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Abstract: Given a spherical set of points, we consider the detection of cocircular subsets of the data.
We distinguish great circles from small circles, and develop algorithms for detecting cocircularities of
both types. The suggested approach is an extension of the Hough transform. We address the unique
parameter-space quantization issues arising due to the spherical geometry, present quantization
schemes, and evaluate the quantization-induced errors. We demonstrate the proposed algorithms
by detecting cocircular cities and airports on Earth’s spherical surface. These results facilitate the
detection of great and small circles in spherical images.
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1. Introduction

Given a spherical set of points, consider the problem of detecting the largest subset of
cocircular points, i.e., the largest subset of points lying on the same circle on the sphere.
One brute-force solution, related to RANSAC [1], is to examine all possible triplets of points
in the point set. Note that each triplet (if not colinear) defines a plane, the intersection of the
plane with the sphere defines a circle, and each point in the triplet clearly lies on the circle.
The point set can then be searched for additional points lying on that circle. This O(N4)
procedure, where N is the cardinality of the point set, is prohibitive for sizable point sets.

A cocircular subset of a spherical set of points is obviously coplanar. In special cases,
the plane passes through the center of the sphere. In such cases, the intersection of the
plane and the sphere is referred to as a great circle; see the green circle in Figure 1 (right).
In the general case, when the plane does not pass through the center of the sphere, the
intersection of the plane and the sphere is referred to as a small circle; see the blue and red
circles in Figure 1 (right).

In the classical Hough transform [2], the problem of finding colinear points in the
plane is replaced by the dual problem of finding concurrent lines or curves in a parameter
space, often referred to as the Hough space. In practice, the parameter space is quantized
and represented by an accumulator array, a voting process takes place, and finding the
intersection of lines or curves in the parameter space is implemented as a search for the
maximum. The Hough transform is fundamentally robust with respect to outliers, and
has been formally associated with the M-estimation methodology for robust regression [3].
The Hough transform has also been related to conformal geometric algebra [4]. The time-
complexity of the classical Hough transform is linear in the cardinality N of the dataset.
Thus, when looking for the largest co-linear subset in a planar set of points, the Hough
transform reduces the computational load from O(N3) (the cost of checking each possible
pair of points in the data; determining the line that connects the pair; and, for each other
data-point, testing whether it lies on that line) to O(N).

The suggested approach to finding the largest subset of cocircular points in a spherical
set of points is inspired by the Hough transform. Specifically, we characterize the circles
(on the sphere) passing through a given point in the spherical set. The characterization is in
the form of an equation constraining the parameters of the circles. We then search for the
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largest intersection of such equations, i.e., for the parameters specifying the circle passing
through the largest possible number of points in the set.

Figure 1. (Left) The angular coordinates θi and ϕi of a point. (Right) The intersection of the sphere
with a plane associated with the primary point P is a circle. The intersection of the sphere with each
of the associated parallel planes is a different circle with a different radius. For example, the red plane
of which the normal direction is determined by point P intersects the sphere at the red circle. The
parallel plane that passes through the origin of the sphere is a great circle (green).

As in the classical Hough transform, once the best-supported circle, i.e., the circle
passing through the largest possible number of points, has been determined, finding the
second-best-supported circle is straightforward. This can be reliably accomplished by
identifying the data-points supporting the best circle, removing them from the dataset, and
eliminating their contribution to the accumulator array (“unvoting”) [5–7]. Circle detection
and unvoting can be iterated until all circles are found.

The precise function of the Hough transform is the detection of a geometric primitive,
such as a straight line or circle, common to the largest possible subset of points in the
dataset. Identifying the relevant points themselves can then be easily accomplished [5], but
is not always necessary. Note that it is commonly said that the Hough transform detects
geometric primitives in a digital image, but accomplishing this task in an actual image
requires edge detection as a preprocessing step.

Images acquired using omnidirectional cameras can be represented as spherical images.
Straight line segments in the scene are then transformed to great circle arcs in the spherical
image. This has led to some interest in the detection of great circles in spherical images.
With this motivation, Vasseur and Mouaddib [8] and Torii and Imiya [9] outlined a Hough
algorithm and a randomized Hough algorithm, respectively, for great-circle detection on
a sphere. These ideas have modern applications, such as road-line detection in driver-
assistance systems [10].

In the detection of vanishing points, the search for convergence points in the image
plane can be usefully replaced by the intersection of great circles on the Gaussian sphere [11].
This important task has been addressed using specialized Hough algorithms, leading to
developments in spherical tessellation and discretization schemes [12,13] that are also
useful in great-circle detection [14,15].

In geophysics, interest in great and small circle fitting arises in the context of volcano
distribution analysis [16,17]. In these studies, specialized map projections transform great
circles into an exact (gonomonic projection [17]) or approximate (UTM [16]) straight lines,
allowing the use of the straight-line Hough transform [2] for great-circle detection. In
the context of plate tectonics, Wessel [18] outlined the principles of a Hough transform
for great-circle detection in the true spherical domain and sketched its generalization to
small-circle detection. Wessel’s insightful concepts [18] have so far received surprisingly
little attention.
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In this paper, we present comprehensive solutions for the detection of cocircular
subsets of a spherical set of points. We describe a geometric framework that supports both
great- and small-circle detection and provide algorithms for both cases. We address the
unique parameter-space quantization issues arising due to the spherical geometry, present
quantization schemes, and evaluate the quantization-induced errors. We demonstrate the
proposed algorithms by detecting cocircular cities and airports on Earth’s spherical surface.

2. Fundamentals

In this article, given a set of N >> 1 co-spherical points, we present a way to detect
the circle that passes through the largest possible number of points in the set. It is easy to
show that the circle itself necessarily lies on the sphere.

A point in 3D space can be defined by its spherical coordinates, consisting of the radial
distance R from the origin, the polar angle θ, and the azimuthal angle ϕ; see Figure 1 (left).
Assuming co-spherical points, point i is determined by the angular coordinates θi and
ϕi alone.

Given an anchor point in 3D space and a normal direction, one can determine a plane
that passes through the anchor point and fits the normal direction. By itself, a normal
direction defines a set of parallel planes.

Viewing the angular coordinates of a (primary) point on the sphere as a normal
direction therefore associates a set of parallel planes with that point. The intersection of
each such plane with the sphere is a (primary) circle, as shown in Figure 1 (right).

Any (secondary) point on a primary circle of radius r (point S1 in Figure 2), viewed as
a normal direction, defines a secondary circle of radius r passing through the primary point
(point P in Figure 2). Thus, given a primary point and a radius r, each secondary point is
the center of a circle of radius r passing through the primary point.

Figure 2. Each primary point (blue point P) defines a primary circle of radius r (blue). Each secondary
point, such as the red point S1 on the primary circle, defines a secondary circle of radius r (red)
passing through the primary point.

Since this property holds for any secondary point on a primary circle, a set of primary
circles for primary points located on the same circle will intersect at a specific secondary
point, which is the center of the circle passing through all the primary points. This is
illustrated in Figure 3, where the red, blue, and green points are primary points on the
same (black) circle of radius r. The corresponding primary circles of radius r intersect at
the black secondary dot S, which defines the secondary circle (black) passing through all
the primary points.
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Figure 3. The red, green, and blue points (P1, P2, P3) are primary points located on the same circle
(black). Each primary point defines a primary circle. All the primary circles intersect at a secondary
point (black point S). That point defines a secondary circle (black) passing through the primary points.

Now, given a set of unit co-spherical points, i.e., a set of points S = {(θi, ϕi)} located
on the unit sphere, we look for the normal direction (θ, ϕ) that determines the circle of
(pre-defined) radius r passing through the largest possible subset of points in S. The
problem amounts to finding the largest co-circular (with given radius r) subset of S. We
approach it by viewing each point (θi, ϕi) as a primary point corresponding to a primary
circle of radius r. We view (θ, ϕ) as a secondary point corresponding to a secondary circle
on which a point (θi, ϕi) lies. We select (θ, ϕ), compatible with the largest possible number
of primary points (θi, ϕi). In other words, we select (θ, ϕ), which is the largest intersection
of primary circles.

As just presented, the problem and its solution strategy can be regarded as a gen-
eralization of the classical Hough transform for circles of known radius in the plane. In
principle, one might indeed solve the problem by allocating a memory array on a spher-
ical surface and incrementing memory cells on the primary circles corresponding to the
data-set S = {(θi, ϕi)} (voting). The memory cell with the largest accumulation will then
correspond to (θ, ϕ), which is the largest intersection of primary circles, i.e., the normal
direction defining the circle of radius r passing through the largest possible subset of points
in S.

In practice, working with spherical memory arrays is highly inconvenient. We there-
fore carry out the computation using a planar memory array, where the orthogonal planar
axes are θ and ϕ. Note, however, that the mapping of the conceptual spherical memory
array to a planar array is non-trivial in both theory and practice, as is the drafting of planar
maps of planet Earth [19]. As will be seen, this difficulty reveals itself in the context of the
parameter-space quantization.

We can summarize these concepts as follows: Given a (unit) sphere and a radius r,

Property 1. A primary point (θi, ϕi) on the sphere corresponds to a curve in the (θ, ϕ) parameter
plane. The curve can be viewed as the mapping of the primary circle associated with the primary
point from the sphere to the (θ, ϕ) plane.

Property 2. A point in the (θ, ϕ) parameter plane corresponds to a secondary circle of radius r on
the sphere.

Property 3. Primary points lying on the same circle of radius r on the sphere correspond to curves
through a common point in the (θ, ϕ) parameter plane.

In the next section, we determine θ as a function of ϕ (or ϕ as a function of θ ). This is the
voting pattern associated with a data point (θi, ϕi) ∈ S.
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3. The Voting Pattern
3.1. Derivation of the Voting Pattern

Consider a primary point (Xi, Yi, Zi) on a unit sphere. We proceed to express the equa-
tion of the corresponding family of primary circles lying on parallel planes, as illustrated in
Figure 1 (right). Generally, the equation of a plane in 3D space is of the form

ax + by + cz = d (1)

Note that (a, b, c) is the normal to the plane, and if it is normalized such that a2 + b2 +
c2 = 1, then d is the distance of the plane from the origin.

Using Pythagoras‘ theorem, for a unit sphere, the relation between d and the radius r
of the circle is (see Figure 4):

r =
√

1− d2 (2)

Figure 4. The relation between d and the circle radius r. P is a primary point on a unit sphere. The
blue circle is the primary circle of radius r defined by P. The triangle CFO is right-angled.

In Equation (1), (a, b, c) is the normal to the plane. Here the normal is defined by the
primary point. In terms of its angular coordinates (θi, ϕi),

~n =
(
a b c

)
=
(
Xi Yi Zi

)
=
(
sin θi cos ϕi sin θi sin ϕi cos θi

)
(3)

Thus, the equation of the plane containing the primary circle is:

(
sin θi cos ϕi sin θi sin ϕi cos θi

)x
y
z

 = d (4)

The primary circle itself is the intersection of this plane with the unit sphere. In
spherical coordinates, a point (x, y, z) on the unit sphere isx

y
z

 =

sin θ cos ϕ
sin θ sin ϕ

cos θ

 (5)

Substituting in the plane Equation (4) we obtain

(
sin θi cos ϕi sin θi sin ϕi cos θi

)sin θ cos ϕ
sin θ sin ϕ

cos θ

 = d (6)
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Rearranging this, we obtain a relation between the angular coordinates θ, ϕ of sec-
ondary points on the primary circle.

cos θ cos θi + sin θ cos ϕ sin θi cos ϕi + sin θ sin ϕ sin θi sin ϕi = d

cos θ cos θi + sin θ sin θi(cos ϕ cos ϕi + sin ϕ sin ϕi) = d

cos θ cos θi + sin θ sin θi cos (ϕ− ϕi) = d

cos (ϕ− ϕi) =
d

sin θ sin θi
− cot θ cot θi (7)

ϕI = 2πn + cos−1 (
d

sin θ sin θi
− cot θ cot θi) + ϕi

ϕI I = 2πn− cos−1 (
d

sin θ sin θi
− cot θ cot θi) + ϕi

n ∈ Z (8)

For a given primary point (θi, ϕi) and a plane distance d, Equation (8) determines the
azimuthal angle ϕ of a secondary point in terms of the polar angle θ. The two solutions
reflect the fact that a circle of latitude (defined by θ) that intersects a primary circle (ex-
cluding the two circles of latitude that osculate the primary circle) intersects the primary
circle at two points; see Figures 2 and 3. The dependence on n is due to the periodicity of ϕ.
Figure 5 shows the locus of {θ,ϕ} pairs for selected values of θi, ϕi, and d.

As shown in Figure 5 (top), for the case of a great circle (d = 0), we can express θ as a
single-valued function of ϕ. Substituting d = 0 in Equation (7),

cos (ϕ− ϕi) = − cot θ cot θi (9)

Solving for θ,

θ = πn− cot−1 (cos (ϕ− ϕi) tan θi) n ∈ Z (10)
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Figure 5. The locus of {θ,ϕ} pairs for selected values of θi, ϕi, and d. (a,b) The case of d = 0. (a): for
two primary points with θi = 70◦; blue: ϕi = 120◦, red: ϕi = 0◦. (b): for three primary points with
ϕi = 45◦; blue: θi = 60◦, red: θi = 30◦, green: θi = 150◦. (c,d) Same as (a,b) but for d = 0.5. (e)
Illustrating the dependence on r = r(d). Here the primary point is ϕi = 180◦, θi = 70◦.

3.2. Domain and Range of the Voting Pattern

We have so far seen that for a given primary point (θi, ϕi), the ϕ coordinate of a
secondary point (θ, ϕ) is obtained by substituting the θ coordinate in Equation (8). In this
subsection, we proceed to show the dependence of the domain and the range of ϕ as a
function of θ, as represented by Equation (8), on the primary point coordinates (θi, ϕi) and
the distance d.

As shown in Figure 4, for a given distance d > 0, each (spherical) circle of radius r
(Equation (2)) on a unit sphere is uniquely defined by one (spherical) point on the unit
sphere. Any such spherical point can be represented by the spherical coordinates θ ∈ [0, π)
and ϕ ∈ [0, 2π). Therefore, any spherical circle with radius r < 1 is uniquely defined by
θ ∈ [0, π) and ϕ ∈ [0, 2π).

In the case of great circles, d = 0, the points (θ, ϕ) and (π − θ, π + ϕ) (red points in
Figure 6) define the same plane. In other words, each great circle (red) is represented by
two spherical points, one at each hemisphere. Consider the subset of spherical points in
the range θ ∈ [0, π) and ϕ ∈ [0, π). There is a bijective transformation from this subset to
the set of great circles on the unit sphere. To conclude, each spherical point with θ ∈ [0, π)
and ϕ ∈ [0, π) uniquely defines a great circle.

Figure 6. In the case of the great circles, d = 0, two antipodal spherical points (red), one at each
hemisphere, define the same great circle.

Returning to the general case, for a given primary point (θi, ϕi), the spherical points
(θ, ϕ) that satisfy Equation (8) represent the secondary circles on which the primary point
lies. We are interested in secondary points with ϕ ∈ [0, 2π), so n is selected such that
ϕI , ϕI I ∈ [0, 2π).
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Given a primary point and d, the domain of Equation (8) consists of θ coordinates of
the secondary points. The θ value of the secondary points are such that the argument of the
inverse cosine function satisfies

d
sin θ sin θi

− cot θ cot θi ∈ [−1, 1]

| d
sin θ sin θi

− cot θ cot θi| ≤ 1∣∣∣∣d− cos θ cos θi
sin θ sin θi

∣∣∣∣ ≤ 1 (11)

Denote by θ I,I I
lim the limiting values of θ, i.e., the values corresponding to the two circles

of latitude osculating the primary circle:

d− cos θ I,I I
lim cos θi

sin θ I,I I
lim sin θi

= ±1

d− cos θ I,I I
lim cos θi = ± sin θ I,I I

lim sin θi

cos (θ I,I I
lim ∓ θi) = d

θ I,I I
lim = 2πn± cos−1(d)± θi (12)

We choose n such that θ I,I I
lim ∈ [0, π). Therefore, given a primary point and a distance

d, the θ coordinate of any point on the secondary circle lies between θ I
lim ∈ [0, π) and

θ I I
lim ∈ [0, π). Note that the largest difference between θi (of the primary point) and θ of a

secondary point is obtained for any of the limiting values θ = θ I,I I
lim . The difference is the

angle between the radius vectors pointing to the primary point and to either of the two
points of osculation, and this angle is equal to cos−1 d.

3.3. Sphere of Radius R

The result expressed by Equations (8) and (10) can be easily generalized from the unit
sphere to a sphere of radius R. The vector representing a point on the sphere (Equation (5))
is multiplied by R. Substituting in Equation (4), we obtain

R(cos θ cos θi + sin θ sin θi cos (ϕ− ϕi)) = d

where, generalizing Equation (2), d is now related to the radius of the circle by d =
√

R2 − r2.
Thus, Equations (6) and (8) will hold if d is replaced by dR, where

dR =
d
R

=

√
R2 − r2

R
=

√
1− (

r
R
)

2

So, technically, an algorithm to search for circles of radius r on a unit sphere can be
readily applied to spheres of radius R by normalizing the circle radius r by R.

4. Algorithm for Great-Circle Detection

In this section, we present an algorithm for finding great circles on a sphere. More
accurately, given a set S = {(θi, ϕi)} of N co-spherical points, we find the great circle that
passes through the largest subset of S. Specifically, the (secondary) great circle passing
through the largest possible subset of (primary) points is defined by the (secondary) point
(ϕmax, θmax). The algorithm belongs to the Hough transform family, since it is based on
voting in a quantized parameter space.

The parameter plane is (ϕ, θ) is limited to the rectangle ϕ ∈ [0, π) θ ∈ [0, π) and
tessellated by rectangular cells. Note that, in the case of great circles, Equation (10) specifies
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θ as a function of ϕ, hence the parameterization is expressed as (ϕ, θ). In the general case,
where Equation (8) determines ϕ as a function of θ, the parametrization will be written
as (θ, ϕ). Each cell represents a subset of (secondary) spherical points, and is of the form
ϕ ∈ [ϕ̃ − ∆ϕ

2 , ϕ̃ + ∆ϕ
2 ] and θ ∈ [θ̃ − ∆θ

2 , θ̃ + ∆θ
2 ], where (ϕ̃, θ̃) is the center of the cell. In

common Hough algorithms, the cells are of uniform shape and size, their centers form a
set of rectangular grid points, and each cell is represented by an accumulator M(i, j) in a
memory array, referred to as the accumulator array.

For each (primary) point in the data-set, we compute θ as a function of ϕ (Equation (10))
and increment the accumulators M(i, j) corresponding to cells along the θ(ϕ) curve. The
accumulation stage of the algorithm can be visualized as drawing the discretized curves
θ(ϕ) in the (ϕ, θ) parameter plane for all primary points. Eventually, the indices (imax, jmax)
of the accumulator with the maximal reading represent the parameters (ϕmax, θmax) of
the great circle. Rather than determining all the cells that the curve θ(ϕ) passes through,
the common Hough transform practice is to approximate the process by sampling the
argument (ϕ) and quantizing the function (θ). This leads in our case to Algorithm 1:

Algorithm 1: great-circle detection
Initialize the matrix (accumulator array) M with zeros.
For each primary point 1 to N

For each ϕ ∈ [0, π) step ∆ϕ
Calculate θ(ϕ) by Equation (10).
Round each θ(ϕ) to the nearest integer multiple of ∆θ.
Increment the accumulator of M corresponding to (ϕ, θ).

Find ϕmax and θmax corresponding to the entry with the largest accumulation in M.

The computational complexity of the algorithm is linear in the number of primary
points N. With rectangular tessellation of the parameter plane, the computational load also
depends on the number of discrete ϕ values, Nϕ = π/∆ϕ, and on the number of discrete
θ values, Nθ = π/∆θ. Specifically, the computational complexity of the voting stage is
O(N · Nϕ) and that of the search stage is O(Nϕ · Nθ).

Note that the approximation, sampling θ and quantizing ϕ rather than determining
the cells that the curve θ(ϕ) passes through, leads to a pitfall. Since the magnitude of the
slope of θ(ϕ) can be large, the discretized θ(ϕ) curves may not be digitally connected [20].
Thus, they may not intersect in the digital domain even though they do intersect in the
continuous domain. This hazard may not be apparent in cases where N is large and
intersections are dense, but may manifest itself in cases where N is small. This may then
lead to peak-spreading in the parameter plane, and consequently to misdetection and poor
localization of peaks. In contrast, if the approximation is discarded and the cells intersected
by the curve are incremented, the discretization of the curve amounts to the classical square
quantization scheme [21], and the discretized curve is digitally connected.

5. Algorithm for General (Radius r) Circle Detection on a Sphere

We now consider the more general problem—detecting circles of any given radius r
on the sphere. Here, the given circle radius may not coincide with the radius of the sphere;
hence, the circles to be detected are not necessarily great circles. Formally, given a set
S = {(θi, ϕi)} of co-spherical points and a circle radius r, we find the circle of radius r
passing through the largest subset of S. In this case, the parameter plane is limited to a
larger rectangle θ ∈ [0, π) ϕ ∈ [0, 2π). We compute ϕI and ϕI I as a function of θ for each
primary point using Equation (8), and increment the accumulators corresponding to cells
intersected by the ϕI,I I(θ) curves. Approximating the process by sampling the argument θ
and quantizing the functions ϕI,I I leads to Algorithm 2:
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Algorithm 2: General (any given radius r) circle detection on a sphere
Initialize the matrix (accumulator array) M with zeros.
Normalize the radius r by the sphere radius R.
Calculate d by Equation (2).
For each primary point 1 to N

For each θ ∈ [0, π) step ∆θ
If θ satisfies Equation (11) then

Calculate ϕI(θ) and ϕI I(θ) by Equation 8.
Round ϕI,I I(θ) ∈ [0, 2π) to the nearest integer multiples of ∆ϕ.
Increment the accumulators of M corresponding to (θ, ϕI,I I).

Find θmax and ϕmax corresponding to the entry with the largest accumulation in M.

Here the computational complexity of the voting stage is O(N · Nθ) and that of the
search stage is again O(Nθ · Nϕ), where in this case Nθ = 2π/∆θ. The accumulation stage
of Algorithm 2 can be visualized as drawing the discretized ϕI,I I(θ) curves in the (θ, ϕ)
parameter plane for all primary points. As discussed in Section 4, care should again be
taken when considering the use of the voting approximation (sampling the argument
θ and quantizing the functions ϕI,I I rather than determining the cells that the curves
pass through).

6. Parameter-Space Quantization and Error Analysis
6.1. Preliminaries and Motivation

In Hough transform algorithms [2], a data (image) point is mapped into a space of
parameters for a class of geometric primitives (such as straight lines). The parameter space
is quantized into cells and represented by an array of accumulators. The mapping is carried
out by incrementation of the relevant accumulators (voting). Once all data points have
voted, a search for the maximum in the accumulator array reveals the parameters of the
geometric primitive instance that are best supported by the data.

Parameter space quantization is an essential element of the Hough transform. On the
one hand, it determines the resolution of the output parameters. On the other hand, it
reflects the tolerance of the algorithm to location errors in the data. Thus, coarse quanti-
zation leads to poor output resolution, but quantization that is too fine may lead, in the
presence of data location errors, to peak-spreading in the accumulator array and consequent
detection errors.

In the Hough transform for straight lines using the normal parameterization, uni-
form quantization of the (ρ, θ) parameter space into cells of equal size implies an equal
(translation- and rotation-invariant) measure of the infinite set of straight lines represented
by each cell [2,22,23]. In the proposed algorithms for great- and small-circle detection on a
sphere, the parameter space is (in principle) an isomorphic spherical parameter space. This
is analogous to the isomorphism between the image space and the parameter space in the
Hough transform for circles of known radius [2]. Note that the area of a cell in the spherical
parameter space is, due to rotational symmetry, a rotation-invariant measure of the infinite
set of the spherical circles represented by the cell. We therefore wish to quantizate the
spherical parameter space into cells of similar area.

6.2. Towards Uniform Spherical Quantization

Working with spherical memory arrays is currently impractical. We therefore carry
out the computation using a planar memory array, where the orthogonal planar axes are θ
and ϕ. Nevertheless, mapping the conceptual spherical array to a planar array is problem-
atic [19]. Specifically, in the context of parameter-space quantization, uniform (rectangular)
quantization in the plane, via uniform quantization of the individual angular coordinates θ
and ϕ, corresponds to cells of non-uniform area on the sphere. Assuming small quantiza-
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tion steps ∆θ and ∆ϕ in the plane, the spherical surface area of the corresponding cell at θ
and ϕ is approximately

∆S ≈ ∆θ∆ϕ sin θ (13)

where ∆S is largest at the equator, where θ = π/2, and equal to ∆θ∆ϕ. For non unit spheres,
∆S is scaled by R2 where R is the radius.

Cells of non-uniform area imply biased voting. One way to handle bias is by normal-
izing each accumulator count by the area of the corresponding cell. Note, however, that
the normalization is associated with singularity at the poles. Lutton et al. [13] suggested
using almost-equal-sized cell quantization, letting ∆ϕ depend on θ; see Figure 7. In our case,
almost-equal-sized cell quantization is obtained by letting

∆ϕn =
∆S

∆θ sin θn
(14)

where the layer number n is obtained by rounding θ/∆θ to the nearest integer, θn = n∆θ,
and ∆S is the almost uniform cell size (spherical surface area).

Figure 7. (Left) Uniform rectangular quantization of the parameter plane, i.e., uniform quantization
of the angular coordinates θ and ϕ, corresponds to cells of non-uniform area on the sphere. Cells are
small near the poles and large near the equator. (Right) Almost-equal-sized cell quantization.

When voting into the (non-uniform) planar array corresponding to almost-equal-sized
cells on the sphere, we again need to decide whether to increment all cells through which
the continuous voting curve passes, or to employ the approximation—sampling θ and
quantizing ϕ in the context of general circles. The two options are illustrated in Figure 8.
Incrementing all cells through which the continuous voting curve passes means voting
for both the blue and green cells. In contrast, sampling θ and quantizing ϕ generates (the
centers of) the green cells alone.

In our analysis and experiments, the first option is followed, i.e., the approximation
is not employed and all cells through which the continuous voting curve passes are in-
cremented. Technically, referring to Figure 9, at layer θn we increment the accumulator(s)
between A and B inclusively.
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Figure 8. Incrementing all cells through which the continuous voting curve passes means voting for
both the blue and green cells. In contrast, sampling θ and quantizing ϕ generates the centers of the
green cells alone.

Figure 9. At layer θn we increment the accumulator(s) between A and B inclusively. On the sphere,
these points are the intersections of the primary circle with the upper and lower boundaries of
the θn layer. In the respective planar array, the points A and B are the intersections of the voting
curve corresponding to the primary circle with the θn layer. Had the approximation been employed,
only the green cell would have been incremented, as its center is the closest (in terms of ϕ) to the
intersection of the curve with the sampled value of θ.

6.3. The Distance of Primary Points from the Common Secondary Circle

Consider the cell centered at (θmax, ϕmax) that received the largest number of votes
from primary points. In other words, the cell centered at (θmax, ϕmax) is the one intersected
by the largest number of primary circles centered at primary points. Due to primary points’
location errors, and due to the finite (i.e., not infinitesimal) cell size, the primary circles in-
tersecting the cell do not usually intersect at a single point within the cell themselves. Thus,
typically, the primary points that have voted for the cell are only roughly co-circular. The
common secondary circle passing near these primary points is defined by the approximate
secondary point (θmax, ϕmax), i.e., by the center of the cell.

What is the maximum distance of the primary points contributing to the cell from the
secondary circle defined by (θmax, ϕmax)? Furthermore, how does this depend on the finite
cell size? This distance determines, on the one hand, the resolution of the algorithm and,
on the other hand, its tolerance to noise (errors) in the location of the data (primary) points.
To answer these questions, we calculate the distance between the common secondary circle
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(the black circle in Figure 10) and the circles defined by the four corners of the cell. The
coordinates of the four corners are

(θmax +
∆θ

2
, ϕmax +

∆ϕk

2
)

(θmax +
∆θ

2
, ϕmax −

∆ϕk

2
)

(θmax −
∆θ

2
, ϕmax +

∆ϕk

2
)

(θmax −
∆θ

2
, ϕmax −

∆ϕk

2
)

where ∆ϕk is the layer-dependent quantization step (Equation (14)) at θk = θmax, and the
corresponding circles are shown blue in Figure 10.

Figure 10. A cell centered at (θmax, ϕmax). The black circle is the common secondary circle defined by
the center of this cell. The four blue circles are the circles defined by the corners of the cell.

Given one of the (corner) circles defined by a corner point (the blue circle in Figure 11),
the largest distance from the common secondary circle is achieved by two critical points
(red points in Figure 11) on the corner circle. One critical point is closer than the common
secondary circle to the cell center, whereas the other critical point is more distant than the
common secondary circle from the cell center.

Figure 11. A secondary circle (black) and a corner circle (blue). The maximum distance of a point on
the corner circle to the secondary circle is achieved by the two critical points (red).
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Consider any of the two critical points and its respective closest point on the secondary
circle. Viewing the critical point and its closest point as (spherical) radius vectors, let
γ denote the angle between them. Let a denote the radius vector corresponding to the
secondary point (θmax, ϕmax), and let b denote the radius vector associated with the corner
point. Referring to Figure 12 (left), we observe that, since a is normal to the secondary
circle and b is normal to the corner circle, γ is also the angle between a and b. Assuming a
unit sphere,

γ = cos−1(a · b) (15)

The angle γ can be viewed as an angular distance measure between the cell center
(θmax, ϕmax) and one of its corners. With almost-equal-sized cell quantization, γ is similar
between cells and between corner points of a particular cell.

Figure 12. (Left) The angle γ between the (red) radius vector pointing at a critical point and its
respective closest point on the common secondary circle (black) is equal to the angle between the
radius vector (black) corresponding to the secondary point at the center of the cell (θmax, ϕmax) and
the radius vector (blue) associated with a corner point. (Right) The common secondary circle (black)
and one of the critical circles (red). The spherical radius vector defined by the angular coordinates
(θmax, ϕmax) of the secondary point passes through the centers of the common secondary circle and
the two critical circles, and this radius vector is perpendicular to the planes containing the circles. d
and dlower are the distances of the common secondary circle and the (lower) critical circle from the
origin of the sphere, respectively.

Cells have four corner points. Each corner point is associated with two critical points,
one closer to and one more distant from the cell center. The eight critical points can be
divided into two subsets, each with four critical points. One subset contains the four
critical points, shown red in Figure 13 (left), closer to the cell center, whereas the other
subset contains the four critical points more distant from the cell center, shown in red in
Figure 13 (right). The angular distance γ between any of the eight critical points and its
closest point on the common secondary circle is similar. This means that the four critical
points in each of the two subsets are nearly co-circular. The two circles, shown in red in
Figure 13, each defined by the four critical points in each of the two subsets, are referred to
as lower and higher critical circles. They are on planes parallel to each other and also to the
secondary circle plane, where the lower critical circle is closer to the origin and the higher
is more distant from the origin. Specifically, their distances from the origin are

dlower = cos (cos−1 d + γ) dhigher = cos (cos−1 d− γ) (16)

The spherical radius vector defined by the angular coordinates (θmax, ϕmax) of the
secondary point passes through the centers of the secondary circle and the two critical
circles, and is perpendicular to (the planes containing) them; see Figure 12 (right).
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Figure 13. (Left) The four critical points (red) closer to the cell center and the (higher) critical circle
they define. (Right) The four critical points (red) more distant from the cell center and the (lower)
critical circle they define.

Referring to Figure 14, let P be a primary point of which the primary circle (blue
point and blue circle) votes for a cell centered at (θmax, ϕmax). In other words, the primary
circle defined by the primary point P intersects the cell (θmax, ϕmax). This implies that the
coordinates of any point on the primary circle within the cell, i.e., any secondary point
S in the cell (green point), are bounded between θ = (θmax − ∆θ/2, θmax + ∆θ/2] and
ϕ = (ϕmax − ∆ϕk/2, ϕmax + ∆ϕk/2]. Consider the common secondary circle defined by
the cell center (black circle) and the nearby secondary circle associated with any other
secondary point within the cell (green circle). The nearby secondary circle passes through
the primary point P, whereas the common secondary circle generally passes just near P.

The angle between the radius-vector pointing at the cell center and the radius vector
pointing at the nearby secondary point is less than or equal to γ, and equality to γ is
achieved when the nearby secondary point coincides with one of the corner points of the
cell. The radius vectors are normals of the planes containing these circles. So, the angle
between the plane containing the common secondary circle and the plane containing the
nearby secondary circle is less than γ. The critical circles are defined such that the angle
between the radius vector pointing to a point on the critical circle and the radius vector
pointing to its closest point on the common secondary circle is γ. So, the nearby secondary
circle lies on a spherical segment (see Figure 15) containing the common secondary circle
and delimited by the two critical circles (red circles in Figures 14 and 15). In other words,
the angle between the radius vector pointing to the primary point P and the radius vector
pointing to its closest point on the common secondary circle is less than γ. Hence, the
orthodromic distance (great circle distance) of the primary point P to each point on the
common secondary circle is upper-bounded by R · γ, where R is the radius of the sphere.

As shown in Appendix A, γ can be readily expressed in terms of the almost-equal-sized
cellquantization parameters, ∆S and ∆θ. For a unit sphere

γ ≈ 1
2

√
(∆θ)2 +

(∆S
∆θ

)2 (17)

In this case γ is approximately half of the diagonal of the almost-equal-sized cell. For
a sphere of radius R, ∆S in Equation (17) should be scaled down by R2.

To conclude, the primary point of which the primary circle votes for a cell centered at
(θmax, ϕmax) is located on the spherical segment defined by the cell center. The orthodromic
distance between the primary point and the common secondary circle (defined by the cell
center) is upper-bounded by R · γ, where R is the sphere radius and γ is the central angle
between the radius vector (θmax, ϕmax) and one of the radius vectors (θmax ±∆θ/2 , ϕmax ±
∆ϕk/2) pointing at the cell corners, expressible in terms of the almost-equal-sized cell area.
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Figure 14. The primary point P (blue) with the corresponding primary circle (blue), which votes for
the cell with the maximum count. The secondary point S on the primary circle and inside the cell
defines a secondary circle (green) passing exactly through the primary point P. The primary point P is
located within a spherical segment associated with the cell. The black circle is the common secondary
circle defined by the center of the cell, and the red circles are the lower and higher critical circles.

Figure 15. Spherical segment defined by the lower and higher critical circles (red). The black circle is
the common secondary circle.

6.4. Improved Algorithm for General (Radius r) Circle Detection on a Sphere

Consider the problem of general (any given radius r) circle detection on a sphere, as
presented in Section 5. We now apply the almost-equal-sized cell quantization scheme, and
vote for all cells intersected by the voting curve. For each primary point in the dataset,
the algorithm first calculates the limiting values of θ, and loops over all multiples of ∆θ

between the limiting values θ I,I I
lim . For each θ, it computes the ϕ ∈ [0, 2π) coordinates of

the points A and B by substituting θ ± ∆θ/2 in Equation (8). It then increments all the
accumulators which correspond to the discrete points with θ and ϕ ∈ [ϕA , ϕB]. Finally,
the accumulator (θmax, ϕmax) with the maximal reading indicates the spherical circle of
radius r passing through the largest subset of (primary) points in the data-set. This leads to
Algorithm 3:
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Algorithm 3: Improved general circle detection on a sphere
Initialize the accumulator array M with zeros.
Normalize the radius r by the sphere radius R.
Calculate d by Equation (2).
For each primary point 1 to N

Calculate θ I,I I
lim ∈ [0, π) by Equation (12).

For each θ = i · ∆θ (i ∈ Z) from min{θ I,I I
lim } until max{θ I,I I

lim }:
For both ϕI and ϕI I in Equation (8):

1. Calculate ∆ϕi by Equation (14).
2. Calculate ϕI

A and ϕI I
B by substituting θ ± ∆θ

2 in Equation (8) .
3. Choose n such that ϕA = ϕI,I I

A ∈ [0, 2π) and ϕB = ϕI,I I
B ∈ [0, 2π)

4. Round ϕA and ϕB to the nearest integer multiples of ∆ϕi.
5. Increment the accumulators from to (ϕA, θ) to (ϕB, θ)

Find θmax and ϕmax corresponding to the entry with the largest accumulation in M.

Note that the accumulator array M in this algorithm is no longer a rectangular matrix.
The azimuthal step between adjacent accumulators in the θi layer is θ-dependent and equals
∆ϕi. Therefore, the number of accumulators in each θi is different. Figure 16 (left) shows the
accumulator array in the θ− ϕ plane. In Figure 16 (right), the accumulators are represented
by identical rectangles, where the i axis represents the nearest integer multiple of ∆θ and
the j axis represents the nearest integer multiple of ∆ϕi.

Figure 16. Two illustrations of the accumulator array M with almost-equal-sized cell quantization.
Left: The accumulators tessellating the θ − ϕ plane. Right: Accumulators represented by identical
rectangles, where the i axis represents the nearest integer multiple of ∆θ and the j axis represents the
nearest integer multiple of ∆ϕi

7. Great Circle Examples

What is the great circle on planet Earth that passes through the largest number of
airports? Furthermore, what is the great circle that passes through the largest number of
cities? We answer these questions using the proposed algorithms, relying on city [24] and
airport [25] databases.

7.1. Uniform Quantization in the Plane (Algorithm 1) Examples

(1) We execute Algorithm 1, taking the world’s major airports (red dots in Figure 17)
as input primary points (a total of 617 points). The parameter space is discretized
with ∆ϕ = ∆θ = 0.5◦. The great circle that passes through the maximum number
of airports (blue circle in Figure 17) is on the great circle plane with normal θmax =
55.25◦, ϕmax = 151.25◦ and visits 29 airports, listed in Appendix B. Note that here
and in the following, the number of digits after the decimal point in θmax and ϕmax
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relates to the location of the cell center. Obviously, the accuracy of the detected
circle parameters follows from the cell size, i.e., from ∆θ and ∆ϕ.In order to find the
circle passing through the largest number of remaining airports (excluding the 29
airports associated with the first maximum), we identify all primary points of which
the voting contributed to the first maximum and remove their votes (unvote [5–7]).
The new maximum represents the great circle passing through the largest subset
of remaining (primary) points in the data-set. It lies on the great circle plane with
normal θmax2 = 54.75◦, ϕmax2 = 157.75◦ and visits 28 different airports.

(2) We again execute Algorithm 1, this time taking 12960 world cities (red dots in Figure 18)
as input primary points. The parameter space is discretized with ∆ϕ = ∆θ = 0.25◦. The
great circle (blue circle in Figure 18) that passes through the maximum number of
cities is on the great circle plane with normal θmax = 53.625◦, ϕmax = 156.375◦ and
visits 397 different cities. The great circle that passes through the maximum number
of remaining cities (i.e., the maximum after unvoting) is on the great circle plane with
normal θmax2 = 72.875◦, ϕmax2 = 18.375◦ and visits 321 cities.

(3) We execute the algorithm in order to find the great circle that passes through a
specific airport and the maximum number of other airports. Instead of searching for
the maximum value in all the accumulators, we search only in accumulators along
the θ(ϕ) curve corresponding to the specific airport. This reduces the computation
time, since we search in Nϕ instead of Nϕ · Nθ accumulators.
Taking Cape Town International Airport as the specific airport, the great circle that
passes through Cape Town International Airport and through the maximum number
of other airports is defined by the normal direction θmax = 84.25◦, ϕmax = 104.75◦

(blue circle in Figure 19) and visits 16 different airports, listed in Appendix C. In this
case, the discretization of the parameter space is ∆ϕ = ∆θ = 0.5◦. The great circle
that passes through Cape Town International Airport and through the maximum
number of remaining airports (the maximum after unvoting, i.e., excluding the
airports associated with the first maximum) is on the great circle plane with normal
θmax2 = 37.75◦, ϕmax2 = 48.75◦ and visits 13 different airports.

Figure 17. Executing Algorithm 1 on the airport database. (Left) The blue great circle passes
through the maximum number of airports (red dots). The red great circle corresponds to the second
maximum, following the unvoting process. (Right) Heat plot of the accumulator array M, showing
the parameters of the two great circles.
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Figure 18. Executing Algorithm 1 on the city database. (Left) The blue great circle passes through the
maximum number of cities (red dots). The red circle corresponds to the second maximum, following
the unvoting process. (Right) Heat plot of the accumulator array M, showing the parameters of the
two great circles.

Figure 19. (Left) Detecting the great circle (blue) passing through Cape Town International Airport
and through the maximum number of other airports, using uniform quantization in the plane. The
red circle corresponds to the second maximum, following the unvoting process. (Right) Heat plot of
the accumulator array M along the θ(ϕ) curve corresponding to Cape Town airport, showing the
parameters of the two great circles.

7.2. Almost-Equal-Sized Cell Quantization Examples

We now address the same great-circle detection tasks using almost-equal-sized cell
quantization. To achieve this, we apply Algorithm 3 (general circle detection) with r = R
hence d = 0.

(1) We execute Algorithm 3 with d = 0, taking the world’s major airports as primary

input points. We set ∆θ = 0.5◦ and ∆S = π
360 ·

π
360 = π2

129,600 [Rad2], which yields
accuracy similar to the worst-case accuracy (at θ = π/2) in the above uniform
quantization example. The great circle (the blue circle in Figure 20) that passes
through the maximum number of airports is on the great circle plane with normal
θmax = 53.75◦, ϕmax = 156.4544◦. It visits 30 different airports, listed in Appendix D.
The great circle that passes through the largest number of remaining airports (the
maximum after unvoting) is on the great circle plane with θmax2 = 124.25◦, ϕmax2 =
331.8655◦ and visits 27 airports.

(2) We execute Algorithm 3 with d = 0, taking 12,960 world cities (red dots in Figure 18)

as input primary points. We set ∆θ = 0.25◦ and ∆S = π
720 ·

π
720 = π2

518,400 [Rad2]. The
great circle (the blue circle in Figure 21) that passes through the maximum number
of cities is on the great circle plane with normal θmax = 53.625◦, ϕmax = 156.3934◦

and visits 425 cities. The great circle that passes through the maximum number
of remaining cities (the maximum after unvoting) is on the great circle plane with
normal θmax2 = 72.375◦, ϕmax2 = 18.7609◦ and visits 335 cities.
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(3) We execute Algorithm 3 with d = 0 in order to find the great circle that passes
through a specific airport and through the maximum number of other airports.
Instead of searching for the maximum value in all the accumulators, we search
only in accumulators along the θ(ϕ) curve corresponding to the specific airport.
We again take Cape Town International Airport as the specific airport, now with
∆θ = 0.5◦ and ∆S = π

360 ·
π

360 = π2

129,600 [Rad2]. The great circle (the blue circle in
Figure 22) that passes through Cape Town International Airport and through the
maximum number of other airports is defined by the normal direction θmax = 37.75◦,
ϕmax = 49.3878◦, and visits 15 different airports listed in Appendix E. The great circle
that passes through the Cape Town International Airport and through the maximum
number of remaining airports (the maximum after unvoting, i.e., excluding the
airports associated with the first maximum) is on the great circle plane with normal
θmax2 = 84.25◦, ϕmax2 = 104.8324◦ and visits 14 different airports.

Figure 20. Executing Algorithm 3 on the airport database: (Left) The blue great circle passes through
the maximum number of airports (red dots). The red great circle corresponds to the second maxi-
mum, following the unvoting process. (Right) Heat plot of the accumulator array M, showing the
parameters of the two great circles.

Figure 21. Executing Algorithm 3 on the city database. (Left) The blue great circle passes through the
maximum number of cities (red dots). The red circle corresponds to the second maximum, following
the unvoting process. (Right) Heat plot of the accumulator array M, showing the parameters of the
two great circles.
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Figure 22. (Left) Detecting the great circle (blue) passing through Cape Town International Airport
and passing through the maximum number of other airports, using almost-equal-sized cell quantiza-
tion. The red circle corresponds to the second maximum, following the unvoting process. (Right)
Heat plot of the accumulator array M along the θ(ϕ) curve corresponding to Cape Town airport,
showing the parameters of the two great circles.

The number of data points (airports or cities) associated with the great circle detected
depends on the size of the parameter-space quantization cells, i.e., on the quantization level.
For the examples in this subsection (almost-equal-sized cell quantization), the dependence
is presented in Appendix F.

The differences between the results obtained with uniform quantization in the plane
and the those achieved using almost-equal-sized cell quantization are due to the non-equal
cell sizes on the sphere yielded by uniform quantization in the plane. Referring to Figure 23,
with uniform quantization in the plane (Figure 23 (left)), cells that are close to the equator
are larger than cells close to the poles. In contrast, with almost-equal-sized cell quantization
(Figure 23 (right)), all cells have approximately the same size. In the above experiments,
we chose ∆S such that the smallest ∆ϕk in the almost-equal-sized quantization scheme
was equal to ∆ϕ used in uniform quantization in the plane. Thus, with almost-equal-sized
quantization, the size of the cell on the sphere is larger or equal to that obtained using
uniform quantization in the plane. In other words, given cell coordinates θmax and ϕmax
on the sphere, the cell at these coordinates using almost-equal-sized cell quantization is
larger or equal in area to the cell at the same coordinates using uniform quantization
in the plane. Thus, although the great circle on planet Earth that passes through the
largest number of cities is about θmax = 53.625◦, ϕmax = 156.125◦ using both quantization
schemes, with uniform quantization in the plane it is associated with 397 cities, whereas
with almost-equal-sized cell quantization the number of cities is 425.
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Figure 23. (Left) Cells corresponding to uniform quantization in the plane; cells close to the equator
are larger than cells close to the poles. Corner circles (red) of cells closer to the pole are closer to each
other than corner circles of cells closer to the equator. (Right) Almost-equal-sized cell quantization:
all cells are of approximately the same size, so the spherical segments between the upper and lower
critical circles (blue) cover similar areas.

8. General (Small) Circle Examples

In the previous section we found great circles on planet Earth passing through the
largest possible number of airports or cities. In this section, we detect small circles of a
given radius r that visit as many airports or cities as possible. We use algorithm 3 (almost-
equal-sized cell quantization). We normalize the radius of the sphere (planet earth) to
R = 1; hence, 0 < r < 1.

(1) We execute algorithm 3 with r = 0.25 (d ≈ 0.968), taking the world’s largest airports

as input primary points. We set ∆θ = 0.5◦ and ∆S = π
360 ·

π
360 = π2

129600 [Rad2]. The cir-
cle of radius r = 0.25 that passes through the maximum number of airports (the blue
circle in Figure 24) is on the circle plane with normal θmax = 47.75◦, ϕmax = 256.998◦

and visits 20 large airports. The circle of radius r = 0.25 that passes through the
largest number of remaining airports (red circle in Figure 24, corresponding to
the maximum after unvoting) is on the circle plane with normal θmax2 = 40.75◦,
ϕmax2 = 269.2340◦ and visits 19 different airports.

Figure 24. Executing Algorithm 3 with r = 0.25 on the airport database. (Left) The blue circle
passes through the maximum number of airports (red dots). The red circle corresponds to the second
maximum, following the unvoting process. (Right) Heat plot of the accumulator array M, showing
the parameters of the two circles.

(2) We now execute algorithm 3 with r = 0.5 (d ≈ 0.866), again taking the world’s largest

airports as input primary points. We set ∆θ = 0.5◦ and ∆S = π
360 ·

π
360 = π2

129,600 [Rad2].
The circle of radius r = 0.5 that passes through the maximum number of airports
(the blue circle in Figure 25) is on the circle plane with normal θmax = 27.25◦,
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ϕmax = 313.6364◦ and visits 20 large airports. The circle of radius r = 0.5 that
passes through the largest number of remaining airports (red circle in Figure 25,
corresponding to the maximum after unvoting) is on the circle plane with normal
θmax2 = 45.25◦, ϕmax2 = 313.8552◦ and visits 19 different airports.

Figure 25. Executing Algorithm 3 with r = 0.5 on the airport database. (Left) The blue circle passes
through the maximum number of airports (red dots). The red circle corresponds to the second
maximum, following the unvoting process. (Right) Heat plot of the accumulator array M, showing
the parameters of the two circles.

(3) We execute algorithm 3 with r = 0.125 (d ≈ 0.992), this time taking the input primary

points from the city database. We set ∆θ = 0.5◦ and ∆S = π
360 ·

π
360 = π2

129,600 [Rad2].
The circle of radius r = 0.125 that passes through the maximum number of cities
(the blue circle in Figure 26) is on the circle plane with normal θmax = 43.7500◦,
ϕmax = 280.1205◦ and visits 616 cities. The circle of radius r = 0.125 that passes
through the largest number of remaining cities (the black circle in Figure 26, cor-
responding to the maximum after unvoting) is on the circle plane with normal
θmax2 = 52.7500◦, ϕmax2 = 270.4712◦ and visits 386 cities.

Figure 26. Executing Algorithm 3 with r = 0.125 on the city database. (Left) The blue circle passes
through the maximum number (616) of cities (red dots). The black circle, passing through 386 cities,
corresponds to the second maximum, following the unvoting process. (Right) Heat plot of the
accumulator array M, showing the parameters of the two circles.

(4) We execute algorithm 3, now with r = 0.5 (d ≈ 0.866), taking the input primary

points from the city database. We set ∆θ = 0.5◦ and ∆S = π
360 ·

π
360 = π2

129,600 [Rad2].
The circle of radius r = 0.5 that passes through the maximum number of cities
(the blue circle in Figure 27) is on the circle plane with normal θmax = 26.7500◦,
ϕmax = 251.6667◦ and visits 568 cities. The circle of radius r = 0.5 that passes
through the largest number of remaining cities (the black circle in Figure 26, cor-
responding to the maximum after unvoting) is on the circle plane with normal
θmax2 = 72.2500◦, ϕmax2 = 251.6327◦ and visits 523 cities.
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Figure 27. Executing Algorithm 3 with r = 0.5 on the city database. (Left) The blue circle passes
through the maximum number (568) of cities (red dots). The red circle, passing through 523 cities,
corresponds to the second maximum, following the unvoting process. (Right) Heat plot of the
accumulator array M, showing the parameters of the two circles.

The experimental results in Sections 7 and 8 were obtained using Matlab on a low-end
personal computer with i5-8265U 1.6GHz CPU and 8.00 GB RAM. The Matlab computing
time for the various experiments is summarized in Table 1. As expected, computing time
was roughly proportional to the number of data points, and increased as the parameter
space quantization was refined.

Table 1. Total computing time and computing time per-point (msec) using Matlab on a low-end
PC. Results are reported for great-circle detection (r = 1) and small-circle detection (r < 1) and for
different parameter-space resolution values (∆θ and ∆ϕ for Algorithm 1, ∆θ and ∆S for Algorithm 3).

Dataset

Algorithm 1 Algorithm 3

∆θ ∆ϕ

Computing

∆θ ∆S

Computing
Time (ms) Time (ms)

Total Avg. per Total Avg. per
Time Point Time Point

Airports 2 2 366 0.43 2 ( π
90 )

2 595 0.93
r = 1 1 1 531 0.71 1 ( π

180 )
2 791 1.33

0.5 0.5 1298 1.98 0.5 ( π
360 )

2 1777 3.02
(616 pts.) 0.25 0.25 3321 5.16 0.25 ( π

720 )
2 3668 5.96

Cities 2 2 3644 0.29 2 ( π
90 )

2 6755 0.53
r = 1 1 1 6174 0.47 1 ( π

180 )
2 10,225 0.75

0.5 0.5 22,779 1.64 0.5 ( π
360 )

2 26,231 2.07
(12,959 pts.) 0.25 0.25 64,385 5.02 0.25 ( π

720 )
2 72,061 5.56

Cities - - - - 2 ( π
90 )

2 5972 0.48
r = 0.5 - - - - 1 ( π

180 )
2 8343 0.70

- - - - 0.5 ( π
360 )

2 23,403 1.98
(12,959 pts.) - - - - 0.25 ( π

720 )
2 64,078 4.97

Cities - - - - 2 ( π
90 )

2 5562 0.43
r = 0.125 - - - - 1 ( π

180 )
2 7630 0.57

- - - - 0.5 ( π
360 )

2 22,423 1.71
(12,959 pts.) - - - - 0.25 ( π

720 )
2 58,805 4.53

9. Conclusions

In this paper we present the first comprehensive solution to the problem of detecting
circles, great and small, in a spherical set of points. The suggested approach follows
the Hough transform methodology and addresses the fundamental issues associated with
Hough algorithms, including parameterization, parameter-space quantization, and analysis
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of the quantization-induced error. The time-complexity of the proposed algorithms is linear
in the number of data-points. The required memory size is simply the number of cells in
the accumulator array, which is bounded and two-dimensional in the case of great circles
and in the case of small circles of known radius.

Potential applications for this research arise in cases where the data are naturally
spherical and where circular features need to be detected. The planetary and geophysical
sciences provide numerous examples, including crater and volcano detection. Computer vi-
sion applications arise in omnidirectional image analysis, including fisheye image analysis,
where spherical image representations are ubiquitous.

The proposed method can be readily extended to the detection of circles of unknown
radius in a spherical set of points. The additional unknown can be accommodated either
by sequentially applying the known-radius algorithm with different radii, or by adding a
dimension representing the unknown radius to the accumulator array.
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Appendix A. Expressing the Angle γ in Terms of ∆S and ∆θ

In this appendix we express the angle γ between the radius vector pointing at the cell
center (θmax, ϕmax) and that pointing to any of its corners, such as (θmax + ∆θ/2 , ϕmax +
∆ϕk/2).

Assuming a unit sphere, the chord length between the two vector tips is

C =
√
(∆x)2 + (∆y)2 + (∆z)2

where

∆x = sin θ cos ϕ− sin (θ +
∆θ

2
) cos (ϕ +

∆ϕk

2
)

∆y = sin θ sin ϕ− sin (θ +
∆θ

2
) sin (ϕ +

∆ϕk

2
)

∆z = cos θ − cos (θ +
∆θ

2
)

Applying the first-order Taylor series approximation to sin (θ + ∆θ
2 ) and cos (ϕ + ∆ϕk

2 ),

∆x ≈ −∆θ

2
cos θ cos ϕ +

∆ϕk

2
sin θ sin ϕ +

∆ϕk∆θ

4
cos θ sin ϕ

∆y ≈ −∆θ

2
cos θ sin ϕ− ∆ϕk

2
sin θ cos ϕ +

∆ϕk∆θ

4
cos θ cos ϕ

∆z ≈ +
∆θ

2
sin θ
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The third terms in ∆x and ∆y are negligible (second-order) compared to the other
(first-order) terms. Substituting Equation (14),

∆x ≈ −∆θ

2
cos θ cos ϕ +

∆S
2∆θ

sin ϕ

∆y ≈ −∆θ

2
cos θ sin ϕ− ∆S

2∆θ
cos ϕ

∆z ≈ +
∆θ

2
sin θ

Squaring, we obtain

(∆x)2 ≈ (∆θ)2

4
cos2 θ cos2 ϕ +

(∆S)2

4(∆θ)2 sin2 ϕ− ∆S
4

cos θ cos ϕ sin ϕ

(∆y)2 ≈ (∆θ)2

4
cos2 θ sin2 ϕ +

(∆S)2

4(∆θ)2 cos2 ϕ +
∆S
4

cos θ sin ϕ cos ϕ

(∆z)2 ≈ (∆θ)2

4
sin2 θ

Substituting in the definition of C,

C ≈

√
(∆θ)2

4
(

cos2 θ(cos2 ϕ + sin2 ϕ) + sin2 θ
)
+

(∆S)2

4(∆θ)2

(
sin2 ϕ + cos2 ϕ

)
≈ 1

2

√
(∆θ)2 +

(∆S
∆θ

)2

Thus, the central angle γ between the two vectors is

γ = arcsin C ≈ C ≈ 1
2

√
(∆θ)2 +

(∆S
∆θ

)2
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Appendix B. The 29 Airports Located on the Great Circle That Passes through the
Maximum Number of Airports—Uniform Quantization

Airport Name Latitude Longitude ∆γ[O]

1 Prishtina International Airport 42.572800 21.035801 0.289202

2 Pierre Elliott Trudeau Airport (Montreal) 45.470600 −73.740799 0.066198

3 Brussels South Charleroi Airport 50.459202 4.453820 0.108124

4 Stuttgart Airport 48.689899 9.221960 0.032867

5 Karlsruhe Baden-Baden Airport 48.779400 8.080500 0.265290

6 Luton Airport (London) 51.874699 −0.368333 0.120182

7 Heathrow Airport (London) 51.470600 −0.461941 0.274561

8 Stansted Airport (London) 51.884998 0.235000 0.276526

9 RAF (Brize Norton) 51.750000 −1.583620 0.282675

10 Findel International Airport (Luxembourg) 49.623333 6.204444 0.116230

11 Ramstein Air Base 49.436901 7.600280 0.153979

12 Buffalo Niagara International Airport 42.940498 −78.732201 0.087453

13 John Glenn Columbus International Airport 39.998001 −82.891899 0.134049

14 Corpus Christi International Airport 27.770399 −97.501198 0.120094

15 Cincinnati Northern Kentucky Airport 39.048801 −84.667801 0.086447

16 Erie International Tom Ridge Field 42.083127 −80.173867 0.101441

17 William P Hobby Airport (Houston) 29.645399 −95.278900 0.141916

18 George Bush Intercontinental Airport (Houston) 29.984400 −95.341400 0.121704

19 Rickenbacker International Airport (Columbus) 39.813801 −82.927803 0.253096

20 Memphis International Airport 35.042400 −89.976700 0.199325

21 Monroe Regional Airport 32.510899 −92.037697 0.292742

22 Greater Rochester International Airport 43.118900 −77.672401 0.256870

23 Louisville International Standiford Field 38.174400 −85.736000 0.020793

24 Paphos International Airport 34.717999 32.485699 0.020407

25 RAF (Akrotiri) 34.590401 32.987900 0.189568

26 Zagreb Airport 45.742901 16.068800 0.085825

27 Joe Punik Airport (Ljubljana) 46.223701 14.457600 0.158587

28 Don Miguel International Airport (Guadalajara) 20.521799 −103.310997 0.288277

29 Queen Alia International Airport (Amman) 31.722601 35.993198 0.086299
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Appendix C. The 16 Airports Located on the Great Circle That Passes through Cape
Town and the Maximum Number of Other Airports—Uniform Quantization

Airport Name Latitude Longitude ∆γ[O]

1 Cape Town International Airport −33.964802 18.601700 0.030981

2 Tunis Carthage International Airport 36.851002 10.227200 0.154490

3 Munster Osnabrck Airport 52.134602 7.684830 0.227835

4 Cologne Bonn Airport 50.865898 7.142740 0.310424

5 Dortmund Airport 51.518299 7.612240 0.085782

6 Karlsruhe Baden-Baden Airport 48.779400 8.080500 0.045184

7 Bergen Airport Flesland 60.293400 5.218140 0.307745

8 Stavanger Airport Sola 58.876701 5.637780 0.247560

9 Ramstein Air Base 49.436901 7.600280 0.253077

10 Hosea Kutako Airport (Windhoek) −22.479900 17.470900 0.305683

11 Ndjili International Airport (Kinshasa) −4.385750 15.444600 0.250095

12 Malpensa International Airport (Milan) 45.630600 8.728110 0.078630

13 Genoa Cristoforo Colombo Airport (Genova) 44.413300 8.837500 0.177389

14 Milano Linate Airport (Milan) 45.445099 9.276740 0.275585

15 Zurich Airport (Zurich) 47.464699 8.549170 0.067036

16 Hammamet International Airport (Enfidha) 36.075833 10.438611 0.083588

Appendix D. The 30 Airports Located on the Great Circle That Passes through the
Maximum Number of Airports—Almost-Equal-Sized Cell Quantization

Airport Name Latitude Longitude ∆γ[O]

1 South Charleroi Airport (Brussels) 50.459202 4.453820 0.154079

2 Munich Airport 48.353802 11.786100 0.267122

3 Stuttgart Airport 48.689899 9.221960 0.199825

4 Gatwick Airport (London) 51.148102 −0.190278 0.226057

5 Heathrow Airport (London) 51.470600 −0.461941 0.025712

6 RAF (Fairford) 51.682201 −1.790030 0.026802

7 RAF (Brize Norton) 51.750000 −1.583620 0.076266

8 Shannon Airport 52.702000 −8.924820 0.141270

9 Findel International Airport (Luxembourg) 49.623333 6.204444 0.177932

10 Ramstein Air Base 49.436901 7.600280 0.022154

11 Joint Base Andrews (Camp Springs) 38.810799 −76.866997 0.272409

12 Hartsfield Jackson Airport (Atlanta) 33.636700 −84.428101 0.047392

13 Asheville Regional Airport 35.436199 −82.541801 0.251562

14 Bradley International Airport (Hartford) 41.938900 −72.683197 0.156189

15 General Edward Logan Airport (Boston) 42.364300 −71.005203 0.253187

16 Thurgood Marshall Airport (Baltimore) 39.175400 −76.668297 0.093830
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17 Ronald Reagan Airport (Washington) 38.852100 −77.037697 0.154835

18 Newark Liberty International Airport 40.692501 −74.168701 0.136928

19 Spartanburg International Airport (Greenville) 34.895699 −82.218903 0.321778

20 Washington Dulles International Airport 38.944500 −77.455803 0.126876

21 La Guardia Airport (New York) 40.777199 −73.872597 0.210181

22 Dobbins Air Reserve Base (Marietta) 33.915401 −84.516296 0.296766

23 Montgomery Regional Airport 32.300598 −86.393997 0.280931

24 Mobile Regional Airport 30.691200 −88.242798 0.310154

25 Philadelphia International Airport 39.871899 −75.241096 0.261567

26 Blacksburg Regional Airport (Roanoke) 37.325500 −79.975403 0.225211

27 Sofia Airport 42.696693 23.411436 0.204411

28 Nikola Tesla Airport (Belgrade) 44.818401 20.309099 0.245757

29 King Khaled International Airport (Riyadh) 24.957600 46.698799 0.135812

30 atl 33.137551 -84.375000 0.338159

Appendix E. The 15 Airports Located on the Same Great Circle That Passes through
Cape Town and the Maximum Number of Other Airports—Almost-Equal-Sized
Cell Quantization

Airport Name Latitude Longitude ∆γ[O]

1 Cape Town International Airport −33.964802 18.601700 0.317152

2 Albuquerque International Sunport 35.040199 −106.609001 0.225185

3 Fort Worth Alliance Airport 32.987598 −97.318802 0.072202

4 Cannon Air Force Base (Clovis) 34.382801 −103.321999 0.143119

5 Dallas Love Field (Dallas) 32.847099 −96.851799 0.072541

6 Dallas Fort Worth International Airport 32.896801 −97.038002 0.066215

7 Hollywood Airport (Fort Lauderdale) 26.072599 −80.152702 0.147474

8 Meacham International Airport (Fort Worth) 32.819801 −97.362396 0.098141

9 Biloxi International Airport (Gulfport) 30.407301 −89.070099 0.286861

10 Metropolitan Oakland International Airport 37.721298 −122.221001 0.268331

11 San Francisco International Airport 37.618999 −122.375000 0.155643

12 Norman Y. Mineta Airport (San Jose) 37.362598 −121.929001 0.067841

13 Sarasota Bradenton International Airport 27.395399 −82.554398 0.029516

14 Lynden Pindling Airport (Nassau) 25.039000 −77.466202 0.112437

15 Luis Munoz Marin Airport (San Juan) 18.439400 −66.001801 0.061461
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Appendix F. The Dependence of the Number of Points Associated with the Great
Circle Detected on the Parameter Space Quantization Level

Dataset

Quantization Number of Points Parameters of the
Level Associated with the Great Circle Detected

(Degrees) Great Circle Detected (Degrees)

∆θ ∆S ϕmax θmax

Cities

2 (π/90)2 1703 156.2500 53

1 (π/180)2 1177 155.7093 53.5000

0.5 (π/360)2 729 156.4544 53.7500

0.25 (π/720)2 425 156.3934 53.625

0.2 (π/900)2 359 156.4300 53.7000

0.1 (π/1800)2 198 155.7920 53.2500

0.05 (π/3600)2 120 145.0215 48.0750

Airports

2 (π/90)2 78 156.2500 53

1 (π/180)2 50 157.8840 54.5000

0.5 (π/360)2 30 156.4544 53.7500

0.25 (π/720)2 19 150.7367 55.1250

0.166 (π/1080)2 15 154.3911 52.2500

0.125 (π/1440)2 13 155.7198 53.4375

0.1 (π/1800)2 12 151.2559 55.3500

0.05 (π/3600)2 10 154.8403 56.1750

Airports through Cape Town

2 (π/90)2 39 49.3805 39

1 (π/180)2 24 49.3151 37.5000

0.5 (π/360)2 15 49.3878 37.7500

0.25 (π/720)2 10 49.0724 37.8750
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