of a surface facet is defined as

n =
1√

p2 + q2 + 1

−p
−q
1

 (A1)

where p and q are the partial derivatives of the DEM z with respect to the x and y directions,
i.e., the rows and the columns of an image:

p =
∂z
∂x

and q =
∂z
∂y

. (A2)

The objective function can be formulated as a weighted sum of several error terms:

Etotal = EI + λEint + τaEabsolute + δEgradient. (A3)

Etotal primarily penalizes the deviation between modeled reflectance using the esti-
mated DEM and the reflectance image I captured by the orbiter:

EI =
1
2

∫
x

∫
y
(R(p, q)− I)2dxdy. (A4)

Further, the integrability of the estimated vector field is enforced by requesting

Eint =
1
2

∫
x

∫
y

(
∂z
∂x
− p

)2
+

(
∂z
∂y
− q
)2

dxdy. (A5)

The absolute error term

Eabsolute =
1
2

∫
x

∫
y
( fGauss(z)− fGauss(zDTM))2dxdy (A6)

elastically pins the DEM to the absolute heights given by a low-resolution constraint DEM.
Finally, the relative depth error term

Egradient =
1
2

∫
x

∫
y

(
flp(p)− flp

(
∂zDEM

∂x

))2

+

(
flp(q)− flp

(
∂zDEM

∂y

))2
dxdy

(A7)

imposes a further constraint that the low frequency component of the gradients of the
initial DEM align with the low frequency component of the estimated gradients.

To obtain the surface z, the error Etotal has to be minimized. This is done with an
iterative relaxation approach that means that, alternately, either the variables pn+1

u,v and
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qn+1
u,v are updated, assuming that the solution zn

u,v is known, or the solution zn+1
u,v is updated

given pn
u,v and qn

u,v. If zn
u,v is given at time step n, the terms EI, Eint, and Egradient are the

only ones that depend on p and q, which can be optimized by deriving the error terms and
solving for p and q:

p(n+1)
u,v =

∂z
∂x

∣∣∣(n)
u,v

− 1
γ

(
R
(

∂z
∂x
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∣∣∣(n)
u,v
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− Iu,v

)
∂R
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∣∣∣(n)
∂z
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∣∣(n)
u,v
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∂y

∣∣(n)
u,v
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δ

γ

(
gσgrad ◦ gσgrad ∗

(
∂z
∂x
− ∂zDEM

∂x

)) (A8)

q(n+1)
u,v =

∂z
∂y

∣∣∣(n)
u,v

− 1
γ

(
R
(

∂z
∂x

∣∣∣(n)
u,v

,
∂z
∂y

∣∣∣(n)
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(
∂z
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− ∂zDEM
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)) (A9)

If p and q are known at time step n, the terms Eint and Eabsolute depend on the variable
z. To find the optimal surface shape, calculus of variations must be employed, which yields
a polynomial

c2z2 + c1z + c0 = 0 (A10)

with

c0 =− τ̂( f−0(z)− fDTM(zDTM)) ·
h2

cxzh + h2
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cy

·
 zx
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(A11)
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c2 = −τ̂Fc

zx

(
Fr

2hl
− Fl

2hr

)
+ zy

(
Fu

2hd
− Fd

2hu

)
z2

x + z2
y

. (A13)

The polynomial has two roots. The root closer to the initial DEM gives the final result
for z.
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Appendix B

Figure A1. Profiles selected for the Bayesian optimization to determine the atmospheric parameters
and the mean albedo.
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Figure A2. Cont.
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Figure A2. Absolute heights for image K13_058554_2232_XN_43N103W (medium atmospheric
conditions) not displayed in the main text.
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Figure A3. Cont.
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Figure A3. Absolute heights for image K13_058475_2232_XN_43N103W (bad atmospheric conditions)
not displayed in the main text.
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Figure A4. Cont.
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Figure A4. Slopes for image K13_058554_2232_XN_43N103W (medium atmospheric conditions) not
displayed in the main text.
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Figure A5. Slopes for image K13_058475_2232_XN_43N103W (bad atmospheric conditions) not
displayed in the main text.
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Figure A6. Results for images K13_058554_2232_XN_43N103W and K13_058475_2232_XN_43N103W
for the simple AMSA model without atmospheric compensation.
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Figure A7. Color-coded and shaded DEMs created with the atmospherically compensated method
not displayed in the main text of the manuscript for image K13_058554_2232_XN_43N103W (medium
atmospheric conditions).
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Figure A8. Color-coded and shaded DEMs created with the atmospherically compensated method
not displayed in the main text of the manuscript for image K13_058475_2232_XN_43N103W (bad
atmospheric conditions).
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