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Abstract: Estimation of muscle activity is very important as it can be a cue to assess a person’s move-
ments and intentions. If muscle activity states can be obtained through non-contact measurement,
through visual measurement systems, for example, muscle activity will provide data support and
help for various study fields. In the present paper, we propose a method to predict human muscle
activity from skin surface strain. This requires us to obtain a 3D reconstruction model with a high
relative accuracy. The problem is that reconstruction errors due to noise on raw data generated
in a visual measurement system are inevitable. In particular, the independent noise between each
frame on the time series makes it difficult to accurately track the motion. In order to obtain more
precise information about the human skin surface, we propose a method that introduces a temporal
constraint in the non-rigid registration process. We can achieve more accurate tracking of shape and
motion by constraining the point cloud motion over the time series. Using surface strain as input, we
build a multilayer perceptron artificial neural network for inferring muscle activity. In the present
paper, we investigate simple lower limb movements to train the network. As a result, we successfully
achieve the estimation of muscle activity via surface strain.

Keywords: muscle activity; strain; non-rigid registration; point cloud; multilayer perceptron

1. Introduction

Assessment of muscle activity is an important topic in the study of human movement.
Muscle activity is widely used in the fields of ergonomics, biomechanics, rehabilitation,
human motion simulation, and robotics. One of the most common methods of quantifying
muscle activity is assessed by electromyography (EMG), which is based on the bioelec-
trical changes generated during the activity of single or multiple muscle cells or parts of
muscle tissue. Electromyography can be guided by electrodes, amplified, recorded, and
displayed as a time-series signal graphic. Quantifying muscle activity using EMG is a
contact measurement method, which requires the installation of additional sensors and has
strict requirements on the test environment, meaning that the use of this type of method
has many limitations. Therefore, we want to find a non-contact way to obtain muscle
information that is suitable for various situations.

Non-contact visual measurement can be a good solution to this problem. Some
visual features can be considered cues to estimate a person’s muscle activity, for example,
joint position and skin surface deformation. While many studies have assessed muscle
motion status by recording and extrapolating joint trajectories, the present study focuses

J. Imaging 2022, 8, 168. https://doi.org/10.3390/jimaging8060168 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8060168
https://doi.org/10.3390/jimaging8060168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://doi.org/10.3390/jimaging8060168
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8060168?type=check_update&version=1


J. Imaging 2022, 8, 168 2 of 19

on investigating the relationship between muscle activity and skin surface deformation.
This requires that we have the ability to obtain a more detailed model of motion through
the visual system. Physical information, such as muscle force, can be estimated from the
deformation of skin by a visual sensing system, as reported in [1,2]. If the deformation
of an object is hard to explain by a small number of parameters, then it is necessary to
observe many points on the object simultaneously in order to obtain sufficient information
of deformation. Visual observation by a camera is suitable for this purpose. Various
approaches have been proposed. One major method is to compute the 3D shape by a range
sensor and calculate the 3D shape by finding the corresponding points between consecutive
frames. The shape of a deforming object can be obtained using RGBD cameras [3,4]. Since
these cameras output range data at 20–60 frames/s, the shape of a moving object at each
moment is captured frame by frame. If the shape is rigid and has shape features for unique
correspondence, the motion is given by a method of matching shapes, such as the iterative
closest point (ICP) method [5].

One of the problems in using range data for physical analysis of a human body is noise
in the raw range data. Whether a range sensor is based on triangulation or time-of-flight
(ToF), depth noise occurs due to the error of finding correspondence in a stereo system or the
error of calculating the time duration between light emission and detection. Since the range
data are obtained frame by frame and depth noise is independent of the deformation, the
motion estimated by deformable registration between two consecutive frames is affected by
depth noise. The trajectory of deformation can be vibratory in some cases, which degrades
the physical analysis of the target. In the present paper, we propose to use temporal
constraints between range data in order to reduce the registration error induced by the
noise. By combining the constraint given by temporal sequence and texture information, the
proposed method allows for tracking points more accurately. The registration with the new
constraints can estimate deformation along both in-surface and out-of-surface directions.

In addition, using only shape features is, however, insufficient to find correct corre-
spondences in the case of a deformable object because shape features are largely affected
by deformation. As a solution to solve this problem, the proposed approach consists of
using a deformable ICP with a texture correspondence. The use of this additional color
information allows the avoidance of surface slipping and improvement of the results in
the case of complex tangential movement along the model surface. We introduce a surface
strain tensor to represent the skin surface deformation and try to build a model for inferring
muscle activity using deep learning methods.

To express the deformation, the displacement of each vertex from a template shape is
a candidate as used in [1]. The problem with the previous method is that it is necessary
to align each bone to obtain the coordinates for calculating the displacement. Since the
bones need to be aligned by the registration of deformed surfaces, it will be unstable if the
deformation is large. To overcome this disadvantage, we propose a method to express the
deformation by strain. Additionally, because the relationship between strain and muscle
activity has many factors, including muscle amount, fat under skin, and joint angle, it
is difficult to explain by simple expression. That is the reason we take a learning-based
approach that can express a nonlinear relationship.

2. Related Research

Human motion models are extremely complex, and, in general, there is a tendency
to use simplified models to describe motion in human motion simulation. This includes
the calculation of human inertia parameters: methods based on forward dynamics, and
methods based on inverse dynamics. Either of these methods is a reasonable abstraction
of the human body model, considering various complex physical situations to ensure the
physical reality of the model. However, it is still a challenge to verify the correctness of the
simulation results.

The use of electromyography to evaluate muscle movement is also a more conven-
tional method. Surface electromyography (sEMG) [6] is an easily detectable neural signal
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of the human body that is rich in human movement information. It is possible to analyze
the relationship between EMG signals and muscle forces and corresponding joint moments
using EMG signals as input signals and combining these signals with relevant biological
models for a deeper understanding of human dynamics. In recent years, many authors
have proposed methods for solving joint moments using EMG. The models used are, for
example, Huxley’s more complex biophysical model [7] and Hill’s classical model [8,9].
Electromyography signals can be used to measure muscle activation. However, the map-
ping relationship between the EMG signals and muscle activation is highly nonlinear, and
the amplitude of the EMG signal is affected by many factors. Generally, we consider the root
mean square (RMS), integrated electromyography (iEMG), or averaged electromyography
(AEMG) to reflect local muscle movements. A previous article [10] gives an introduction to
expressing muscle activity using iEMG. For the reconstruction of scenes, 3D reconstruction
by depth sensors is a common operation. This technique has been studied intensively,
especially for rigid objects [5,11]. Along with the development of RGBD sensors, range
data captured at high frame rates are now easily accessible. Registration of range data of a
deforming object has become important to analyze the characteristics of the object.

In 3D deformable registration, the transformation for each vertex of a point cloud is
estimated. The local features of shape and texture are used to find the corresponding point
and calculate the transformation. However, since the local feature is often not sufficient to
determine the transformation, regularization of transformation is required. Two types of
regularization can be considered: spatial and temporal constraints.

In the case that two point clouds are registered, the spatial constraint between neigh-
boring points is used. Various spatial constraints have been studied, such as isomet-
ric mapping [12,13], as-rigid-as-possible [14–18], membrane model [19], and conformal
mapping [20–22]. Spatial constraints are also used in the case of registering multiple
frames [23,24]. In the present paper, the proposed method uses a spatial constraint based
on conformal mapping because this constraint is applicable to various deformations, as
compared to other constraints. If more than two point clouds captured sequentially are
considered, assuming plausible motion at each vertex can provide useful information as a
temporal constraint. Temporal flicker of range data is reduced during merging shapes of
multiple frames in [25,26]. These methods remove the noise at each vertex after registration,
and the correspondence for taking the average is calculated before removing noise. Noise
removal, however, should be performed simultaneously or before finding correspondence.

Some methods that consider a temporal constraint during registration have been
proposed, including averaging vertex positions of volumetric data with the prior motion as
a temporal force [27], registration with local deformation along the line of sight [28], and
minimization of the magnitude of acceleration as a temporal constraint during registering
three consecutive frames [29]. These methods consider noise to find the correspondence
between multiple range scans in a batch procedure. If many range scans captured by an
RGBD sensor need to be registered, a filtering approach in which a pair of range scans are
registered sequentially is appropriate and feasible to reduce the computational cost.

Another approach is focused on the deformation of a whole body by extending [26].
The human skeleton is introduced as a priori information to achieve robust dynamic
reconstruction of the human body. The vertices are assigned to bones, and the motion is
constrained by the motion of bones. The positions of the bones are temporally averaged [30]
or the temporal difference is minimized from the previous frame [31]. These assumptions
improve robustness for rough estimation of body parts, but are not sufficient to remove the
flicker of each vertex.
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Since finding accurate correspondences for a deforming object only by shape features
is difficult, using the color and texture to improve the process became more usual. Some
methods introduced color information in the ICP scheme [32–34]. Since one of the problems
is to reach a local minimum in optimization, approaches to avoid local minima were
proposed in later studies.

Using weighted fiducial markers was proposed in order to improve the results of
the registration in [35]. Transformation to a conformal plane in order to search for corre-
spondence in the texture was used in [36]. These approaches have accuracy limits due
to relying on few points or the requirements of good assumption on the shape. Another
approach is to use the error defined by photometric and geometric error based on local
color gradient [37]. However, the limitation is that this requires dense textured models and
good registration results. The proposed approach assumes sparse texture features, which
are easy to detect and more robust as compared to dense features, to find corresponding
features. Even if the positions of corresponding features are not very close to each other,
the correct correspondence can be found. In addition, if tangential motion on an object’s
surface is smooth like human skin, the motion can be interpolated from the motion of
sparse features.

3. Proposed Method
3.1. Data Acquisition

Considering the complexity of muscle movements near joints with a large degree of
freedom, such as the shoulder and near the elbow, we consider studying the relatively
simple lower limb. We studied the flexion and extension movements of the ankle joint,
focusing on two muscles, namely, the gastrocnemius and the soleus. We used data from
previous studies in our experiments [1].

In order to obtain a 3D model of the leg, a system of range sensors based on a projector-
camera system was constructed in a previous study [38]. Three sensors were configured to
capture the shape, and the experimental method was based on that of a previous study [39].
The experimental setup is shown in Figure 1.

Figure 1. Setup. An electromyography (EMG) sensor is placed on the outer side of right leg. The skin
shape of the lower limb is observed using a three-range-sensor system.

The final model is obtained by combining the shapes captured by the depth camera
system via Poisson reconstruction [40]. The shape of the EMG sensors on the skin is
removed from the range scans, and the skin shape is interpolated during their merger.
Here, Figure 2 shows a sample of the acquired skin shape model.
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Figure 2. Sample of skin shape model after Poisson reconstruction.

The muscle activity data were calculated from the measurements of the EMG sensors,
which were arranged on the gastrocnemius and the soleus. The muscle activity Ak at each
frame is defined as the integrated EMG signal normalized by the signal of the maximal
voluntary contraction (MVC) [10].

ak =ak−1 + ∆t(
k−1

∑
j=k−n

|ek| − ak−1)/D (1)

Ak =ak/aMVC, (2)

where ek is an EMG value at the k-th frame, ∆t is a timestep, and D is a parameter, which is
0.04 if ik > ak−1 and 0.07 otherwise. n is a user defined parameter and n = 3 in this paper.
aMVC is the activity of MVC. Refer to [9] for the details.

A set of muscle activity calculation results is shown in Figure 3.

Figure 3. Muscle activity calculated from a set of EMG data.
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3.2. Non-Rigid Registration

After acquiring the 3D reconstruction data, we proceed to the registration step. We
consider the provided template as a mesh, which is composed of point clouds. In order
to match the template to the target, we deform the template so that the distance between
the corresponding points is minimized. In order to estimate this deformation, we consider
minimizing the energy parameter given to each corresponding vertex. In this method, we
define the cost function E as follows:

E = wCEC + wFEF + ER, (3)

where EC is the geometrical error between the closest point, EF is the geometrical error
between corresponding feature points, ER is the constraint to avoid extreme local defor-
mation, and wC and wF are the weights as defined by users. This error is optimized based
on an iterative closest point (ICP) scheme loop. First, the correspondence between points
is found between template and target surfaces. Second, the optimal transformation for
each template vertex is estimated by reducing the error. These two steps are repeated until
reaching the desired accuracy.

The ER term contains spatial and temporal constraints:

ER = wSES + wTET . (4)

The term ES describes the spatial constraint in the proposed method based on as-
conformal-as-possible (ACAP) non-rigid registration [22], as defined later in Equation (7).
Here, ET is a new term introduced in the present study that imposes a temporal constraint
to register a sequence of range scans, which will be described hereinafter. The term
EC is calculated based on the ICP by finding the closest point of the target surface for
each template vertex. Here, EF is a term related to the information contained in the
texture, which is defined by color marker error. This error is a geometrical error between
color markers matched from the template mesh to the target mesh. Three-dimensional
registration methods based on the ICP use the closest point for each template vertex as
the correspondence. Methods by which to find the closest point have been studied in the
literature [41]. In the present paper, the proposed method finds the closest point based on a
nearest neighbor search, which means point-to-point correspondence between template
and target vertices.

Let xi and yik be the homogeneous coordinates of the corresponding vertices of the
current template and target surfaces at the k-th frame. The deformation is expressed as a
set of 3× 4 affine transformation matrices Xik = [Tik; tik][Rrk; trk] that are associated with
each i-th vertex of the template, where Tik is a linear transformation, and tik is a translation.
Moreover, Rrk and trk are a rotation matrix and a translation vector, respectively, that
are common for all vertices for the k-th time frame. Therefore, it is assumed that the
transformation can be represented by global rigid transformation and local deformation.
The energy by the closest points is defined as follows:

EC = ∑
i
‖Xikxi − ỹik‖2, (5)

where ỹik = xi + (Rrk−1ni · (yik − xi))Rrk−1ni, and Rrk−1 is the global rotation of the
previous frame. In order to avoid the large deformation along the tangential directions, the
energy is calculated by projecting the displacement to the normal vector ni of template xi.
Figure 4 shows a 2D slice of the situation where pj denotes the j-th texture feature on the
template, and qj is the corresponding texture feature on the target. The corresponding point
is given as the closest vertex for this energy. Since vector yik − xi is perpendicular to the
template surface, this energy is used for the deformation along the out-of-surface direction.
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Template
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Correspondence by closest point

Correspondence by texture feature

Texture feature

xi

yi

ni

yi
~

pj

qj

Figure 4. Two-dimensional slice of a situation of the corresponding points.

Texture features used for registration consist of dot markers, detected by the color
difference of the vertices compared to neighboring vertices. Figure 5a is an image of
observing an arm, and Figure 5b is the template mesh of the forearm with dot markers. As
proposed previously [35], the color difference from the vertices in the first neighboring ring
of each vertex is calculated. The groups of vertices that have large differences are detected,
and vertices that are closest to the mean positions are chosen as the positions of the dot
markers. The red points in Figure 5c indicate the detected position of the markers.

(b)

(a) (c)

Figure 5. Markers attached to a forearm are detected on a template mesh. (a) Input image. (b) Tem-
plate mesh. (c) Detected markers.

Since we consider that the frame rate is rather high compared to the displacement
speed of the shape, it can be assumed that the distance of texture features between the
target and the template mesh is small. Moreover, in most cases, the deformation is slower
than the global transformation of the shape, especially in the case of the human body.
Based on these assumptions, a simple closest point matching is sufficient and more reliable
than other methods, such as gradient-based methods, in most cases. Since a false positive
matching will degrade the accuracy, the proposed method uses thresholding about the
maximal distance for matching, based on the median value of the matching distance from
the previous step. Once matching of texture features is given, the error is defined as follows:

EF = ∑
j
‖Xj pj − qj‖2, (6)
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where pj is a vertex of the template detected as a marker, and qj is the target marker
corresponding to pj. This energy is used for the deformation along the in-surface direction
by finding the sliding motion of the surface by matching texture features.

Since we consider that the frame rate is rather high compared to the displacement
speed of the shape, it can be assumed that the distance of texture features between the
target and the template mesh is small. Moreover, in most cases, the deformation is slower
than the global transformation of the shape, especially in the case of the human body. Based
on these assumptions, a simple closest point matching is sufficient and more reliable than
other methods, such as gradient-based methods, in most cases. Once matching of texture
features is given, the error is defined as follows.

The spatial constraint consists of three components: as-conformal-as-possible, consis-
tency, and smoothness terms:

ES = EACAP + Econsist + Esmooth. (7)

Here, EACAP penalizes if Tik differs from a rotation matrix with scaling. Moreover,
Econsist penalizes inconsistencies between linear transformation and translation of one-
ring neighbors of each vertex to make the problem well posed, and Esmooth penalizes
inconsistencies of transformation between a vertex and one-ring neighbors to avoid local
extreme deformation. Refer to [22] for details.

In order to introduce the temporal regularization, let us define the velocity and acceler-
ation of each vertex on the template. In the registration process at each frame, the position,
velocity, and acceleration of each vertex at the previous frame are considered to be known.
Let [Tik−1; tik−1], [Ṫik−1; ṫik−1], and [T̈ik−1; ẗik−1] be the affine transformation and its time
derivatives for each i-th vertex at the previous (k− 1)-th frame. The current state can be
computed as follows:[

Tik tik
]
=
[
Tik−1 tik−1

]
+ ∆T

[
Ṫik−1 ṫik−1

]
+

1
2

∆T2((1− β)
[
T̈ik−1 ẗik−1

]
+ β

[
T̈ik ẗik

])
(8)[

Ṫik ṫik
]
=
[
Tik−1 tik−1

]
+∆T

(
(1− γ)

[
T̈ik−1 ẗik−1

]
+ γ

[
T̈ik ẗik

])
(9)

where [Ṫik; ṫik] and [T̈ik; ẗik] are the velocity and acceleration, respectively, at the current
k-th frame, and ∆T is the time step of the data sequence. The current state is computed by
the Newmark-β method with the scalar parameters β and γ. The feature of this implicit
time integration method is to express the current local affine transformation [Tik; tik] and its
velocity [Tik; ṫik] using not only the previous acceleration [T̈ik−1; ẗik−1], but also the current
acceleration [T̈ik; ẗik], which lead to the numerical stability of the time integration along the
time sequence. The term of the temporal regularization is represented as follows:

ET = ∑
i

(
‖ẗik‖2 + ωTtr(T̈ik

T T̈ik)
)

+wv ∑
i

(
‖ṫik‖2 + ωTtr(Ṫik

T Ṫik)
)

(10)

where wv and wT are the coefficients for the evaluation term regarding the velocity and
the linear transformation, respectively. Note that [Tik; tik] and [Ṫik; ṫik] are represented by
[T̈ik; ẗik], as shown in functions 6 and 7. Therefore, the optimization needs to be solved
with respect to [T̈ik; ẗik] instead of [Tik; tik]. The above temporal regularization only reduces
the high velocities and accelerations related to local non-rigid deformation. Note that
the temporal regularization can be also considered in the registration when estimating
the global rigid transformation [Rrk; trk]. Such a problem is equivalent to the trajectory
optimization of multi-body systems [42].
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Before the non-rigid registration step, a rigid registration is applied to estimate the
global transformation for each frame. The following algorithm is then applied to each
frame of the target mesh. The result of the previous frame is used for initialization and
time integration. The parameters are set as identity matrices and zero vectors in the first
frame. The procedure of the proposed methods is summarized as follows.

1. Initialization.
2. Detect texture markers of the target and find matches of each marker on the template.
3. Apply global rigid transformation based on rigid ICP using the EC and EF terms.
4. Iterate the following steps of deformable registration until convergence.

(a) Update the closest point in the target for each vertex of the template.
(b) Calculate E and estimate the acceleration of the transformation parameters of

each template vertex by minimizing the energy.
(c) Calculate the position and velocity of the current frame by integrating the

acceleration.

3.3. Computation of Strain Tensor

Next, we compute the strain tensor from the surface of the registration results. In
order to describe the deformation from a base configuration to a reference configuration,
as shown in Figure 6, or from the reference configuration to the current configuration, we
need to define some terms for deformation measures.

Figure 6. In this figure, X is mapped to the new point, x, after the deformation.

The tensor is characterized by means of gradients of motion. The partial division of
current displacement related to the current location and reference location arranged in a
Jacobean format is called the deformation gradient matrix, which is represented as follows:

F =


∂(x)
∂(X)

∂(x)
∂(Y)

∂(x)
∂(Z)

∂(y)
∂(X)

∂(y)
∂(Y)

∂(y)
∂(Z)

∂(z)
∂(X)

∂(z)
∂(Y)

∂(z)
∂(Z)

 (11)

In the present paper, we use the Green–Lagrangian strain tensor defined as follows:

Eik =
1
2
(Ft

ikFik − I), (12)

where I is the identity matrix and Fik is the deformation gradient tensor that represents the
gradient of the mapping from the reference vertex position to the current vertex position.
In this experiment, we simply estimate Fik by computing a regression matrix from the
reference space to the current space. Both spaces are represented by several neighbor
vertices of the i-th vertex that are chosen by distance thresholding. After computing strain
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tensor Eik, we obtain the first invariant of Eik that represents the sum of the principal strains
as follows:

Iik = tr(Eik). (13)

We use Iik as a measure of the strain of the surface. A heat map of the strain generated
by Iik is used to visualize the area in which the shape is deformed.

3.4. Predicting Muscle Activity

As mentioned above, muscle movement is a relatively complex system, and artificial
neural networks have the ability to learn the complex relationships between features and
targets. We therefore consider a network to accomplish muscle motion prediction in a
nonlinear manner. In order to implement a neural network for regression, the architecture
of the neural network must be defined. As shown in Figure 7, the neural network uses a
simple multilayer perceptron (MLP) to define the architecture.

Figure 7. Structure of the network.

We presuppose the problem as a higher-order nonlinear regression problem. The MLP
can be seen as creating a matrix that can be learned, where each dimension of the output is
obtained by weighting the dimensions of each input, with an activation function added
in between, allowing the model to learn nonlinear relationships. The MLP has a large
number of parameters, which corresponds to providing a strong representation that can
approximate any function. This makes it reasonable to think about the regression of the
problem using MLP. We take as input the strain information of all vertices of the point
cloud for each frame, and the corresponding output is the activity of the two muscles
(obtained from the EMG information in the previous section). Note that, here, the order
of arrangement does not represent the spatial relationship of the point cloud. Several
key points for the construction of the MLP machine are weight initialization, the choice
of activation function, the use of back propagation, the choice of earning rate and loss
function, and regularization. Initialization usually uses the Gaussian distribution random
initialization method to assign weights to prevent layer activation output from exploding or
disappearing during the forward transmission of deep neural networks. For optimization,
we use the stochastic gradient descent (SGD) approach. Each iteration calculates the
gradient of the mini-batch and then updates the parameters. For calculation of the loss, we
use the mean squared error (MSE), which is commonly used in regression models. The
regularization method is a strategy by which to reduce the variance, which is commonly
understood as mitigating the phenomenon of over-fitting. In the present study, we applied
the dropout for random deactivation.
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Since the small sample and the deep network parameters are too huge to affect the
amount of computation, we build a relatively light network containing three hidden layers.
All frames of an action are treated as a batch, and each layer uses Relu as the activation
function, using random deactivation to complete the regularization part.

4. Experiments

In this section, we perform two experiments. In the first experiment, we want to
evaluate whether a registration that introduces a time-constrained term can better help
the motion to be tracked. We evaluate the proposed method with both the simulation
model and captured point cloud data. In the second experiment, we define the prediction
of muscle activity using a deep learning network.

4.1. Evaluation of Registration

The goal of the proposed method is to estimate muscle activity, and the model is created
based on the muscle model [43] to simulate the deformation of the muscle according to the
activity. Although the real human body consists of various other components, including
bones, fat, and skin, the model is simplified and consists of muscle fibers. The accuracy of
the proposed deformable registration is evaluated using the simulated model. We also apply
the method to the motion tracking of the human arm and leg. Since the proposed method
is designed for motion tracking and muscle activity analysis, we show that the resultant
information of the vertex is reliable for these analyses. The data involving human subjects
were obtained with the approval of the AIST Committee for Ergonomic Experiments.

4.1.1. Evaluation Using Ground-Truth Simulated Deformation

First, the noise tolerance of the proposed registration method is evaluated. We test both
the proposed method and the method without temporal constraint by using the muscle
model. In the simulation, the model gradually expands according to muscle activity. The
target meshes are created by adding random noises to the time-sampled data. The length of
the model is 120 mm, and the shapes are sampled at 100 Hz for one second. The simulation
model without noise at the first frame is used as a template mesh, and the proposed method
is applied to deform the template to fit the target mesh at each frame.

In this experiment, we evaluate the effectiveness of the temporal constraint (TC)
introduced in the present paper. The proposed method is compared with the result without
a TC. Since a temporal filter can be applied to the registration result as an option to reduce
flicker, the second method for comparison is temporal filtering after registration without a
TC. In this experiment, a seventh-order low-pass Butterworth filter with a cut-off frequency
of 10 Hz is applied to the results without a TC. Figure 8 shows the results of tracking the
vertex of the model during motion. Each column corresponds to an individual axis, and
rows correspond to the position, velocity, and acceleration. In this figure, the trajectory of
one of the vertices in the area with the highest shape deformation is plotted. As shown in
Figure 8, the proposed method can reduce the noises. In particular, the proposed method
can significantly improve the accuracy of velocity and acceleration, which are important
for further analysis of the dynamic movement of the target object. Table 1 shows the
registration errors of these three methods. The errors are calculated as the mean squared
error from the ground-truth value of all vertices of all frames. The proposed method with
a TC shows the best accuracy for all metrics of position, velocity, and acceleration. If the
shapes are registered without a TC, the velocity and acceleration become much worse than
that with a TC, as expected. The proposed method shows better results, even if temporal
filtering is applied after registration.
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,

,

Figure 8. Results of tracking simulation model. Upper row: position, middle row: velocity, and lower
row: acceleration in each axis.
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Table 1. Error of vertices position, velocity, and acceleration of registering the simulation model.

Position Error x-axis y-axis z-axis

with TC 0.225 0.583 0.809
without TC 1.322 3.158 4.178
without TC + filter 0.921 1.450 1.627 mm

Velocity Error x-axis y-axis z-axis

with TC 6.919 22.464 25.888
without TC 0.928× 104 4.061× 104 5.972× 104

without TC + filter 0.224× 103 0.657× 103 1.065× 103 mm/s

Acceleration Error x-axis y-axis z-axis

with TC 0.695× 103 2.741× 103 3.867× 103

without TC 0.265× 109 1.183× 109 1.725× 109

without TC + filter 0.449× 106 1.430× 106 2.321× 106 mm/s2

Based on computing the magnitude of strain by Equation (13), the heat map of the
strain is obtained as shown in Figure 9. The magnitude of the strain is indicated by the
gradation of the color from white to red (red indicates higher value). The first row shows
the heat map created from the registration result of the ground-truth target, the second
one shows the registration without the TC of the noise target, the third one shows the
registration without TC and applied filter, and the last rows shows the registration with
TC. Figure 9 shows that our method significantly reduces the noise and achieves better
estimation of the strain heat map. The mean absolute percentage error (MAPE) of the strain
magnitude for all vertices of all frames compared to the ground truth is shown in Table 2.

Figure 9. Heat map of strain from the registration results of the simulation model.

Table 2. Mean absolute percentage error of magnitude of strain from ground-truth.

Condition MAPE of Strain

with TC 32.5
without TC 3946.9
without TC + filter 160.9%

4.1.2. Tracking Real 3D Scans

Next, we evaluate the proposed method with the point clouds that are obtained
by capturing human skin. In the experiments, the point clouds are captured by using
a previous method [38] at 1000 FPS in combination with another previously reported
method [39] to obtain the texture. The texture is monochrome in the experiments. Figure 10
shows an example of 3D acquisition that corresponds to the image in Figure 5a.
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Figure 10. Reconstruction of arm twisting motion.

In order to clarify the contribution of the proposed method, the parameters for 3D
reconstruction are set in order to obtain noisy results. Figure 10 also shows the template
mesh that is obtained by capturing a fixed shape of the target from various directions and
merging the meshes into a single mesh using a Creaform handy 3D scanner.

In this experiment, we capture the arm twisting motion and obtain the target meshes.
The motion lasts two seconds, while the forearm twists clockwise and then counterclock-
wise. We apply the proposed method to deform the template so as to fit the target meshes.
We first estimate the global rotation of the template by comparing the markers on the tem-
plate and target meshes. The temporal consistency is also guaranteed using the temporal
regularization when estimating the global rotation.

By using the texture correspondence, the template can track the target meshes, and the
arm twisting motion is successfully reconstructed as the result. Figure 11 shows the result
of tracking the motion. Each column corresponds to a different axis, and rows correspond
to the position, velocity, and acceleration.

In order to clarify the difference between the method with a TC and that without
a TC, the obtained results are depicted by red and blue lines, respectively. As shown in
Figure 11, the flicker noise along the trajectories is reduced. This effect is especially significant
for velocities and accelerations. From this result, the proposed method can reconstruct not
only the shape, but also the motion, including the velocity and acceleration. We can expect that
the deformable registration can be applied to the motion analysis using the proposed method.

We also apply the proposed method to the leg stretching motions that are captured and
used in [1] to validate the feasibility of the muscle activity estimation by computing the skin
strain. The motion lasts 5 s while the lower leg is stretching from the posture where the sole
of the foot is on the floor to the posture of standing with the toe. Since the Gastrocnemius
and Soleus muscles are expected to be active, as shown in Figure 12, we measure the EMG
on these muscles to analyze the muscle activities. We follow the same procedure with the
arm motion tracking but change the frame rate (100 FPS) of capturing the target meshes to
synchronize the EMG measurements. By computing the strain tensor of the vertices in all
frames, the heat map of the strain is obtained by following the same procedure. The results
are shown in Figure 13. The right side of Figure 13a shows the heat map computed without
temporal constraint and the left side (b) is with temporal constraints. Since the noises
affect the computation of the strain tensor, the regions of the muscles cannot be observed
in Figure 13a. On the other hand, the regions of the Gastrocnemius and Soleus muscles
can be clearly seen in Figure 13b. We also show the muscle activity at the Gastrocremius
muscle and the magnitude of the strain computed from the registration result with TC and
without TC in Figure 14. As can be seen from Figure 14, there is a correspondence between
the muscle activity and the magnitude of the strain.
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Figure 11. Results of arm twisting motion tracking. Upper row: positions, middle row: velocities,
and lower row: acceleration in each axis.
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Figure 12. Electromyography sensor placement and results of 3D registration.

Figure 13. Heat map of strain from registration results.

Figure 14. The blue line in the top graph is the measured muscle activity data, and the colored lines
in the middle graph and the bottom graph show the magnitude of the strains in some vertices from
muscle location.
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4.2. Muscle Activity Prediction

For the experiment of muscle activity prediction, we used leg stretching motions that
were captured and used in a previous study [1] and applied the proposed method to obtain
the registration results.

The registration method of the present study is a template-based registration, so
all groups of vertices of the action model possess the same index and nearest neighbor
relationship after completing the registration. The original template has 15 k vertices,
and, due to the missing top and bottom visual fields during data acquisition, we choose
the strain information of all vertices of the mid-calf, where the data are more reliable, as
training data. Each frame of the model used for training has a vertex count of 4.8 k. We use
each motion as a batch, inputting all vertex strain information and outputting the muscle
activity at two locations. Nine sets of actions are used as training data. Each action provides
498 frames of strain data. We train the network described in Section 3.4. The prediction
results of the muscle activity are shown in Figure 15.

The muscle activity measured by the EMGs and the ones estimated by the proposed
method were compared. The root mean squared errors (RMSEs) were 7.63% and 8.38%
of the MVCs. Since the errors reported in [1] were 9.0% and 6.7%, the accuracy was
comparable without the registration of bones, which are necessary in the method of [1]. In
future work, we plan to improve them by modifying the network and using a large dataset.

Figure 15. Prediction results for muscle activity. The red line indicates the results measured by EMG
sensors, and the blue line indicates the prediction results.

5. Conclusions

In the present study, we proposed a method to predict human muscle activity from
skin surface strain and used a non-rigid registration method with temporal constraint to
accomplish better tracking of motion. For the registration, we introduce constraints on the
time series in order to avoid the measurement noise in the vision system, which usually
generates the displacement noise of the reconstructed shape. Otherwise, measurement
noise will eventually lead to large noises in the velocities and accelerations on the point
cloud, which affect our analysis of the dynamics of deformable objects. This process can be
considered as a kind of filtering. In the current implementation, the temporal constraints are
designed to regulate the velocities and accelerations to zero, and should be implemented
as inequality constraints in the future. For the data analysis, we are currently computing
the strains in the sense of statics. We should also compute the stress and the total energy,
including the kinetic energy in a future study.

For muscle activity prediction, the proposed MLP network uses the dataset of surface
strain information to predict muscle activity. We chose a simple lower limb case of a
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one-dimensional movement in order to ensure the same movement pattern and expect to
use experimental data to infer a projection between muscle activity and skin surface strain
of a certain fixed movement. This is limited by the fact that the mapping between EMG
signals and muscle activity is not the same between movements. Since the training dataset
is relatively small, the structure of the network is also quite simple. The prediction has
strong limitations and fluctuations. In the future, we would like to optimize the network
structure, collect data from more types of motion, and incorporate theoretical knowledge
of human physiology in order to create a more reasonable predictive model.
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