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Abstract: The main purpose of this paper is the study of the correlations between Image Aesthetic
(IA) and Image Naturalness (IN) and the analysis of the influence of IA and IN on Image Quality (IQ)
in different contexts. The first contribution is a study about the potential relationships between IA
and IN. For that study, two sub-questions are considered. The first one is to validate the idea that IA
and IN are not correlated to each other. The second one is about the influence of IA and IN features on
Image Naturalness Assessment (INA) and Image Aesthetic Assessment (IAA), respectively. Secondly,
it is obvious that IQ is related to IA and IN, but the exact influence of IA and IN on IQ has not been
evaluated. Besides that, the context impact on those influences has not been clarified, so the second
contribution is to investigate the influence of IA and IN on IQ in different contexts. The results
obtained from rigorous experiments prove that although there are moderate and weak correlations
between IA and IN, they are still two different components of IQ. It also appears that viewers’ IQ
perception is affected by some contextual factors, and the influence of IA and IN on IQ depends on
the considered context.

Keywords: image quality; image aesthetic; image naturalness; human visual perception; image
quality assessment; image aesthetic assessment; image naturalness assessment; quality of experience

1. Introduction

In recent years, there have been more and more personal devices integrated with
digital cameras, such as smartphones, tablets, and laptops. It has led to a dramatic increase
in the number of photos taken day by day, so users’ storage tends to be filled very fast.
Therefore, evaluating photos to keep the best ones and remove the worst ones becomes
an essential need. This task is traditionally performed based on the human visual system.
Figure 1 shows an overview of image factors affecting human visual perception. Those
factors are categorized into two groups: image content and Image Quality (IQ). On one side,
image content obviously has a great influence on human visual perception. This group
contains three factors: “message inside”, “emotional inspiration” and “image originality”.
In Figure 1(1), the first photo is an example of “message inside” with a bird stuck in a
plastic bag. Although the content looks simple, it contains a hidden message related to the
environment, such as “let’s save animals”, “stop consuming plastic bags” or “our planet is
destroyed”. Regarding Figure 1(2), some people might not have any special feelings about
the photo, but the hug between the bride and her father could remind other people of their
family members or a personal memory. The value of the photo is “emotional inspiration”.
In Figure 1(3), a rare moment of a cloudy sky with light rays makes the photo different from
other photos of the same landscape. Although there is no hidden message or emotional
inspiration in this case, the originality makes the photo special.
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6. Image naturalness: Artifacts and color memory

Figure 1. Overview of image aspects having an influence on human visual perception.

On the other hand, image perception might be based on Image Quality (IQ), which is
not supposed to be related to image content. In this paper, we are focusing on IQ only. IQ, in
this study, is defined in an explicit way. It is generally based on three notions: intrinsic
properties, Image Aesthetic (IA—this work considers this notion related to visual aesthetic
only, other aspects related to image content are not considered in this study) and Image Nat-
uralness (IN). “Intrinsic properties” is a notion related to some technical aspects of photos,
such as resolution, color space, color depth and image format (see Figures 1(4) and 2). This
notion mostly refers to the properties of the image acquisition device, and it is not related
to any external factors induced by viewers’ experiences or contexts. In the past, intrinsic
properties were the main factor influencing IQ since acquisition device performances were
not so good (low resolution, optical or chromatic aberrations). However, this has been
reduced because of the improvement in the technology, so the role of intrinsic properties in
IQ is less and less significant. That is the reason why, in our study, we make the assumption
that intrinsic properties do not influence IQ on the image databases we are dealing with.

On the contrary, IA is the measure of how aesthetically a photo fulfills the observer’s
expectation based on photography rules and individual visual aesthetic perception (see
Figures 1(5) and 3a). This notion is related to what happens in a viewers’ mind when they
look at a photo.

On the side of IN, this notion is both related to artifacts induced by some image
processing algorithms and to an individual feeling [1] (see Figures 1(6) and 3b). Regarding
artifacts, IN is affected by strong visible clues detected by viewers’ eyes, so the unnatural-
ness feeling comes from annoying artifacts induced by camera sensors, image processing
algorithms (compressing, tone-mapping), image format or file transfer (see bottom right
photo in Figure 3b). In contrast, the feeling of naturalness and unnaturalness might also
come from the viewer’s experience and memory (see bottom left photo in Figure 3b). When
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viewing a photo, observers compare the scene in the photo to the reality retrieved from
their memory (what they have seen) to find differences and similarities, so the feelings are
not the same for all viewers. There is also a part of subjectivity in IN perception.

Figure 2. Examples of intrinsic properties. The first photo has a higher resolution than the others,
while the color depth of the third photo is shallower than those of the two first ones.

(a) (b)
Figure 3. (a) IA illustrations: examples of high aesthetic images are in the first row, while the second
row contains examples of low aesthetic images. (b) IN illustrations: examples of natural images are
in the first row, while the second row contains examples of unnatural images.

To sum up, this paper focuses on subjective aspects of IQ, including IA and IN. Intrinsic
properties are not supposed to influence IQ in our study. Although there are many studies
about IQ, IA and IN, the potential relationships between IA, IN and IQ are still an open
question. The main purpose of this study is to clarify the correlations between IA and
IN—two aspects of IQ—and to investigate the relationships between contextual factors
and the impact of IA and IN on IQ. Understanding those correlations could be a potential
base to simulate human visual perception and enhance IQ based on IA and IN. A ground
truth with both IA and IN data from subjective experiments does not exist, although many
studies of IA and IN have been performed over decades. Therefore, instead of using
subjective data, this work is approached computationally. IA and IN perception is modeled
based on a subjective ground truth of IA and IN separately. By using those simulated
models, IA and IN might be measured. The simulated data are then used to analyze the
correlations between IA and IN in relation to IQ.
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2. State of the Art
2.1. Image Quality

IQ can be approached from different angles. One common way is to implicitly define
IQ with regard to a given Image Quality Assessment (IQA) protocol: either Full Reference
Image Quality Assessment (FRIQA), No Reference Image Quality Assessment (NRIQA)
or reduced reference IQA. On the side of FRIQA, there are many purposes for image
transformation, such as image compression, tone-mapping, steganography and image en-
hancement. It is assumed that the chain of operations induces negative effects on the quality
of the transformed versions compared to the quality of the original version. Therefore, IQ
depends on the negative effects induced on the original photo. As a consequence, IQ could
be estimated as the similarity between the transformed image and the original image. In
other words, IQ is the measurement of how close the transformed versions and the original
ones are. In the former, the simplest metric based on signal processing theory is to compute
the differences of corresponding pixels between versions. Classical IQA methods are based
on distortions computed on pixel values, such as mean squared error, root mean squared
error and peak signal to noise ratio. Although it is a simple approach, the obtained results
are not really suitable for IQA because human perception is more complicated than the
way machines process signals. The computed difference does not always match with visual
perception. A more efficient approach is based on human visual system properties. The
approach is based on psychological and physical characteristics of the human visual system
to compute the visual quality of photos, such as luminance, contrast, structure, fidelity
criterion and similarity indexes [2–8].

IQ is not always estimated through the similarities between the transformed version
and the original version because original photos without any modifications are not always
the best versions. Although original images are not affected negatively by processing
methods, artifacts and distortions could still exist in those photos because of many factors,
such as camera sensors, camera settings, brightness conditions and motion. In the cases of
image restoration and image enhancement processes, the IQ of some transformed versions
could be better than that of the original one, so IQ, in this case, is based on the enhancement
of bad visibility [9]. IQ is also based on viewers’ preferences [10]. In some cases, an
appealing version could be preferred to a version that is more similar to the reference than
the appealing one. It appears that the most preferred version is not necessarily the closest
to the reference image.

On the side of NRIQA, IQ is, on the contrary, based on viewers’ background, including
preference, visual aesthetic perception, color memory and naturalness perception. A lot of
metrics have been presented and validated on results coming from subjective experiments
to estimate IQ in this context [11–23]. Ke et al. [11] define IQ based on abstract aesthetic
aspects such as composition, color and lighting to classify professional and snapshot photos.
Additionally, they consider simplicity, realism and photography technique as the three
main factors producing a high-quality image. Similarly, in [12,14,16], IQ is defined from the
perspective of visual aesthetics. According to photography rules, Tang et al. [16] propose
an NRIQA metric based on professionals’ views, including composition, lighting, color
arrangement, camera settings and topic emphasis. In another approach, Hosu et al. [21]
define IQ as a technical concept related to some types of degradations, such as over-
saturation, noise, aliasing, motion blur, wrong exposure, over-sharpening, color fringing
and JPEG artifacts. Using the same approach, IQ is based on visual distortions induced
by technical causes (noise, blur, JPEG compression) in [15]. Besides that, the IQ of tone-
mapped images are defined in a different way. Yaacoub et al. [18] consider tone-mapped
IQ as the balance between luminance contrast and naturalness. In [17], it is assumed that a
high-quality tone-mapped image maintains global information, details and naturalness, so
IQ, in this case, is described as the combination of luminance, structure and naturalness.
In another study, Jiang et al. [19] assume that the IQ of tone-mapped images could be
affected because of under exposure, over exposure and losses in Image Naturalness (IN)
and Image Aesthetic (IA). They described IQ by using three factors, including brightness in
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the brightest and darkest regions, IN and IA. Using a different approach, Leisti et al. [13]
define IQ based on low-level attributes related to physical aspects (sharpness, lightness,
graininess) and high-level attributes related to abstract aspects (individual feelings, viewers’
experiences, naturalness). In [23], Varga et al. pointed out that first digit distributions
based on metrics of high-quality images extracted from multiple domains match well with
Benford’s law. That study demonstrated that first digit distribution are quality-aware
features, and it is possible to achieve high performance in NRIQA with those features.
Based on a different approach, multiple global average pooling architectures were used for
IQA in [22]. Specifically, a deep model containing multiple inception blocks was attached
to average global pooling layers to extract features. Instead of taking patches from the
input image, the whole image was passed through a pre-trained model so the proposed
architecture could work with images of various resolutions.

Another IQA protocol mentioned here is reduced reference IQA. Only partial informa-
tion is provided about the reference image. Characteristics or features such as histogram,
color saliency map and sharpness map are extracted. In reduced reference IQA, reduced
references are somehow like human memory. A person sometimes feels that he/she has
seen the scene of a photo but without remembering all of the details. Several IQA met-
rics based on reduced reference have been introduced: in [24], the IQA metric is based
on a divisive normalization image representation coming from a Gaussian scale mixture
statistical model of image wavelet coefficients; in [25], the IQA metrics are based on a
linear relationship between full reference and reduced reference structural similarity index
measures; in [26], the IQA metric is based on an orientation selectivity mechanism for
visual content extraction; in [27], the IQA method is based on saliency maps and texture
similarity between high-resolution and low-resolution photos.

Generally, in either FRIQA or other IQA protocols, IQ refers to the measurement of
how photos satisfy viewers. The satisfaction of viewers mainly depends on visual aesthetic
perception and the feeling of how close photos and real scenes are. Therefore, it could be
seen that the two factors IA and IN play important roles in IQ.

2.2. Image Aesthetic

The questions of how a photo is captured as well as how a viewer enjoys and criticizes
the photo leads to the visual perception of aesthetics in photography, so a part of IA
perception is based on photographic rules. Many studies have been made to model IA.
In [28], IA is described based on rules of composition, depth of field, salient object, opposing
colors and natural illumination. In another study, Marchesottian et al. [29] introduced a
description of IA using a bag of visual word descriptors, Fisher vector and GIST descriptors.
Besides that, in [30], IA is evaluated based on the combination of simplicity, patterns of
harmony and rhythm, colorfulness, composition and sharpness. In a similar approach,
Aydin et al. [31] introduce an IA signature concept based on sharpness, clarity, tone, depth
and colorfulness features. However, not all aesthetic aspects are describable, so it does not
mean that following photography rules always produces a high aesthetic photo, and on
the contrary, a beautiful photo might not follow those rules. As a consequence, there is a
part of subjectivity in IA perception. A deep learning approach might be a good solution
to describe the subjective aspects. Various studies on IA using deep learning have been
proposed, such as the Image Aesthetic Assessment (IAA) model based on the combination
of a retrieval system and a deep Convolutional Neural Network (CNN) presented in [32],
the double-column deep CNN architecture using two parallel CNNs based on global and
local features proposed in [33], a CNN including 3 kinds of layers: transferred layers,
scene convolutional layers and fully connected layers, evaluating the IA of multi-scenes
in [34], the IAA model based on the deep learning technique, image classification and
image segmentation introduced in [35]. Moreover, Hii et al. [20] proposed a deep model
exploiting multiple inception blocks pooled by global average pooling layers. They also
integrated textual information with visual information to perform IQA. The experimental
results in that work demonstrated a good performance of the proposed architecture.
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2.3. Image Naturalness

Different definitions of IN have been introduced. In [36–38], IN is described as the
degree of correspondence between a photo displayed on a device and the memory of the
real-life scene. In [39], Cadik et al. introduce IN as the degree of correspondence between
a scene (seen directly) and the corresponding scene in photos based on some technical
criteria: brightness, contrast, color reproduction, reproduction of details, simulation of
glare, visual acuity and artifacts. In another study, Jiang et al. [19] define IN based on the
differences between photos taken with normal exposure and abnormal exposure, in which
unnatural photos are described as over or under exposed photos and natural photos are
considered as photos captured with normal exposure. In some studies, IN features have
been employed for IQA [17–19]. Moreover, in [1], IN is based on artifacts induced by some
image processing methods (such as halos, blur, lost details) and on the individual feeling
(memory, opinion, background).

It could be seen that many efforts to simulate human visual perception have been
made. Machines have been trained to understand and measure IQ like humans. In order to
understand more about IQ, IA and IN to simulate human visual perception, the correlations
between the two aspects of IQ: IA and IN, are studied in this work. Obviously, IA and IN
have been described in various computational ways in previous studies as presented above,
so a computational approach might be an acceptable choice to study IA and IN.

3. Potential Relationships between IA and IN

In order to answer the main purpose of this section, three sub-tasks are considered. The
first one is to estimate the correlation between IA and IN features. Secondly, the influence
of IA and IN features on Image Naturalness Assessment (INA) and IAA, respectively, is
measured. The last task is about the equivalence between high aesthetics and naturalness
on the one side and between low aesthetics and unnaturalness on the other side.

Although many IA and IN datasets have been introduced over decades, a dataset
with both IA and IN ground truths from subjective experiments does not exist. Therefore,
instead of using a dataset with both subjective IA and IN ground truths to evaluate the
relationships between IA and IN, an IA dataset and an IN dataset with subjective ground
truths are used, and the IN of the IA dataset and the IA of the IN dataset are computed by
an INA model and an IAA model, respectively.

In this research, an IA dataset coming from [35] and an IN dataset coming from [1]
are considered. On the one hand, the IA dataset contains 1200 high aesthetic images
and 1200 low aesthetic images coming from the CUHKPQ dataset [16]. Each photo of the
CUHKPQ dataset is evaluated by ten observers, and a photo is considered as “high aesthetic”
if at least eight of the ten viewers consider its aesthetic as “high” [16]. Similarly, a photo is
labeled as “low aesthetic” if at least eight of the ten viewers consider its aesthetic as “low”.
On the other hand, the IN dataset contains 355 natural photos and 515 unnatural photos,
each assessed by nine observers. A photo is labeled as “natural” if at least eight of the nine
viewers consider it as “natural” and, similarly, a photo is labeled as “unnatural” if it is
assessed as “unnatural” by at least eight of the nine observers [1].

Besides that, an IAA model based on the IA feature set learned from [35], and an INA
model based on the IN feature set coming from [1] are considered in this paper because of
their good performances. First, the IA feature set contains 1024 global features (features
learned from the whole image) learned by a deep CNN having a typical architecture with an
input layer, an output layer and five convolutional blocks. Specifically, two convolutional
layers and a pooling layer are placed in each block. There are 64 × 2, 128 × 2, 256 × 2,
512 × 2, 1024 × 2 kernels in the five blocks, respectively (two layers in each block). The last
layer contains two outputs corresponding to the two categories: high visual aesthetic image
and low visual aesthetic image. The model is trained on over 18,000 high and low visual
aesthetic photos coming from the CUHKPQ dataset [16], and the obtained accuracy is
quite impressive at 0.914. Secondly, the IN features are studied in [1]. Various models,
including Xception [40], NASNet [41], MobileNet [42], InceptionNet [43], VGG16 [44] and
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ResNet [45], pre-trained on over 14 million images of the ImageNet dataset for the task of
image classification, were considered in that work. The feature selection process described
in [46] is applied to select the most relevant features to the task of INA from the features
of each pre-trained model. Those models are then transferred to the new purpose of INA
by replacing the last layers (all the fully connected layers) of those models and re-training
those layers on the considered IN dataset for the INA task. After training and testing the
models using the nine reduced feature sets, the highest overall accuracy (0.865) and the
best loss (0.139) are obtained with the model using the features learned from the ResNet
extractor. In this case, there are no re-trained ResNet layers. The model without the last
layer (the fully connected layer) is considered the feature extractor for the proposed model.
Specifically, 425 learned features are selected from the 2048 ResNet features by applying
the Relief-based feature reduction algorithm [46]. The overall accuracy of the classification
is quite good at 0.865.

3.1. IA and IN Feature Correlation Analysis

In this work, two common correlation coefficients are employed to measure the correla-
tion between IA and IN features. The first one is the Pearson correlation coefficient [47]. It is
a measure of linear correlation between two sets of data. It is computed as the ratio between
the covariance of two variables and the product of their standard deviations. In other
words, the Pearson correlation draws a line of best fit through the data of two variables
and calculates the effect of change in one variable when the other variable changes. For
example, the positive correlation between a child’s age and height (in most cases, a child’s
height will keep increasing as his/her age increases), and the negative correlation between a
vehicle’s speed and traveling time (if a vehicle increases its speed, the time it takes to move
decreases, and vice versa). The second coefficient is the Spearman rank correlation [48].
The Spearman rank correlation between two variables is equal to the Pearson correlation
between the rank values of those two variables. Both coefficients range from −1 to 1, in
which values near 1 and −1 refer to a perfect correlation in which 1 means that if the value
of one variable increases, the value of the other variable increases too, while −1 means that
if the value of one variable increases, the value of the other variable decreases; 0 reflects no
correlation. For the sake of simplicity, the correlation absolute values only are considered.
They range from 0 to 1, and the higher absolute value refers to higher correlation.

To measure the correlation between the IA feature set and the IN feature set, each
feature of the two feature sets is computed on n images to form an n-dimensional vector.
The correlation cor[i, j] between the i-th IA feature and the j-th IN feature is computed as
the absolute value of the correlation between the two corresponding n-dimensional vectors.
The most correlated IN feature to the i-th IA feature is determined as the IN feature having
the highest correlation (maxCorIA

i ) to the IA feature as in (1), in which 425 is the number of
IN features. Similarly, the most correlated IA feature to the j-th IN feature is determined
as the IA feature having the highest correlation (maxCorIN

j ) to the IN feature as in (2), in
which 1024 is the number of IA features. Histograms with ten bins are built based on the
highest correlation of each feature computed in the IA dataset [35] and the IN dataset [1],
as in Figures 4 and 5.

maxCorIA
i =

425
max
j=1

(cor[i, j]) (1)

maxCorIN
j =

1024
max
i=1

(cor[i, j]) (2)
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Figure 4. Pearson correlation between IA features and IN features.

Figure 5. Spearman correlation between IA features and IN features.

Figure 4 shows the Pearson correlation between IA and IN features. Specifically, the
horizontal axis represents groups of correlation values, while the vertical axis shows the
proportion of features (in percentages). In the IA dataset, it appears that a small part of IA
features is highly correlated (the highest correlation of the features is higher than 0.5) to the
IN features (15.6%), while the majority of IA features are moderately correlated (the highest
correlation of the features ranges from 0.3 to 0.5) to the IN features (71%). Moreover, a
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minority of IA features (13.4%) is weakly correlated (the highest correlation of the features
is lower than 0.3) to the IN features. There is a similar trend in the IN dataset, where
22.2%, 65.4% and 12.4% of IA features are highly correlated, moderately correlated and
weakly correlated to the IN features, respectively. In contrast, the IN features seem to be
less correlated to the IA features since the majority of IN features are weakly correlated
to the IA features (68.4% in the IA dataset and 55.3% in the IN dataset), while only 3.3%
and 2.6% of IN features are highly correlated to the IA features in the IA and IN datasets,
respectively.

Similarly, Figure 5 shows the Spearman rank correlation between IA features and IN
features. The results based on the Spearman rank correlation coefficient are quite similar to
the results with the Pearson correlation coefficient. The majority of IA features are highly
correlated and moderately correlated to the IN features (13.6% and 77.2% in the IA dataset
and 22.8% and 62.3% in the IN dataset, respectively), while a significant part of IN features
is weakly correlated to the IA features (58.2% and 46.2% in the IA dataset and the IN
dataset, respectively). Besides this, only 3.3% and 4% of IN features are highly correlated to
the IA features in the IA dataset and the IN dataset, respectively.

Generally, although there are a few differences between the results based on the
Pearson correlation and based on the Spearman rank correlation, both results refer to
the same general conclusion that IA features have quite a significant correlation with IN
features, but the correlation between IN features and IA features is much weaker.

3.2. Are IN and IA Independent or Dependent?

Although the correlation between IA and IN features has been estimated in the pre-
vious section, the meaning of the correlation between IA and IN has not been clarified.
The considered IA and IN features are learned automatically by deep CNNs [1,35], so they
are abstract and not easy to understand. In this subsection, the idea is to check if IN and IA
are independent so that they describe two different aspects of IQ or not. To do so, we are
going to study if there is an overlap between IA features and IN features first, and then
the influence of IN features on IAA and the influence of IA features on INA are going to
be evaluated.

3.2.1. Influence of IN Features on IAA

According to the results of Section 3.1, the correlation of IN features with IA features
is low. Based on the Pearson coefficient, only 14 IN features (3.3%) are highly correlated
to IA features, while the number of weakly correlated IN features is 291 (68.4%). Besides
that, there are 120 IN features moderately correlated to IA features (28.2%). It appears that
a majority of IN features do not overlap with IA features but the number of moderately
correlated IN features is significant (28.2%).

In order to evaluate the influence of IN features on IAA, we propose to train an IAA
model by considering IN features only, including 14 highly correlated, 120 moderately
correlated and 291 weakly correlated features. The performance of this model is compared
with the one based on IA features only and the one based on the combination of IA and
IN features. Figure 6 presents the process of the experiment and the results. The proposed
IAA model contains an input layer (the number of input nodes is the number of input
features) and an output layer (one output node with sigmoid activation function, a very
simple linear model is considered because, in this study, we want to focus on the impact of
features instead of the architecture of the model) is trained to perform a binary classification
between high and low aesthetic photos. The Adam optimizer and a binary cross-entropy
loss function are used, and the batch size is assigned to 100. The learning rate and the
number of iterations are set to 5× 10−4 and 150, respectively. The IAA model is trained and
tested on the IA dataset coming from [35]. The IA dataset labeled by humans is split into a
training set containing 1600 images (two0thirds of the dataset) and a testing set including
800 images (one-third of the dataset).
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Image naturalness features
425 features

222 selected features

Feature selection

Training set
800 High aesthetic images
800 Low aesthetic images

Training IAA model
Image aesthetic dataset

1200 High aesthetic images
1200 Low aesthetic images Testing set

400 High aesthetic images
400 Low aesthetic images

Output layer 1 node (sigmoid 
activation function)

Input layer N nodes (N is the 
number of input 
features)

The structure of the IAA model

Image aesthetic features
955 features

Features IAA performance

Accuracy Loss

955 aesthetic features 0.929 ± 
0.018

0.097 ± 
0.021

955 aesthetic and 222 
naturalness features

0.936 ± 
0.017

0.070 ± 
0.018

Figure 6. Experiment process of evaluating how IN features improve the performance of IAA.

Looking at the results in Figure 6, although the performance of the IAA based on IN
features is lower than the one based on IA features (0.915 ± 0.019 versus 0.930 ± 0.018),
it is quite impressive. The moderately correlated IN features could be the reason for the
good performance with IN features since the IAA based on them has a good performance
(0.911 ± 0.020). Moreover, with the number of highly correlated features being small
(14 features), the performance of the IAA based on them is bad (0.769 ± 0.029). The results
with the weakly correlated IN features are not very impressive since the IAA based on them
has a lower performance at 0.874 ± 0.023. Although those features are not overlapping
with IA features, they are not related to the IAA task. It could explain the slight increase
in accuracy from 0.930 ± 0.018 to 0.946 ± 0.016 when considering the IAA based on the
combination of IA features and IN features.

3.2.2. Influence of IA Features on INA

Section 3.1 shows a significant correlation between IA features and IN features.
Based on the Pearson coefficient, 228 (22.2%) and 669 (65.4%) IA features are, respec-
tively, highly correlated and moderately correlated to IN features, while the number of
weakly correlated IA features is 127 (12.4%). It appears that there is a significant part of IA
features that overlap with IN features.

Similarly, INA based on IA features only is investigated in which the IA features
include the 228 highly correlated the 669 moderately correlated, and the 127 weakly cor-
related features. The performance of INA based on IA features is compared with the
one based on IN features only and the one based on the combination of IA features and
IN features. The process of the experiment and the experiment results are presented in
Figure 7. Starting with the considered IN dataset [1], in order to balance the number of
natural and unnatural photos in the training set, a data augmentation process is applied
to generate augmented versions of natural and unnatural photos by re-scaling, cropping
and padding. Naturalness labels of augmented versions are kept the same as the labels
of the original images. A training set (generated from 84% of the dataset) containing
1704 natural photos (284 original photos × 6 data augmented versions) and 1776 unnatu-
ral photos (444 original photos × 4 data augmented versions) and a testing set containing
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71 natural photos and 71 unnatural photos (16% of the dataset without data augmentation)
are extracted. The structure of the INA model and training parameters are set the same as
in the previous experiments.

Image aesthetic features
955 features

685 selected features

Feature selection

Training set
284 (orginal) x 6 (data 
augmentation) = 1704 

natural images
444 (original) x 4 (data 
augmentation) =  1776 

unnatural images Training INA model
Image naturalness dataset

355 natural images
515 unnatural images

Testing set
71 High aesthetic images
71 Low aesthetic images

Output layer 1 node (sigmoid 
activation function)

Input layer N nodes (N is the 
number of input 
featues)

The structure of the INA model

Image naturalness features
425 features

Features INA performance

Accuracy Loss

425 naturalness features 0.852 ± 
0.058

0.181 ± 
0.063

425 naturalness and 685 
aesthetic features

0.866 ± 
0.056

0.156 ± 
0.060

Figure 7. Experiment process of evaluating how IA features improves the performance of INA.

The experiment results in Figure 7 show that although the performance of the INA
based on IA features is lower than the one based on IN features (0.835 ± 0.061 versus
0.852 ± 0.058), the result is quite good. The highly correlated and moderately correlated IA
features could be the reason for the good performance of the INA based on IA features since
the INA based on them has good results (0.814 ± 0.064 and 0.822 ± 0.063, respectively).
Moreover, the results with the weakly correlated IA features are not good since the INA
based on them has a much lower performance at 0.773 ± 0.069. The experiment’s results
reflect that IA features do not help improve the INA performance significantly since the
accuracy of INA based on IN features only is 0.852 ± 0.058, while this value of INA is based
on the combination of IN and IA features increases insignificantly to 0.880 ± 0.053.

The obtained results prove that there is an overlap between IA and IN features and
explain why the performance of IAA based on IN features only and the performance of INA
based on IA features only are quite good. However, there are uncorrelated parts between
IA and IN features. The performance of IAA and INA based on the uncorrelated features is
not really good, so those IN and IA features might not be related to IAA and INA tasks,
respectively. As a consequence, the combination of correlated and uncorrelated features
does not help significantly improve the performance of IAA and INA.

3.3. Relationship between Naturalness/Unnaturalness and Low/High Aesthetics
3.3.1. Are Natural Images High Aesthetic Ones and Unnatural Images Low
Aesthetic Ones?

To answer this question, the IA of natural and unnatural images is investigated.
Figure 8 shows the proposed process of evaluating the IA of the two image categories. In
Section 3.2.1, the model based on the combination of IA features and IN features has the
highest performance (0.946 ± 0.016), so it is used to make the distinction between high
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aesthetic images and low aesthetic images. As a consequence, this model is used to assess
the IA of natural and unnatural photos of the IN dataset [1].

Image aesthetic features
1024 global features
1024 ROI features

1024 background features

955 selected features

Feature selection

Training set
800 High aesthetic images
800 Low aesthetic images

Training IAA model

Trained IAA model
Accuracy: 0.929 ± 0.018
Loss: 0.097 ± 0.021

Image aesthetic dataset
1200 High aesthetic images
1200 Low aesthetic images Testing set

400 High aesthetic images
400 Low aesthetic images

The structure of the IAA model

Image naturalness dataset
355 natural images

515 unnatural images

Figure 8. Process of the experiment evaluating the IA of the IN dataset images.

According to the experiment’s results, 28% of the natural images are predicted as high
aesthetic, and 61% of the unnatural images are predicted as low aesthetic. On the contrary,
a significant part of natural photos (72%) is assessed as low aesthetic, and an insignificant
part of unnatural photos (39%) is predicted as high aesthetic. Therefore, there is clearly not
a cause to effect relation between naturalness and high aesthetics and unnaturalness and
low aesthetics. Natural photos are classified as low aesthetic more often than unnatural
ones. The reason could be the lack of post-processing in natural photos making those
photos boring.

3.3.2. Are High Aesthetic Images Natural Ones and Low Aesthetic Images
Unnatural Ones?

Similarly, in order to answer the question of this part, the IN of high and low aesthetic
photos is investigated. The model that learned to assess IN is presented in Figure 9.
According to Section 3.2.2, the INA model based on the combination of IA features and
IN features has the best performance (0.880 ± 0.053), so it is used to classify natural and
unnatural photos in this part. The IN of high aesthetic photos and low aesthetic photos of
the IA dataset [35] is predicted by the INA model.

According to the experiment results, 35% of the high aesthetic photos are predicted
as unnatural, while the majority of low aesthetic photos (89%) that are mostly not post-
processed are assessed as natural. It appears that a high aesthetic photo does not mean a
natural photo, and a low aesthetic photo is not always unnatural.
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Image naturalness features
425 features

Training set
284 (orginal) x 6 (data
augmentation) = 1704

natural images
444 (original) x 4 (data
augmentation) = 1776
unnatural images Training INA model

Trained INA model
Accuracy: 0.852 ± 0.058
Loss: 0.181 ± 0.063

Image naturalness dataset
355 natural images

515 unnatural images
Testing set

71 High aesthetic images
71 Low aesthetic images

The structure of the INA model

Image aesthetic dataset
1200 high aesthetic images
1200 low aesthetic images

Figure 9. Process of the experiment evaluating the IN of photos in the IA dataset.

3.3.3. IA and IN Score Correlation

Additionally, the IA and IN scores predicted by the IAA and the INA models on
photos are considered as two vectors. The Pearson correlation and the Spearman rank
correlation between the two vectors are computed, and the results are presented in Table 1.
It appears that there is a weak negative correlation between the IA scores and the IN scores
even on natural images, unnatural images, high aesthetic images, low aesthetic images or
all images.

Table 1. The correlation between IA scores and IN scores.

Correlation between IA and Pearson Spearman Rank
IN Scores Computed on Correlation Correlation

Natural images −0.078 −0.105
Unnatural images −0.129 −0.066

High aesthetic images −0.094 −0.145
Low aesthetic images −0.139 −0.087

All images −0.191 −0.218

The experiment’s results prove that there is no direct correlation between IA and
IN since natural/unnatural photos are not always considered as high/low aesthetic, re-
spectively, and vice versa. Samples of IAA and INA are presented in Figures 10 and 11,
respectively. Obviously, abusing enhancement methods that increase perceived aesthetic
quality could provoke artifacts from imperceptible to obvious (over-enhancement), so
the increase in IA could lead to a decrease in IN (see unnatural photos predicted as high
aesthetic in Figure 10 and high aesthetic photos predicted as unnatural in Figure 11) or
even to the decrease in IQ generally. On the contrary, when comparing a photo reproduced
by an adjustment method, such as a tone-mapping operator and other single exposure
versions, a tone-mapped photo could be more natural than a single exposure version of the
same scene with deep, lively and realistic colors and contrast (see natural photos predicted
as high aesthetic in Figure 10). Adjusted photos could be more appealing and interesting
because of their uniqueness (compared with normal single exposure images that cannot
preserve the high contrast and deep colors of the real scenes). However, when a photo is
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too faithful and familiar to observers, they might not be interested in the photo (see low
aesthetic photos predicted as natural in Figure 11).

Natural 
photos

Unnatural 
photos

Predicted as high aesthetic Predicted as low aesthetic
Figure 10. IAA samples of natural and unnatural images.

High 
aesthetic 
photos

Low 
aesthetic 
photos

Predicted as natural Predicted as unnatural
Figure 11. INA samples of high and low aesthetic photos.
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Generally, although IN and IA might have some correlations, they are nevertheless
two different notions referring to two different aspects of IQ.

4. How do IA and IN Affect Viewers’ IQ Perception in Different Contexts?

IQ, as well as IA and IN, are related to the quality of service [49] and quality of
experience [50,51]. The quality of experience is based on human factors (individual proper-
ties, attitudes: visual and auditory acuity, gender, age, cognitive processes, socio-cultural
and economic background, expectations) and contextual factors (experiment conditions:
lightness, reference, distance, time, location). In contrast, the quality of service refers to
photos’ properties and characteristics. The main question to be investigated is, “is IQA
related to quality of experience or quality of service?”. Some people advocate that there
are clear features and properties of photos deciding IQ, while opponents suggest that IQ is
driven by individual opinions, experiences and context. The answer could be somewhere
in the middle since individual feelings and experiment contexts have great influences on
IQ perception, while intrinsic properties of photos can also affect IQ.

The main goal of this section is to study the relationships between IQ and the quality of
experience. Specifically, the influence of IA and IN on IQ in different contexts is investigated.
The influence of IA and IN in two cases, FRIQA and NRIQA, is considered. In order to
clarify the relationships between IA, IN and IQ and how the influence of IA and IN on IQ
is affected by experimental contexts, the idea is to investigate the correlation between IA
and IQ and the one between IN and IQ in two cases: with and without reference.

Figure 12 illustrates the whole process of estimating the correlation between IQ and
IA and between IQ and IN. First, starting with the subjective IQA experiment presented
in [10], 10 HDR scenes are considered, and 9 different tone-mapped versions are generated
from each HDR scene by using simple linear clipping with inverse gamma correction,
Drago [52], iCAM06 [53], Mantiuk [54] and Mai [55] tone-mapping operators with different
parameter settings. These photos are categorized by scene, so there are nine tone-mapped
versions and an HDR photo in each category. Possible tone-mapped image pairs in each
category have been shown to 20 naive observers with and without reference. In their first
test, observers had to choose which image they preferred between the two mapped versions
of a given pair. Those images have been displayed on an SDR screen with a background
luminance of 50 cd/m2 and a max luminance of 200 cd/m2. In the second test, not only
a given pair but also a reference displayed on an HDR screen (background luminance
of 100 cd/m2 and max luminance of 4000 cd/m2) was shown to viewers each time, and
they had to answer the same question as in the first test (see Figure 13). The experiments
were performed according to the ITU-R BT.500-11 for a subjective experiment. In those
experiments, some images closer to the reference are preferred. However, some images
less similar to the reference are sometimes preferred because they are more appealing.
This subjective experiment is based on viewers’ global preference only: IA and IN are
not mentioned in that experiment. Considering an HDR scene, Figure 14a shows the pair
comparison matrix of the nine versions mapped from the HDR scene in which PCM[i, j]
presents the number of times the ith tone-mapped version is preferred when comparing it
to the jth version. It appears that the total number of observers for each pair is not the same,
so the Bradley–Terry score Matrix is computed as in (3). The IQ of the ith tone-mapped
version is then computed as in (4). The nine tone-mapped versions of each HDR scene are
ranked based on IQ values. Figure 14b,c shows the Bradley–Terry score Matrix, IQ values
and the IQ rank of the considered photos.

BTM[i, j] =
PCM[i, j]

PCM[i, j] + PCM[j, i]
(3)

IQ[i] =
1
9

9

∑
j=1

BTM[i, j] (4)
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9 tone-mapped
versions

An HDR scene

IAA model

Subjective
experiment

INA model

IQ

IA

IN

IA rank

IQ rank

IN rank

The highest
aesthetic photo

The lowest
aesthetic photo

The most natural
photo

The least natural
photo

The highest
quality photo

The lowest
quality photo

Is the IQ of the highest
aesthetic photo is higher
than that of the lowest

one?

Is IQ of the most
natural photo is

higher than that of
the least one?

Is the IA of the highest
quality photo is higher
than that of the lowest

one?

Is theIN of the highest
quality photo is higher
than that of the lowest

one?

The
correspondence

between
IA and IQ

The
correspondence

between
IN and IQ

Figure 12. Process of estimating the correlation between IQ and IA and between IQ and IN.

HDR image

Tone-mapped
image

Tone-mapped
image

Tone-mapping
operators

SDR screen SDR screen

Which one do you prefer?

SDR screen SDR screen

Which one do you prefer?

HDR screen
(reference)

Experiment without reference Experiment with reference

Figure 13. IQA experiment based on human preference with and without reference.

Figure 14. Process of pair comparison matrix analysis: (a) The pair comparison matrix of an HDR
scene in which PCM[i, j] is the number of times Ii is preferred when comparing Ii to Ij, (b) Bradley–
Terry score Matrix of each HDR scene, (c) IQ and ranks of tone-mapped versions of each HDR scene.
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There are no subjective results of IA and IN for those tone-mapped images. Therefore,
in the second step (cf. first line and third line of Figure 12), the IAA and INA models used in
Section 3.3 are applied to the tone-mapped versions of each HDR scene in order to predict
their IA and IN scores, respectively. First, the perception of IA is general; viewers focus on
aesthetic criteria (how does the image satisfy their expectations) instead of technical criteria
(how is the image generated). In addition to this, The IAA model was trained on a general
image set containing different types of images (single exposure images, post-processed
images, tone-mapped images), so it refers to general IA. Secondly, the INA model was
trained on a dataset containing different types of images in which over 50% of the dataset
are tone-mapped images, so it is able to predict the IN of tone-mapped images. That is the
reason why the IAA model has been used on tone-mapped images in this case to evaluate
the impact of IA and IN on IQ perception.

Output scores range from 0 to 1, referring to IA ([0, 0.5) means low aesthetic while
[0.5, 1] means high aesthetic) and IN ([0, 0.5) means unnatural and [0.5, 1] means natural).
Based on IA and IN scores, the photos are ranked from the highest score to the lowest score.
According to IQ rank, the highest and the lowest quality photos of the scene are determined.
The correlation between IQ and IA is evaluated by considering two questions: “is the IA
rank of the highest IQ photo higher than that of the lowest one?” and “is the IQ rank of
the highest IA photo higher than that of the lowest one?”. In a similar way, the correlation
between IQ and IN is estimated by answering two sub-questions: “is the IN rank of the
highest IQ photo higher than that of the lowest one?” and “is the IQ rank of the highest IN
photo higher than that of the lowest one?”. The correlations between IQ and IA and the
ones between IQ and IN are evaluated for the 10 HDR scenes with and without reference,
and the results are presented in Table 2, in which the correlation score is calculated as the
number of correlated cases (the higher IQ rank, the higher IN rank or the higher IA rank). It
appears that in the case of NRIQA (experiment without reference), the correlation between
IQ and IA is much higher than that between IQ and IN (correlation score: 15 versus 8).
In contrast, in the case of FRIQA (experiment with reference), the difference between the
two correlations decreases. The score of the correlation between IQ and IN is 7, while the
score of the one between IQ and IA is 10. It seems that the influence of IA and IN on IQ is
not the same for both NRIQA and FRIQA cases. The quality of experience might be the
main cause of the differences. Specifically, IQ perception is affected by the visualization
of the reference—a contextual factor of quality of experience. Without reference, viewers’
preference is mainly based on aesthetic perception. In contrast, IN has more influence on
IQ than IA in the case of FRIQA.

Table 2. Correlation between IQ and IA and IN in the two cases FRIQA and NRIQA. IQ vs. IN: “Is
the IN rank of the highest IQ photo higher than that of the lowest one?”. IN vs. IQ: “Is the IQ rank of
the highest IN photo higher than that of the lowest one?”. IQ vs. IA: “Is the IA rank of the highest IQ
photo higher than that of the lowest one?”. IA vs. IQ: “Is the IQ rank of the highest IA photo higher
than that of the lowest one?”. Y: Yes. N: No. Score means correlation score.

Scenes

Correlation 1 2 3 4 5 6 7 8 9 10 Score

NRIQA

between IQ vs. IN Y N Y Y N N Y N N N 8IQ and IN IN vs. IQ Y N Y Y N N Y N N N
between IQ vs. IA Y Y Y Y N Y N Y Y Y 15IQ and IA IA vs. IQ N N Y Y Y Y Y Y N Y

FRIQA

between IQ vs. IN Y N Y N N N Y N N N 7IQ and IN IN vs. IQ Y N Y N N Y Y N N N
between IQ vs. IA Y Y N Y Y N Y N Y N 10IQ and IA IA vs. IQ Y Y N N Y N N Y N N

Table 2 presents the correlation based on the comparison of IQ, IA and IN ranks
between the highest IQ, IA and IN photos (the first photo in the lists ordered by IQ, IA
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and IN) and the lowest IQ, IA and IN photos (the ninth photo in the ordered lists) of nine
versions generated from each HDR scene. Additional comparisons between the second
and third highest IQ, IA and IN photos (the second and third photos in the ordered lists)
and the second and third lowest IQ, IA and IN photos (the seventh and eighth photos
in the ordered lists) are made to validate the assumption about the influence of IN and
IA on IQ perception with and without reference. Correlations between IQ and IA and
the ones between IQ and IN are estimated based on those comparisons and the Pearson
correlation between IQ, IA and IN ranks. The obtained results are presented in Table 3.
The experiment’s results prove that the assumption is true: without reference, IQ is more
similar to IA than to IN, while with reference, the roles of IN and IA in IQ perception are
more balanced.

Table 3. Correlations between IQ and IA and IN in the two cases FRIQA and NRIQA.

NRIQA FRIQA

Comparison Correlation score between
between IQ and IN IQ and IA IQ and IN IQ and IA

1st vs. 9th 8 15 7 10
1st vs. 8th 9 10 9 9
1st vs. 7th 9 14 10 10
2nd vs. 9th 10 17 9 13
2nd vs. 8th 7 13 13 13
2nd vs. 7th 8 16 11 10
3rd vs. 9th 10 11 9 10
3rd vs. 8th 11 11 15 7
3rd vs. 7th 10 10 11 8

Total 82 117 94 90

Pearson correlation between
IQ and IN IQ and IA IQ and IN IQ and IA

ranks ranks ranks ranks

−0.070 0.180 0.032 0.028

It could be explained by the fact that in the case of NRIQA, viewers’ decisions are gen-
erally made based on individual feelings and perceptions. In fact, viewers tend to pay more
attention to high aesthetic photos than to low aesthetic photos. Moreover, the lack of refer-
ence makes it difficult for viewers to assess IN since they have to use feelings and memory
to evaluate IN. Therefore, they might focus on IA—an easier aspect to assess IQ in the case
of NRIQA (correlation score: 117 versus 82, and Pearson correlation: 0.180 versus −0.070
for the correlation between IQ and IA and between IQ and IN, respectively). In contrast,
with reference, viewers share their attention on both IA criteria and the similarity between
the compared versions and the reference. Viewers’ preference is not only affected by visual
aesthetic perception referring to IA but also by technical factors (visible artifacts, obvious
differences) referring to IN. It explains why the correlation between IQ and IN and between
IQ and IA are more balanced in the case of FRIQA (correlation score: 94 vs. 90m and
Pearson correlation: 0.032 vs. 0.028 for the correlation between IQ and IN and between IQ
and IA, respectively).

5. Conclusions

There are two main contributions in this paper related to the correlations between
IA and IN in relation to IQ. First, the relationships between IA and IN were investigated.
The experiment’s results prove that the correlation of IA features to IN features is quite
significant, but the correlation of IN features to IA features is much lower. Additionally,
the obtained results reflect that a high aesthetic photo does not mean a natural photo
and a natural photo is not always considered a high aesthetic photo. Further, IA and IN
features do not help significantly improve the performances of INA and IAA, respectively.
In conclusion, although there are few moderate correlations and overlaps between IA
and IN, they are two different notions reflecting different aspects of IQ. Secondly, the
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influences of IA and IN on IQ were evaluated, and it appears that those influences are
not the same depending on the experimental context (FRIQA or NRIQA). The main cause
of the differences is the quality of experience since contextual factors change observers’
preferences. The experiment’s results refer to the fact that viewers’ IQ perception is more
related to IA than to IN in NRIQA since NRIQA is mostly based on individual feelings
and visual aesthetic perception. In contrast, the influence of IN and IA on IQ is more
balanced in FRIQA because FRIQA is related to both individual opinions and technical
aspects (technical errors, artifacts and specific screen), reflecting the similarity between
transformed versions and original versions.

According to the current results, the direction of our future research is to develop
algorithms able to enhance IQ based on both IA and IN aspects. Studying IA and IN and
analyzing the correlations between IQ, IA and IN to understand the positive influences
and negative effects on IQ could be considered the first step. The second step will be an
improvement of IQA performance by considering IA and IN components. These two steps
are the basis for developing methods to improve IQ by restoring the naturalness of detected
unnatural images and enhancing the aesthetic quality of detected low-aesthetic images.
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