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Abstract: Few-shot classification aims at leveraging knowledge learned in a deep learning model,
in order to obtain good classification performance on new problems, where only a few labeled
samples per class are available. Recent years have seen a fair number of works in the field, each one
introducing their own methodology. A frequent problem, though, is the use of suboptimally trained
models as a first building block, leading to doubts about whether proposed approaches bring gains if
applied to more sophisticated pretrained models. In this work, we propose a simple way to train
such models, with the aim of reaching top performance on multiple standardized benchmarks in
the field. This methodology offers a new baseline on which to propose (and fairly compare) new
techniques or adapt existing ones.

Keywords: few-shot learning; classification; deep learning; augmentations; self-supervision;
ensembling; backbones; cropping; ambiguity

1. Introduction

Learning with few examples, or few-shot learning, is a domain of research that has be-
come increasingly popular in the past few years. Reconciling the remarkable performances
of deep learning (DL), which are generally obtained thanks to access to huge databases,
with the constraint of having a very small number of examples may seem paradoxical. Yet,
the answer lies in the ability of DL to transfer knowledge acquired when solving a previous
task toward a different, new one.

The classical few-shot setting consists of two parts:

• A base dataset, which contains many examples of many classes. Since this dataset is
large enough, it can be used to efficiently train DL architectures. Authors often use
the base dataset alongside a validation dataset. As is usual in classification, the base
dataset is used during training, and the validation dataset is then used as a proxy to
measure generalization performance on unseen data and, therefore, can be leveraged
to optimize the hyperparameters. However, contrary to common classification settings,
in few-shot, the validation and base datasets usually contain distinct classes, so that
the generalization performance is assessed on new classes [1]. Learning good feature
representations from the base dataset can be performed with multiple strategies, as
will be further discussed in Section 2;

• A novel dataset, which consists of classes that are distinct from those of the base and
validation datasets. We are only given a few labeled examples for each class, resulting
in a few-shot problem. The labeled samples are often called the support set and the
remaining ones the query set. When benchmarking, it is common to use a large novel
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dataset from which artificial few-shot tasks are sampled uniformly randomly, what
we call a run. In that case, the number of classes n (named ways), the number of shots
per class k, and the number of query samples per class q are given by the benchmark.
This setting is referred to as n-way-k-shot learning. Reported performances are often
averaged over a large number of runs.

In order to exploit knowledge previously learned by models on the base dataset, a
common approach is to remove their final classification layer. The resulting models, now
seen as feature extractors, are generally termed backbones and can be used to transform the
support and query datasets into feature vectors. This is a form of transfer learning. In this
work, we do not consider the use of additional data such as other datasets [2], nor semantic
information [3]. Additional preprocessing steps may also be used on the samples and/or
on the associated feature vectors, before the classification task. Another major approach
uses meta-learning [4–9], as mentioned in Section 2.

It is important to distinguish two types of problems:

• In inductive few-shot classification, only the support dataset is available to the few-
shot classifier, and prediction is performed on each sample of the query dataset
independently of each other [9];

• In transductive few-shot classification, the few-shot classifier has access to both the
support and the full query datasets when performing predictions [10].

Both problems have connections with real-world situations. In general, inductive
few-shot corresponds to cases where data acquisition is expensive. This is the case for
FMRI data, for example, where it is difficult to generalize from one patient to another and
collect hours of training data on a patient could be harmful [11]. Alternatively, transductive
few-shot corresponds to cases where data labeling is expensive. Such a situation can occur
when experts must properly label data, but the data themselves are obtained cheaply, for
instance in numerous medical applications [12,13].

In recent years, many contributions have introduced methodologies to cope with
few-shot problems. There are many building blocks involved, including distillation [14],
contrastive learning [15], episodic training [16], mixup [17], manifold mixup [1,18], and
self-supervision [1]. As a consequence, it can appear quite opaque what the effective
components are and whether their performance can be reproduced across different datasets
or settings. Moreover, we noticed that many of these contributions report baseline perfor-
mances that can be outperformed with a simpler training pipeline.

In this paper, we are interested in proposing a very simple method combining compo-
nents commonly found in the literature and yet achieving competitive performance. We
believe that this contribution will help have a clearer view on how to efficiently implement
few-shot classification for real-world applications. Our main motivation is to define a new
baseline with good hyperparameters and training routines to compare to and to start with,
on which obtaining a performance boost will be much more challenging than starting from
a poorly trained backbone. We also aim at showing that a simple approach reaches higher
performance than increasingly complex methods proposed in the recent few-shot literature.

More precisely, in this paper:

• We introduce a very simple methodology, illustrated in Figure 1, for both inductive
and transductive few-shot classification.

• We show the ability of the proposed methodology to reach or even beat state-of-the-
art [9,19] performance on multiple standardized benchmarks of the field.

• All our models, obtained feature vectors, and training procedures are freely available
online on our github: https://github.com/ybendou/easy accessed on 14 June 2022;

• We also propose a simple demonstration of our method using live video streaming to
perform few-shot classification. The code is available at https://github.com/RafLaf/
webcam accessed on 14 June 2022.

https://github.com/ybendou/easy
https://github.com/RafLaf/webcam
https://github.com/RafLaf/webcam
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Figure 1. Illustration of our proposed method. Y: We first train multiple backbones using the base
and validation datasets. We use two cross-entropy losses in parallel: one for the classification of base
classes and the other for the self-supervised targets (rotations). We also use manifold mixup [18]. All
the backbones are trained using the exact same routine, except that their initialization is different
(random) and the order in which data batches are presented is also potentially different. AS: Then, for
each image in the novel dataset and each backbone, we generate multiple crops, then compute their
feature vectors, which we average. E: Each image becomes represented as the concatenation of the
outputs of AS for each of the trained backbones. Preprocessing: We add a few classical preprocessing
steps, including centering by removing the mean of the feature vectors of the base dataset in the
inductive case, or the few-shot run feature vectors for the transductive case, and projecting on the
hypersphere. Finally, we use a simple nearest class mean classifier (NCM) if in the inductive setting
or a soft K-means algorithm in the transductive setting.

2. Related Work

There have been many approaches proposed recently in the field of few-shot classifica-
tion. We introduce some of them following the classical pipeline. Note that our proposed
methodology uses multiple building blocks from those presented hereafter.

2.1. Data Augmentation

First, data augmentation or augmented sampling are generally used on the base dataset
to artificially produce additional samples, for example using rotations [1], crops [20], jitter,
GANs [21,22], or other techniques [23]. Data augmentation on support and query sets,
however, is less frequent. Approaches exploring this direction include [15], where the
authors propose to select the foreground objects of images by identifying the right crops
using a relatively complex mechanism, and [24], where the authors propose to mimic the
neighboring base classes’ distribution to create augmented latent space vectors.

In addition, mixup [17] and manifold mixup [18] are also used to address the challeng-
ing lack of data. Both can be seen as regularization methods through linear interpolations of
samples and labels. Mixup creates linear interpolations at the sample level, while manifold
mixup focuses on feature vectors.
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2.2. Backbone Training

Mixup is often used in conjunction with self-supervision (S2) [1] to make backbones
more robust. Most of the time, S2 is implemented as an auxiliary loss meant to train the
backbone to recognize which transformation was applied to an image [25].

A well-known training strategy is episodic training. The idea behind it boils down to
having the same training and test conditions. Thus, the backbone training strategy, often
based on gradient descent, does not select random batches, but uses batches designed as
few-shot problems [4,16,26,27].

Meta-Learning, or learning to learn, is a major line of research in the field. This
method typically learns a good initialization or a good optimizer such that new classes
can be learned in a few gradient steps [4–9]. In this regard, episodic training is often used,
and recent work leveraged this concept to generate augmented tasks in the training of the
backbone [28].

Contrastive learning aims to train a model to learn to maximize similarities between
transformed instances of the same image and minimize agreement between transformed
instances of different images [15,29–31]. Supervised contrastive learning is a variant that
has been recently used in few-shot classification, where similarity is maximized between
instances of a class instead of the same image [14,32].

2.3. Exploiting Multiple Backbones

Distillation has been recently used in the few-shot literature. The idea is to transfer
knowledge from a teacher model to a student model by forcing the latter to match the joint
probability distribution of the teacher [14,33].

Ensembling consists of the concatenation of features extracted by different backbones.
It was used to improve performances in few-shot classification [28]. It can be seen as a
more straightforward alternative to distillation. To limit the computationally expensive
training of multiple backbones, some authors propose the use of snapshots [34].

2.4. Few-Shot Classification

Over the past few years, classification methods in the inductive setting have mostly
relied on simple methods such as nearest class mean [35], cosine classifiers [36], and logistic
regression [24].

More diverse methods can be implemented in the transductive setting. Clustering
algorithms [15], embedding propagation [37], and optimal transport [38] were leveraged
successfully to outrun performances in the inductive setting by a large margin.

3. Methodology

The proposed methodology consists of 5 steps, described hereafter and illustrated in
Figure 1. In the experiments, we also report ablation results when omitting the optional
steps.

3.1. Backbone Training (Y)

We used data augmentation with random resized crops, random color jitters, and
random horizontal flips, which is standard in the field.

We used a cosine-annealing scheduler [39], where at each step, the learning rate is
updated. During a cosine cycle, the learning rate evolves between η0 and 0. At the end
of the cycle, we warm restart the learning procedure and start over with a diminished
η0. We start with η0 = 0.1 and reduce η0 by 10% at each cycle. We use 5 cycles with 100
epochs each.

We trained our backbones using the methodology called S2M2R described in [1].
Basically, the principle is to take a standard classification architecture (e.g., ResNet12 [40])
and branch a new logistic regression classifier after the penultimate layer, in addition to
the one used to identify the classes of input samples, thus forming a Y-shaped model (cf.
Figure 1). This new classifier is meant to retrieve which one of four possible rotations
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(quarters of 360° turns) has been applied to the input samples. We used a two-step forward–
backward pass at each step, where a first batch of inputs is only fed to the first classifier,
combined with manifold mixup [1,18]. A second batch of inputs is then has arbitrary
rotations applied, and this is fed to both classifiers. After this training, the backbones are
frozen.

We experimented using a standard ResNet12 as described in [40], where the feature
vectors are of dimension 640. These feature vectors are obtained by computing a global
average pooling over the output of the last convolution layer. Such a backbone contains
∼ 12 million trainable parameters. We also experimented with reduced-size ResNet12,
denoted ResNet12

(
1
2

)
, where we divided each number of feature maps by 2, resulting in

feature vectors of dimension 320, and ResNet12
(

1√
2

)
, where the number of feature maps

are divided roughly by
√

2, resulting in feature vectors of dimension 450. The numbers of
parameters are respectively ∼ 3 million and ∼ 6 million.

Using common notations of the field, if we denote x as an input sample and f as the
mathematical function of the backbone, then z = f (x) denotes the feature vector associated
with x.

From this point on, we used the frozen backbones to extract feature vectors from the
base, validation, and novel datasets.

3.2. Augmented Samples

We propose to generate augmented feature vectors for each sample from the novel
dataset. We did not perform this in the validation set as it is very computationally expensive.
To this end, we used random resized crops from the corresponding images. We obtained
multiple versions of each feature vector and averaged them. The literature has extensively
studied the role of augmentations in deep learning [41]. Here, we assumed most crops
would contain the object of interest. Therefore, the average feature vector can be used.
On the other hand, color jitter might be an invalid augmentation since some classes rely
extensively on their colors to be detected (e.g., birds or fruits).

In practice, we used ` = 30 crops per image, as larger values do not benefit accuracy
much. This step is optional.

3.3. Ensemble of Backbones

To boost performance even further, we propose to concatenate the feature vectors
obtained from multiple backbones trained using the previously described method, but with
different random seeds. To perform fair comparisons, when comparing a backbone with an
ensemble of b backbones, we reduced the number of parameters per backbone such that the
total number of parameters remains identical. We believe that this strategy is an alternative
to performing distillation, with the interest of not requiring extra parameters and being a
relatively straightforward approach. Again, this step is optional, and we perform ablation
tests in the next section.

3.4. Feature Vector Preprocessing

Finally, we applied two transformations as in [35] on feature vectors z . Denote z
the average feature vector of the base dataset if in the inductive setting or of the few-shot
problem if in transductive setting. The ideal z would center the vectors of the few-shot runs
around 0 and, therefore, would be the average vector of the combined support and query
set. The number of samples being too small to compute a meaningful average vector in
the inductive setting, we made use of the base dataset. In the transductive setting, queries
are added to the support set for mean computation. The average vector is therefore less
noisy and can be used to compute z. The first operation (C—centering of z) consists of
computing:

zC = z− z . (1)
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The second operation (H—projection of zC on the hypersphere) is then:

zCH =
zC
‖zC‖2

. (2)

3.5. Classification

Let us denote Si (i ∈ {1, . . . , n}) the set of feature vectors (preprocessed as zCH) corre-
sponding to the support set for the i-th considered class andQ the set of (also preprocessed)
query feature vectors.

In the case of inductive few-shot classification, we used a simple nearest class mean
classifier (NCM). Predictions are obtained by first computing class barycenters from labeled
samples:

∀i : ci =
1
|Si| ∑

z∈Si

z , (3)

then associating with each query the closest barycenter:

∀z ∈ Q : Cind(z, [c1, . . . , cn]) = arg min
i
‖z− ci‖2 . (4)

In the case of transductive learning, we used a soft K-means algorithm. We computed
the following sequence indexed by t, where the initial ci are computed as in Equation (3):

∀i, t :


ci

0 = ci ,

ci
t+1 = ∑

z∈Si∪Q

w(z,ci
t)

∑
z′∈Si∪Q

w(z′ ,ci
t)

z , (5)

where w(z, ci
t) is a weighting function on z, which gives it a probability of being associated

with barycenter ci
t:

w(z, ci
t) =


exp

(
−β‖z−ci

t‖2
2

)
n
∑

j=1
exp

(
−β‖z−cj

t‖2
2

) if z ∈ Q ,

1 if z ∈ Si .

(6)

Contrary to the simple K-means algorithm, we used a weighted average where weight
values are calculated via a decreasing function of the L2 distance between data points and
class barycenters—here, a softmax adjusted by a temperature value β. In our experiments,
we used β = 5, which led to consistent results across datasets and backbones. In practice,
we use a finite number of steps. By denoting c∞

i the resulting vectors, the predictions are:

∀z ∈ Q : Ctra(z, [c1
∞, . . . , cn

∞]) = arg min
i
‖z− ci

∞‖2 . (7)

4. Results
4.1. Ranking on Standard Benchmarks

We first report results comparing our method with the state-of-the-art using classical
settings and datasets. We used the following datasets:

• MiniImagenet: A dataset extracted from ImageNet with 64 base classes, 16 validation
classes, and 20 novel classes. Each class contains 600 images. The resolution is (84 × 84);

• TieredImagenet: Another subset of ImageNet with 351 base classes, 97 validation
classes, and 160 novel classes. Classes contain a variable number of samples, usually
about 1300. The resolution is (84 × 84);

• CUB-FS (Caltech-UCSD Birds-200-2011): This dataset is particularly challenging be-
cause it is only composed of pictures of birds. There are 100 base classes, 50 validation
classes, and 50 novel classes. The number of images by class is not constant, close to
60. The resolution is (50 × 50);



J. Imaging 2022, 8, 179 7 of 19

• FC-100 (Fewshot-CIFAR-100): This is a subset of CIFAR 100 (Canadian Institute for
Advanced Research 100). There are 60 base, 20 validation, and 20 novel classes
containing 600 images. Images have a low resolution (32 × 32);

• CIFAR-FS (CIFAR-Fewshot): This is also a subset of CIFAR 100. There are 60 base, 16
validation, and 20 novel classes containing 600 images. Images have a low resolution
(32 × 32).

For each method, we specified the number of trainable parameters and the accuracy of
1-shot or 5-shot runs. Experiments always used q = 15 query samples per class, and results
were averaged over 10,000 runs. Results are presented in Tables 1– 5 for the inductive
setting and Tables 6–10 for the transductive setting (the codes allowing for the reproduction
of our experiments are available at https://github.com/ybendou/easy). Reported results
for the existing methods are those specified by their respective papers. Some methods do
not include their standard deviation over multiple runs.

Let us first emphasize that our proposed methodology shows a new state-of-the-art
performance for MiniImageNet (inductive), TieredImageNet (inductive 1-shot setting)
and FC100 (transductive), while showcasing competitive or overlapping results on other
benchmarks. We believe that, combined with other more elaborate methods, these results
could be improved by a fair margin, leading to a new standard of performance for few-shot
benchmarks. In the transductive setting, the proposed methodology is less often ranked
#1, but contrary to many alternatives, it does not use any prior on class balance in the
generated few-shot problems. We provide such experiments in the Supplementary Material,
where we show that the proposed method greatly outperforms existing techniques when
considering imbalanced classes. Overall, our method has the benefit of being simpler while
achieving competitive performance over multiple benchmarks.

Table 1. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
MiniImageNet in the inductive setting.

Method 1-Shot 5-Shot

≤
12

M



SimpleShot [35] 62.85± 0.20 80.02± 0.14

Baseline++ [36] 53.97± 0.79 75.90± 0.61

TADAM [42] 58.50± 0.30 76.70± 0.30

ProtoNet [16] 60.37± 0.83 78.02± 0.57

R2-D2 (+ens) [28] 64.79± 0.45 81.08± 0.32

FEAT [43] 66.78 82.05

CNL [44] 67.96± 0.98 83.36± 0.51

MELR [45] 67.40± 0.43 83.40± 0.28

Deep EMD v2 [20] 68.77± 0.29 84.13± 0.53

PAL [14] 69.37± 0.64 84.40± 0.44

invariance-equivariance [46] 67.28± 0.80 84.78± 0.50

CSEI [19] 68.94± 0.28 85.07± 0.50

COSOC [15] 69.28± 0.49 85.16± 0.42

EASY 2×ResNet12
(

1√
2

)
(ours) 70.63± 0.20 86.28± 0.12

36
M


S2M2R [1] 64.93± 0.18 83.18± 0.11

LR + DC [24] 68.55± 0.55 82.88± 0.42

EASY 3×ResNet12 (ours) 71.75± 0.19 87.15± 0.12

https://github.com/ybendou/easy
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Table 2. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
TieredImageNet in the inductive setting.

Method 1-Shot 5-Shot

≤
12

M



SimpleShot [35] 69.09± 0.22 84.58± 0.16

ProtoNet [16] 65.65± 0.92 83.40± 0.65

FEAT [43] 70.80± 0.23 84.79± 0.16

PAL [14] 72.25± 0.72 86.95± 0.47

DeepEMD v2 [20] 74.29± 0.32 86.98± 0.60

MELR [45] 72.14± 0.51 87.01± 0.35

COSOC [15] 73.57± 0.43 87.57± 0.10

CNL [44] 73.42± 0.95 87.72± 0.75

invariance-equivariance [46] 72.21± 0.90 87.08± 0.58

CSEI [19] 73.76± 0.32 87.83± 0.59

ASY ResNet12 (ours) 74.31± 0.22 87.86± 0.15

36
M

 S2M2R [1] 73.71± 0.22 88.52± 0.14

EASY 3×ResNet12 (ours) 74.71± 0.22 88.33± 0.14

Table 3. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
CIFAR-FS in the inductive setting.

Method 1-Shot 5-Shot

≤
12

M


S2M2R [1] 63.66± 0.17 76.07± 0.19

R2-D2 (+ens) [28] 76.51± 0.47 87.63± 0.34

invariance-equivariance [46] 77.87± 0.85 89.74± 0.57

EASY 2×ResNet12
(

1√
2

)
(ours) 75.24± 0.20 88.38± 0.14

36
M

 S2M2R [1] 74.81± 0.19 87.47± 0.13

EASY 3×ResNet12 (ours) 76.20± 0.20 89.00± 0.14

Table 4. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
CUB-FS in the inductive setting.

Method 1-Shot 5-Shot

≤
12

M



FEAT [43] 68.87± 0.22 82.90± 0.10

ProtoNet [16] 66.09± 0.92 82.50± 0.58

DeepEMD v2 [20] 79.27± 0.29 89.80± 0.51

EASY 4×ResNet12
(

1
2

)
(ours) 77.97± 0.20 91.59± 0.10

36
M

 S2M2R [1] 80.68± 0.81 90.85± 0.44

EASY 3×ResNet12 (ours) 78.56± 0.19 91.93± 0.10
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Table 5. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
FC-100 in the inductive setting.

Method 1-Shot 5-Shot

≤
12

M



DeepEMD v2 [20] 46.60± 0.26 63.22± 0.71

TADAM [42] 40.10± 0.40 56.10± 0.40

ProtoNet [16] 41.54± 0.76 57.08± 0.76

invariance-equivariance [46] 47.76± 0.77 65.30± 0.76

R2-D2 (+ens) [28] 44.75± 0.43 59.94± 0.41

EASY 2×ResNet12
(

1√
2

)
(ours) 47.94± 0.19 64.14± 0.19

36 M EASY 3×ResNet12 (ours) 48.07± 0.19 64.74± 0.19

Table 6. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
MiniImageNet in the transductive setting.

Method 1-Shot 5-Shot

≤
12

M



TIM-GD [47] 73.90 85.00

ODC [48] 77.20± 0.36 87.11± 0.42

PEMnE-BMS∗ [38] 80.56± 0.27 87.98± 0.14

SSR [49] 68.10± 0.60 76.90± 0.40

iLPC [50] 69.79± 0.99 79.82± 0.55

EPNet [37] 66.50± 0.89 81.60± 0.60

DPGN [51] 67.77± 0.32 84.60± 0.43

ECKPN [52] 70.48± 0.38 85.42± 0.46

Rot + KD + POODLE [53] 77.56 85.81

EASY 2×ResNet12
(

1√
2

)
(ours) 82.31± 0.24 88.57± 0.12

36
M



SSR [49] 72.40± 0.60 80.20± 0.40

fine-tuning(train+val) [54] 68.11± 0.69 80.36± 0.50

SIB + E3BM [55] 71.40 81.20

LR + DC [24] 68.57± 0.55 82.88± 0.42

EPNet [37] 70.74± 0.85 84.34± 0.53

TIM-GD [47] 77.80 87.40

PT+MAP [56] 82.92± 0.26 88.82± 0.13

iLPC [50] 83.05± 0.79 88.82± 0.42

ODC [48] 80.64± 0.34 89.39± 0.39

PEMnE-BMS∗ [38] 83.35± 0.25 89.53± 0.13

EASY 3×ResNet12 (ours) 84.04± 0.23 89.14± 0.11
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Table 7. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
CUB-FS in the transductive setting.

Method 1-Shot 5-Shot

≤
12

M



TIM-GD [47] 82.20 90.80

ODC [48] 85.87 94.97

DPGN [51] 75.71± 0.47 91.48± 0.33

ECKPN [52] 77.43± 0.54 92.21± 0.41

iLPC [50] 89.00± 0.70 92.74± 0.35

Rot + KD + POODLE [53] 89.93 93.78

EASY 4×ResNet12
(

1
2

)
(ours) 90.50± 0.19 93.50± 0.09

36
M


LR + DC [24] 79.56± 0.87 90.67± 0.35

PT+MAP [56] 91.55± 0.19 93.99± 0.10

iLPC [50] 91.03± 0.63 94.11± 0.30

EASY 3×ResNet12 (ours) 90.56± 0.19 93.79± 0.10

Table 8. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
FC-100 in the transductive setting.

Method 1-Shot 5-Shot

≤
12

M

 TADAM [42] 40.10± 0.40 56.10± 0.40

EASY 2×ResNet12
(

1√
2

)
(ours) 54.47± 0.24 65.82± 0.19

36
M



SIB + E3BM [55] 46.00 57.10

fine-tuning (train) [54] 43.16± 0.59 57.57± 0.55

ODC [48] 47.18± 0.30 59.21± 0.56

fine-tuning (train+val) [54] 50.44± 0.68 65.74± 0.60

EASY 3×ResNet12 (ours) 54.13± 0.24 66.86± 0.19

Table 9. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
CIFAR-FS in the transductive setting.

Method 1-Shot 5-Shot

≤
12

M



SSR [49] 76.80± 0.60 83.70± 0.40

iLPC [50] 77.14± 0.95 85.23± 0.55

DPGN [51] 77.90± 0.50 90.02± 0.40

ECKPN [52] 79.20± 0.40 91.00± 0.50

EASY 2×ResNet12
(

1√
2

)
(ours) 86.99± 0.21 90.20± 0.15

36
M



SSR [49] 81.60± 0.60 86.00± 0.40

fine-tuning (train+val) [54] 78.36± 0.70 87.54± 0.49

iLPC [50] 86.51± 0.75 90.60± 0.48

PT+MAP [56] 87.69± 0.23 90.68± 0.15

EASY 3×ResNet12 (ours) 87.16± 0.21 90.47± 0.15
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Table 10. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
TieredImageNet in the transductive setting.

Method 1-Shot 5-Shot

≤
12

M



PT+MAP [56] 85.67± 0.26 90.45± 0.14

TIM-GD [47] 79.90 88.50

ODC [48] 83.73± 0.36 90.46± 0.46

SSR [49] 81.20± 0.60 85.70± 0.40

Rot + KD + POODLE [53] 79.67 86.96

DPGN [51] 72.45± 0.51 87.24± 0.39

EPNet [37] 76.53± 0.87 87.32± 0.64

ECKPN [52] 73.59± 0.45 88.13± 0.28

iLPC [50] 83.49± 0.88 89.48± 0.47

ASY ResNet12 (ours) 83.98± 0.24 89.26± 0.14

36
M



SIB + E3BM [55] 75.60 84.30

SSR [49] 79.50± 0.60 84.80± 0.40

fine-tuning (train+val) [54] 72.87± 0.71 86.15± 0.50

TIM-GD [47] 82.10 89.80

LR + DC [24] 78.19± 0.25 89.90± 0.41

EPNet [37] 78.50± 0.91 88.36± 0.57

ODC [48] 85.22± 0.34 91.35± 0.42

iLPC [50] 88.50± 0.75 92.46± 0.42

PEMnE-BMS∗ [38] 86.07± 0.25 91.09± 0.14

EASY 3×ResNet12 (ours) 84.29± 0.24 89.76± 0.14

4.2. Ablation Study

To better understand the relative contributions of components in the proposed method,
we also compare, for each dataset, the performance of various combinations in Table 11
for the inductive setting and Table 12 for the transductive setting. Interestingly, the full
proposed methodology (EASY) is not always the most efficient. We believe that for large
datasets such as MiniImageNet and TieredImageNet, the considered ResNet12 backbones
contain too few parameters. When reducing this number for ensemble solutions, the drop of
performance due to the reduction in size is not compensated by the diversity of the multiple
backbones. All things considered, only AS is consistently beneficial to the performance.
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Table 11. Ablation study of the steps of proposed solution in inductive setting, for a fixed number of

trainable parameters in the considered backbones. When using ensembles, we use 2×ResNet12
(

1√
2

)
instead of a single ResNet12.

Dataset E AS 1-Shot 5-Shot

MiniImageNet

68.43± 0.19 83.78± 0.13
X 70.84± 0.19 85.70± 0.13

X 68.69± 0.20 84.84± 0.13
X X 70.63± 0.20 86.28± 0.12

CUB-FS

74.13± 0.20 89.08± 0.11
X 77.40± 0.20 91.15± 0.10

X 75.01± 0.20 89.38± 0.11
X X 77.59± 0.20 91.07± 0.11

CIFAR-FS

73.38± 0.21 87.42± 0.15
X 74.26± 0.21 88.16± 0.15

X 74.36± 0.21 87.82± 0.15
X X 75.24± 0.20 88.38± 0.14

FC-100

45.68± 0.19 62.78± 0.19
X 46.43± 0.19 64.16± 0.19

X 47.52± 0.19 63.92± 0.19
X X 47.94± 0.20 64.14± 0.19

TieredImageNet

72.52± 0.22 86.79± 0.15
X 74.17± 0.22 87.81± 0.14

X 72.14± 0.22 86.66± 0.15
X X 73.36± 0.22 87.37± 0.15

Table 12. Ablation study of the steps of proposed solution in transductive setting for a fixed
number of trainable parameters in the considered backbones. When using ensembles, we use

2×ResNet12
(

1√
2

)
instead of a single ResNet12.

Dataset E AS 1-Shot 5-Shot

MiniImageNet

80.42± 0.23 86.72± 0.13
X 83.02± 0.23 88.36± 0.12

X 80.27± 0.23 87.45± 0.12
X X 82.31± 0.24 88.57± 0.12

CUB-FS

86.93± 0.21 91.53± 0.11
X 89.80± 0.20 93.12± 0.10

X 87.28± 0.21 91.89± 0.10
X X 90.05± 0.19 93.17± 0.10

CIFAR-FS

84.18± 0.23 89.56± 0.15
X 85.55± 0.23 90.07± 0.15

X 84.89± 0.22 89.60± 0.15
X X 86.99± 0.21 90.20± 0.15

FC-100

51.74± 0.23 65.39± 0.19
X 52.93± 0.23 66.51± 0.19

X 53.39± 0.23 65.71± 0.19
X X 54.47± 0.24 65.82± 0.19

TieredImageNet

82.32± 0.24 88.45± 0.15
X 83.98± 0.24 89.26± 0.14

X 81.48± 0.25 88.40± 0.15
X X 83.20± 0.25 88.92± 0.14
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4.3. Discussion

Regarding the inductive setting, the proposed method achieves state-of-the-art per-
formance on MiniImagenet by a fair margin. On TieredImagenet, only S2M2R performs
better in the five-shot setting. This can be explained by the fact that TieredImagenet is the
largest of the considered datasets and it requires more parameters to be trained efficiently,
reducing the effectiveness of the proposed ensemble approach. We also noticed subpar
performance on CIFAR-FS, and we believe that this is due to the small resolution of images
in the dataset, which cripples the augmented sample step. On the FC-100 dataset, our
results in the inductive setting overlap with [46]; however, our method has the advantage
of having lower confidence intervals compared to other methods on the same benchmark.
Regarding the transductive setting, our method achieves competitive results without any
prior on the number of classes. This is important since multiple methods tend to fail
when the number of samples per class is different, which we show in the Supplementary
Material. Our explanation is that multiple methods tend to overexploit this prior. This
concern was first raised by [57]. Overall, our method is easy to implement and requires few
hyperparameters to be tuned compared to other competitive methods.

5. Conclusions

In this paper, we introduced a simple backbone to perform few-shot classification
in both inductive and transductive settings. Combined with augmented samples and
ensembling, we showed its ability to reach state-of-the-art results when deployed using
simple classifiers on multiple standardized benchmarks, even beating previous methods
by a fair margin (>1%) in some cases. We expect this methodology to serve as a baseline for
future work.
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Appendix A. Transductive Tests with Imbalanced Settings

Following the methodology recently proposed in [57], we also report performance
in the transductive setting when the number of query vectors is varying for each class
and is unknown. Results are presented in Tables A1–A3. The uncertainties of previously
published methods were not reported by [57]. We note that the proposed methodology is
able to outperform existing ones by a fair margin.

https://github.com/ybendou/easy.
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Table A1. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
MiniImageNet in the imbalanced transductive setting.

Method 1-Shot 5-Shot

≤
12

M



MAML [4] 47.6 64.5

LR+ICI [58] 58.7 73.5

PT+MAP [56] 60.1 67.1

LaplacianShot [59] 65.4 81.6

TIM [47] 67.3 79.8

α-TIM [57] 67.4 82.5

ASY ResNet12 (ours) 75.65± 0.25 86.35± 0.14

36
M



PT+MAP [56] 60.6 66.8

SIB [60] 64.7 72.5

LaplacianShot [59] 68.1 83.2

TIM [47] 69.8 81.6

α-TIM [57] 69.8 84.8

EASY 3×ResNet12 (ours) 76.04± 0.27 87.23± 0.15

Table A2. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
TieredImageNet in the imbalanced transductive setting.

Method 1-Shot 5-Shot

≤
12

M



Entropy-min [54] 61.2 75.5

PT+MAP [56] 64.1 70.0

LaplacianShot [59] 72.3 85.7

TIM [47] 74.1 84.1

LR+ICI [58] 74.6 85.1

α-TIM [57] 74.4 86.6

ASY ResNet12 (ours) 78.15± 0.27 87.65± 0.17

36
M



Entropy-min [54] 62.9 77.3

PT+MAP [56] 65.1 71.0

LaplacianShot [59] 73.5 86.8

TIM [47] 75.8 85.4

α-TIM [57] 76.0 87.8

EASY 3×ResNet12 (ours) 78.46± 0.28 87.85± 0.13

Table A3. The 1-shot and 5-shot accuracy of state-of-the-art methods and the proposed solution on
CUB-FS in the imbalanced transductive setting.

Method 1-Shot 5-Shot

≤
12

M



PT+MAP [56] 65.1 71.3

Entropy-min [54] 67.5 82.9

LaplacianShot [59] 73.7 87.7

TIM [47] 74.8 86.9

α-TIM [57] 75.7 89.8

ASY ResNet12 (ours) 81.24± 0.27 87.27± 0.14

36 M EASY 3×ResNet12 (ours) 83.63± 0.25 92.35± 0.09
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Appendix B. Additional Ablation Studies

Appendix B.1. Influence of the Temperature in the Transductive Setting

In Figure A1, we show how different values of the temperature β of the soft K-means
influence the performance of our model. We observed that β = 5 seems to lead to the
best results on the two considered datasets, which is why we chose this value in our
other experiments. Note that we used three ResNet12 with 30 augmented samples in this
experiment.

Appendix B.2. Influence of the Number of Crops

In Figure A2, we show how the performance of our model is influenced by the number
of crops ` used during augmented sampling (AS). When using ` = 1, we report the
performance of the method using no crops, but a global reshape instead. We observed that
the performance keeps increasing as long as the number of crops used is increased, except
for a small drop in performance when switching from a global reshape to crops—this drop
can easily be explained as crops are likely to miss the object of interest. However, the
computational time to generate the crops also increases linearly. Therefore, we used ` = 30
as a trade-off between performance and time complexity. Here, we used a single ResNet12
for our experiments.

Appendix B.3. Influence of the Number of Backbones

In Figure A3, we show how the performance of our model is influenced by the number
of backbones b used during the ensemble step (E). The performance increases steadily with
a strong diminishing return. We used 30 augmented samples in this experiment.

Figure A1. Ablation study of temperature of the soft K-means used in the transductive setting; we
performed 105 runs for each value of β.
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Figure A2. Ablation study of augmented samples; we performed 105 runs for each value of `.

Figure A3. Ablation study of the number of backbones; we performed 105 runs for each value of b.
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