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Abstract: Material classification is similar to texture classification and consists in predicting the
material class of a surface in a color image, such as wood, metal, water, wool, or ceramic. It is very
challenging because of the intra-class variability. Indeed, the visual appearance of a material is
very sensitive to the acquisition conditions such as viewpoint or lighting conditions. Recent studies
show that deep convolutional neural networks (CNNs) clearly outperform hand-crafted features in
this context but suffer from a lack of data for training the models. In this paper, we propose two
contributions to cope with this problem. First, we provide a new material dataset with a large range
of acquisition conditions so that CNNs trained on these data can provide features that can adapt to
the diverse appearances of the material samples encountered in real-world. Second, we leverage
recent advances in multi-view learning methods to propose an original architecture designed to
extract and combine features from several views of a single sample. We show that such multi-view
CNNs significantly improve the performance of the classical alternatives for material classification.

Keywords: material classification; multi-view learning; texture analysis; visual appearance;
material dataset

1. Introduction

Material classification is a visual recognition task closely related to texture classification
and dedicated to classifying input texture/material images into categories such as fabrics,
wood, steel, or cotton [1]. It is of great interest to computer vision because predicting the
material of objects in a scene can help for many applications: object manipulation by a
robot [2], automatic waste sorting [3], predicting the appearance of an object under different
lighting conditions [4], object recognition [5], etc.

However, this is still a challenging problem, since material images show a large intra-
class variability [1,6]. First, the visual appearance of a material or a texture sample may
significantly vary across viewing and lighting conditions. This is illustrated in Figure 1,
where each column represents the same sample but observed under different lighting
conditions and viewpoints. Second, different samples made from the same material can
have different visual features, even when observed under similar conditions. This is the
case, for example, with the two wool samples displayed in columns 2 and 3 of Figure 1.
These two problems are very important for material recognition tasks and make it very
challenging to extract relevant features from color images.

Recent studies have shown that deep neural networks clearly outperform many
alternatives for material classification, but it is also clear that their performances are highly
related to the data on which they are trained and tested [1,6,7]. For a material dataset
showing small variations across acquisition conditions, a deep network can easily learn the
specific features of each material and provide a very good recognition accuracy. When high
variability exists in the acquisition conditions of the images (as for the real-world material
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appearance), we show, in this paper, that the performances can significantly drop. The first
contribution of this paper is the constitution and provision of a dataset of material images
with large intra-class variability; see Section 3.1. This dataset is called UJM-TIV (UJM is
the abbreviation of our university, and TIV stands for Textures under varying Illumination,
pose and Viewing). In this paper, we leverage this dataset to confirm that current classical
neural network solutions do not generalize sufficiently to new data for real-world material
observations. We hope that such a new diverse dataset will help to better learn material
features in the future.

Aluminium Wool Wool Wood

Figure 1. Appearance variation across acquisition conditions. The images of each column contain the
same sample under different (lighting or viewpoint) conditions. These images are extracted from our
new dataset.

Then, in order to go a step further towards better generalization of deep features for
material classification, we propose exploiting a multi-view learning solution. Indeed, since
one image provides a single view of a material sample, we claim that the performance
could be significantly improved by considering a set of images for each material sample.
Indeed, when a human being tries to determine the material that constitutes an object,
they often tend to vary their point of view by moving their head or manipulating the
object when possible to vary the viewpoint and light direction. We propose to mimic this
natural behavior by taking advantage of the recent advances in multi-view learning [8],
which makes it possible to extract features from several images and to merge them into
a relevant representation. To the best of our knowledge, this is the first time that a multi-
view learning approach is applied to material images in order to tackle the problem of
appearance variations across viewing conditions.

Our contributions are fourfold:

• We analyze the current material datasets and show that they do not have enough
intra-class diversity for material classification tasks,

• We provide a new public material dataset with high variations across acquisition con-
ditions (lighting and viewpoint) in order to better represent the multiple appearances
of a single real-world material sample,

• We propose to exploit a multi-view learning approach to extract features from a set
of images of the same material sample and to merge them into an accurate material
representation,

• Extensive tests on two material datasets show that exploiting multiple views of the
same material sample clearly outperform the single-view alternative.

In Section 2, we present state-of-the-art solutions designed for material classification
and multi-view learning and discuss the different public material datasets. Next, Section 3.1
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is devoted to the description of our new dataset. We detail the materials used, the lighting
conditions, the acquisition device, and the viewing conditions. We show why this dataset
is more adapted for multi-view learning than the classical KTH-TIPS2 dataset [9] or any
other existing datasets. The KTH-TIPS2 dataset can be downloaded from [10]. Next, in
Section 3.2, we present a deep network architecture designed for two-view learning and test
it on two material datasets, showing that it outperforms the alternative deep single-view
classifier. The experimental results are reported in Section 4. Lastly, a conclusion is drawn
and future research directions are indicated in Section 5.

2. Related Work
2.1. Material Classification

Several categories of methods have been proposed in state-of-the-art studies. The
first ones are related to pattern-recognition-based methods, i.e., the computation of image
features such as textons [11,12]. Next, methods based on filter banks have been proposed.
These are related to the computation of local texture features [13–17]. Then, local texture
features aggregation methods, such as the bags-of-textons [18], have been introduced,
which are designed to compute global texture features.

Some recent papers have demonstrated the efficiency of CNN methods for material
recognition (e.g., [19]) and the superiority of deep networks and off-the-shelf CNN-based
features (e.g., [20]), particularly with non-stationary spatial patterns, such as textures,
and in the presence of multiple changes in the acquisition conditions, against traditional,
hand-crafted descriptors [1]. In [7], a selection of CNN architectures were evaluated and
compared on various widely used material databases and achieved up to 92.5% mean
average precision using transfer learning on the MINC 2500 material database. In [1], a
selection of state-of-the-art solutions (LFV+FC-CNN [21], Deep Ten [22], FV-CNN [23], and
B-CNN [24]) designed for material classification were evaluated and compared on various
datasets (FMD, KTH-TIPS-2b, and 4D-Light). The best classification accuracy obtained
with these networks was around 83% for only the KTH-TIPS-2b dataset.

Until recently, most material classification methods used only single-view image as
input or combined few single view image features as input. For example, in [25], the
authors used a multi-modal sensing technique, leveraging near-infrared spectroscopy and
close-range high-resolution texture imaging, to perform material classification.

In [26,27], the authors demonstrated that the concept of photometric stereo acquisition
could improve the efficiency of material classification methods. They showed how micro-
geometry and reflectance properties of a surface could be used to infer its material. Likewise,
Maximov et al. [28] and Vrancken et al. [29] demonstrated that combining different lighting
and viewing conditions could slightly improve the material classification task.

In the ideal case, the user would like to predict the appearance of a material regardless
of the viewing direction and other factors that could have an impact on the capturing
process. This is a quite challenging, ill-posed, and under-constrained problem that remains
hard to solve for the general case [6].

2.2. Multi-View Learning

The aim of multi-view learning is to extract accurate features from data of different
modalities (color image, text, audio, Lidar, etc.), or representing different views of the same
sample (different languages for texts, different acquisition conditions for images, etc.) [8].

Features can be extracted from images very accurately with convolutional neural net-
works (CNN), and many approaches have integrated multi-view learning into CNN [8,30–32].
The idea is to aggregate CNN features from different views into a more accurate general
representation. Two main approaches based on multi-view CNN exist, as presented in [8]:
the so called one-view-one-net mechanism uses one network per view and aggregates all the
features through a fusion process [30,31], while the multi-view-one-net mechanism feeds a
single network with all the views to extract features [32]. For the one-view-one-net solutions,
the first networks used to extract the features usually share their weights in order to minimize
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the number of learned weights. The crucial points of such approaches lie in the feature-fusion
process. The main question with the multi-view-one-net solutions is about the aggregation of
the inputs images before feeding the single network. The straightforward approach consists
in concatenating these images into a multi-channel image and to apply convolutions on this
image. This means that local features are extracted at the same locations in these images,
which requires a coarse registration between the images in order to obtain consistent features.
Second, such a concatenation prevents the use of pre-trained networks that are usually fed
with three-channel images. Therefore, in this paper, we have chosen a one-view-one-net
approach with a specific architecture.

Finally, some approaches have also combined Siamese networks with multi-view
learning for person re-identification [33] or image quality assessment [34], for example.
Varga et al. propose extracting a set of overlapping sub-windows from a person image and
feeding a Siamese network with these different views (sub-windows) [33], while Liang et
al. also feed a Siamese network with sub-patches extracted from color images [34].

Even though each element of our designed network has been carefully selected, the
contribution of this paper is not in the definition of a new architecture for a general multi-
view CNN. The main aim is rather to show that multi-view learning is an appropriate
solution to tackle material classification. To the best of our knowledge, this is the first time
that a multi-view CNN has been used for this task.

2.3. Material Datasets

Several categories of texture/material datasets have been introduced over the years.
Some image sets were collected in lab settings from cropped stand-alone samples (e.g.,
CUReT [35] in 1999, KTH-TIPS [36] in 2005); meanwhile, others were collected in the wild
(e.g., FMD [37] in 2009, OpenSurfaces [38] in 2013, MINC [39] in 2015, and LFMD [40] in
2016) with more diverse samples and real-world scene contexts. The number of classes
and the number of samples in each class varies greatly from one dataset to another (e.g.,
10 classes/810 images in total for KTH-TIPS, 61 classes/5612 images in total for CUReT);
likewise, the diversity of input parameters also varies significantly (e.g., small viewpoint
changes in KTH-TIPS, larger viewpoint changes in CUReT) [41]. The KTH-TIPS (Textures
under varying Illumination, Pose and Scale) image database was created to extend the
CUReT database by providing variations in scale [36].

KTH-TIPS2 is an extension of the KTH-TIPS [9] database. KTH-TIPS2 contains 4 physi-
cal samples of 11 different materials (the same material classes as KTH-TIPS) [42]. Similarly
to the KTH-TIPS dataset, it provides planar images with variations in scale, as well as
variations in pose and illumination. From one physical sample to another one, there is in
some classes some strong (intra-class) variations (e.g., within wool or cracker samples);
meanwhile, for some other classes, intra-class variations are lower (e.g., within wood or
cork samples). There is also some similitude between cotton and linen classes (i.e., a small
inter-class variance). In CUReT, only a single material instance is provided per class; conse-
quently, no generalization can be performed to classify material categories due to a lack of
intra-class variation. Changes in KTH-TIPS2 induced by a change in viewing directions or
by a change in lighting conditions are, respectively, illustrated in Figures 2 and 3.

In most material datasets, the viewing and lighting conditions and the camera settings
are well controlled, and image acquisition is performed by a technician (a photographer)
who takes care to perform the best acquisition (e.g., to minimize the blur and to mini-
mize specularity) with the available setup system. However, for some materials, such as
aluminum foil samples, this is very challenging as this kind of material is very reflective.

Our aim was therefore to create a new dataset giving greater flexibility to the user in
the image-acquisition process. Our main objective was to perform image acquisition under
various lighting and viewing directions, rather than under very strict and well-controlled
(and limited) lighting and viewing conditions. We assume that from one viewing direction
to another one, the average lightness of the sample may differ, as illustrated in Figure 4f, in
comparison with Figure 4h. Lightness/color invariance is one of the invariance properties
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that a material classifier should have. We also assume that from one viewing direction
to another one, the contrast of the sample may differ, depending of the roughness and
thickness of the materials, as illustrated in Figure 4a in comparison with Figure 4e. Contrast
invariance is one of the invariance properties that a material classifier should also have.

(a) (b) (c)

(d) (e) (f)

Figure 2. Changes in visual appearance of a white bread sample and a wool sample from the KTH-
TIPS2 dataset under various lighting and viewing directions. Images (a–c) were captured with a
frontal illumination direction and frontal, 22.5° right and 22.5° left viewing directions, respectively, for
the white bread sample. Similarly, images (d–f) were captured with a frontal illumination direction
and frontal, 22.5° right and 22.5° left viewing directions, respectively, for a wool sample.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Changes in visual appearance of a white bread sample and a wool sample from the KTH-
TIPS2 dataset under various lighting and viewing directions. Images (a–d) were captured with a
frontal viewing direction and frontal, 45° from the top, 45° from the side, and ambient illumination
conditions, respectively, for a white bread sample. Similarly, images (e–h) were captured with a
frontal viewing direction and frontal, 45° from the top, 45° from the side, and ambient illumination
conditions, respectively, for a wool sample.

The fabric dataset introduced in [27] illustrates another kind of lightness shift due to a
lighting field (an array of 12 LEDs) that is not spatially uniform on the sample area. This
dataset contains 1266 samples that belong to one of the following fabric classes: cotton,
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terrycloth, denim, fleece, nylon, polyester, silk, viscose, and wool. The number of samples
in each class is very unbalanced (588 in the cotton class, 32 in the terrycloth class). The
samples were acquired under near-grazing illumination from a frontal view only. To
perform photometric reconstruction, the setup was geometrically calibrated.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Changes in the visual appearance of a white bread sample under various lighting geometries
and viewing directions. Images (a–d) were acquired under the same lighting direction (90°). Images
(e–h) were acquired under the same viewing direction (90°). For images (a–d) the lighting direction
was fixed at 90° and the viewing directions are 90°, 60°, 35°, and 10°, respectively. For the images (e–h),
the viewing direction is fixed at 90° and the lighting directions are 90°, 65°, 45°, and 20°, respectively.

By playing with lighting and viewing conditions, we can increase the difference in
the visual appearance for a material sample. In this paper, we claim that the diversity
of the visual appearances of a material sample over variations in acquisition conditions
should be accounted for in the final feature vector to optimize the classification accuracy.
For example, the image differences observed in Figure 5 are more significant than those
observed in Figure 6, as higher viewing and lighting angles were considered in the UJM-
TIV dataset than in the KTH-TIPS2 dataset (see complementary information provided in
Tables 1 and 2).

Table 1. Viewing and illumination conditions of selected views from KTH-TIPS2 [42] dataset.

View Viewing Direction Illumination Direction

View1 Frontal Frontal
View2 22.5° left Ambient
View3 Frontal 45° from top
View4 22.5° right Ambient
View5 Frontal 45° from side
View6 Frontal Ambient
View7 22.5° right Frontal
View8 22.5° left 45° from side
View9 22.5° right 45° from top

View10 22.5° left 45° from top
view11 22.5° right 45° from side
view12 22.5° left Frontal
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Figure 5. Images of a cotton sample from the UJM TIV dataset observed under different views.

Figure 6. Images of a cotton sample from the KTH-TIPS2 dataset observed under different views.

Table 2. Viewing and illumination condition for selected views from the UJM-TIV dataset shown in
Figure 5.

View Viewing Direction Illumination Direction

View1 90° 90°
View2 90° 45°
View3 90° 20°
View4 60° 65°
View5 60° 20°
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Table 2. Cont.

View Viewing Direction Illumination Direction

View6 30° 90°
View7 90° 65°
View8 60° 45°
View9 60° 90°

View10 30° 20°
View11 30° 45°
View12 30° 65°
View13 10° 90°
View14 10° 20°
View15 10° 45°
View16 10° 65°

In next section, we present the details of our new datasets and the way we propose to
exploit multiple views of a single material in order to boost the classification performance.

3. Materials and Methods
3.1. Our New Material Dataset: Ujm-Tiv
3.1.1. General Comments

The UJM-TIV material dataset consists of images from 11 distinct classes, namely
aluminium foil, brown bread, corduroy, cork, cotton, lettuce leaf, linen, white bread, wood,
cracker, and wool (see Figure 7).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 7. Images of samples of (a) aluminium foil, (b) brown bread, (c) corduroy, (d) cork, (e) cotton,
(f) lettuce leaf, (g) linen, (h) white bread, (i) wood, (j) cracker, and (k) wool from the UJM-TIV dataset
taken under illumination conditions of 65° and viewing condition 90°.
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These images were acquired under controlled viewing and lighting conditions. These
11 classes are also included in the KTH-TIPS2 [42] dataset. Due to the diversity of samples
in each material category, the visual appearance of the UJM-TIV samples is not similar to
that of the KTH-TIPS2 samples. Strong differences in appearance with respect to Figure 7
are evident at lower viewing angles or lower illumination angles (see Figure 8).

In the UJM-TIV dataset the variation in appearance between samples is clearly larger
for some categories (e.g., wood and wool) than in KTH-TIPS2. Furthermore, in UJM-TIV,
wool and cotton have the highest variations in appearance, while cork, brown bread, and
white bread have the lowest intra-class variations. As an illustration, see the changes in
appearance shown in Figures 1 and 9.

3.1.2. Acquisition Settings and Image Processing

For our dataset, a Canon EOS 5D Mark IV digital camera was used to capture the
images of the samples with a resolution of 6720 × 4480 pixels. The background surrounding
each sample was removed using a post-processing step. For each object sample, two object
poses were considered, with a 90°rotation around the surface normal N of the angle denoted
θS in Figure 10.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 8. Images of a sample of (a) aluminium foil, (b) brown bread, (c) corduroy, (d) cork, (e) cotton,
(f) lettuce leaf, (g) linen, (h) white bread, (i) wood, (j) cracker, and (k) wool category from the UJM-TIV
dataset taken under a illumination direction of 65° and a viewing condition of 35°.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Changes in visual appearance of a wool sample under various lighting geometries and
viewing directions. Images (a–d) were acquired under the same lighting direction (90°). Images (e–h)
were acquired under the same viewing direction (90°). For images (a–d), the lighting direction is
fixed at 90°, and the viewing directions are 90°, 60°, 35°, and 10°, respectively. For images from (e–h),
the viewing direction is fixed at 90° and the lighting directions are 90°, 65°, 45°, and 20°, respectively.

Figure 10. Schematic diagram of the image acquisition setup. In our experiments, the plane defined
by vectors N and I was set perpendicular to the plane defined by vectors N and V.

The example shown in Figure 11 illustrates how such a change can modify the material
appearance for a given material sample.
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(a) (b)

Figure 11. Images of a cotton sample from UJM-TIV: (a) when the viewing condition is frontal and
lighting condition is at 20°. (b) with the same viewing and lighting conditions when the sample
orientation is perpendicular.

The image acquisition setup used to capture the images under controlled viewing and
lighting conditions is illustrated in Figure 10. In this Figure, S is the material sample, I is
the illumination source, and V is the viewpoint direction. The plane defined by the vectors
N and V is perpendicular to the plane defined by the vectors N and I. Four standard light
sources (60 W tungsten light bulb) were used, one for each lighting direction θI (frontal,
roughly 20°, roughly 45°, and roughly 65°). Four viewing directions θV (frontal, roughly
60°, roughly 30°, and roughly 10°) were used for each object pose. Therefore, there is
a total of 16 (four illumination directions x four viewing directions) images per sample
position captured for each material sample. For two poses, a total of 32 images were
captured for each sample. The acquisition were performed in a dark room without any
ambient illumination.

The Patchify [43] library was used to extract 200 × 200 pixel image patches from the
samples. Areas with a background and too blurry images were removed manually from all
extracted patches. The number of patches extracted varied from sample to sample. The
dataset contains around 75 thousand image patches after areas that were blurred and out
of focus were removed from the all extracted patches.

3.1.3. Comparison with Previous Datasets

The viewing directions used in UJM-TIV are different from those used in KTH-TIPS2
(frontal, rotated 22.5° left and 22.5° right) and with a larger range. The lighting directions
used in UJM-TIV are also different from those used in KTH-TIPS2 (frontal, 45° from the top
and 45° from the side, all taken with a desk-lamp with a Tungsten light bulb).

All samples captured in the KTH-TIPS2 were acquired under a combination of three
viewing directions (frontal, rotated 22.5° left, and rotated 22.5° right) and four illumination
directions (from the front, from the side at roughly 45° and from the top at roughly 45°,
and using ambient lighting), unlike the ones used in UJM-TIV. They were also captured at
different scales, which is the opposite of UJM-TIV.

As with KTH-TIPS2, in UJM-TIV, few images of fine-structured materials appear out
of focus at working distances due to perspective effects and roughness of materials; see
Figure 12 ,where all the images shown were captured under a viewing direction around 10°
and an illumination direction of 20°.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Image samples appeared as out of focus for the categories (a) brown bread, (b) corduroy,
(c) cork, (d) cotton, (e) lettuce leaf, (f) linen, (g) wood, and (h) wool from the UJM-TIV dataset.

In contrast with other setups, such as the ones described in [27] or [44], in this study, our
aim was not to tailor a lighting system that optimizes the light source positions depending
on the various materials.

3.2. Multi-View Learning with Siamese Networks

Multi-view learning is attracting many researchers today [8] since it allows one to
extract features from multiple views and to merge them into an accurate global represen-
tation. As explained above, a one-view-one-net mechanism is well adapted to material
classification. In this case, each image (view) is fed into a deep backbone to extract fea-
tures, and then the features of each view are merged and used as input to a classification
network that predicts the class of the considered sample. Once again, our contribution,
here, is not in the definition of the best architecture for this task but rather to leverage the
multi-view learning area to show that it can significantly improve the performance for
material classification.

Hence, we have selected a simple one-view-one-net architecture with a pre-trained
network, leaving for future works any improvements related to the architecture choice.

Since each view feeds a backbone, we propose sharing the weights between these
backbones in order to minimize the number of learned weights and to prevent overfitting.
Furthermore, sharing the weights between backbones can also help to improve the general-
ization power of the model, since the same backbone must extract accurate features from
different views (different appearances). A single architecture merging the outputs of two
identical branches is a Siamese network [45–47].

The architecture of the proposed network is shown in Figure 13. The Siamese network
takes a pair of images as input from two different views and feeds it to one backbone.
In our case, a pre-trained ResNet50 [48] is used as the backbone. Each branch learns the
features from each input view. Then, the learned features are concatenated together, and
the result feeds the fully connected layers for classification. It is worth mentioning that
all the blocks are differentiable so that this architecture can be trained end-to-end (feature
extraction and classification) with a single classification loss.
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Figure 13. The proposed Siamese architecture for multi-view learning.

Before concatenating the features of each view, a global average pooling (GAP) layer
is used in order to reduce the number of inputs of the first fully-connected (FC) layer of the
architecture. It is known that such pooling helps to prevent overfitting problems [48].

This GAP layer averages all the local neuron activations into a single activation for
each channel. One alternative would be to use a global max pooling (GMP) layer that
preserves only the highest score over the activation map. Intuitively, GAP is designed to
work on repetitive local patterns, where the average of similar features has a meaning and
noise is removed, while GMP is designed to pick the most important detail in each map.
In this case, we believe that, for texture images (with repetitive patterns), GAP is more
appropriate than GMP.

Furthermore, in order to regularize the classifier, dropout is applied in the FC layers.
The advantage of such an architecture is that it can be easily adapted to more than

two views. Indeed, the pre-trained backbone can be used to extract features from any new
views, and only the FC layer has to be adapted and retrained to perform classification. In
this paper, we have only trained and tested a two-branch architecture.

4. Results and Discussion

In order to assess the quality of our new dataset and the performance of the proposed
multi-view CNN, we have conducted many tests on two datasets. The idea was to compare
the advantages of our dataset over the KTH-TIPS2 dataset and to compare the performance
of our two-views CNN with a single-view alternative.

4.1. Experimental Settings

We have created two architectures for our tests. One is a classical single-branch archi-
tecture with a convolutional backbone to extract features and FC layers for classification.
The accuracy provided by this network is called single-view accuracy. Then, we used
our Siamese architecture with two backbones with shared weights that extract features
from two views and FC layers for classification. This architecture provides the so-called
multi-view accuracy. As the backbone for these architectures, we selected a residual net-
work ResNet50 [48] pre-trained on the ImageNet dataset. The last convolutional layer of
this network is fine-tuned on the considered data, while the other layers are frozen. For
each architecture, the number of FC layers and the number of neurons in each layer are
cross-validated for fair comparison. Finally, the number of learned parameters is equiv-
alent between each architecture (7.1 million for the single-view and 7.7 million for the
multi-view).

Likewise, the hyperparameters and optimization algorithms are the same for both
networks. We use the Adam optimizer with an initial learning rate of 0.001. For each
experiment, the learning rate automatically decreases by a factor of 0.2 when the loss does
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not decrease for some consecutive steps. The maximum number of epochs is fixed to 350.
Input images were resized to 224 × 224 before feeding the network with a batch size of 16.

The Keras framework with TensorFlow 2.8.0 backend and Python version 3.9.5 was
used to implement both the single-branch and the Siamese network. The models were
trained on a high-performance GPU with an NVIDIA RTX 8000 8GB graphics card, CUDA
version 11.2, and RAM of size 16 GB.

4.2. Data

We ran experimental tests with two different configurations. The first configuration
consists in training and testing on the whole considered dataset. Each dataset is randomly
split into training and test sets, with 70% and 30% of the data, respectively, providing the
sets called KTH-TIPS2 Train, KTH-TIPS2 Test, UJM-TIV Train, and UJM-TIV Test.

Then, in order to test the multi-view learning, we selected some views in both datasets:
12 views in KTH-TIPS2 and 16 views in UJM-TIV. All the images of each selected view were
also randomly split at a ratio 70% and 30% for training and testing, respectively.

Table 1 details the viewing and illumination conditions of the selected views from
the KTH-TIPS2 dataset. As observed in Figure 6, changes in viewing and illumination
directions have an impact on the overall appearance of the observed cotton sample (more
blur, less contrast, etc.), but these changes are not significant (lower than the changes in
appearance between samples belonging to the same category, i.e., changes induced by
intra-class variation).

Table 2 details the viewing and illumination conditions of the selected views from the
UJM-TIV dataset as shown in Figure 5 used for the experiment. Similarly, Figure 4 shows
the images of four different views of a white bread sample from our new dataset used in
the multi-view experiment.

4.3. Results

The results are organized into two sections, depending on which data the networks
have been trained and tested. First, we show results for test on the whole datasets and then,
results on selected views.

4.3.1. Appearance Diversity of the Datasets

First, the idea is to analyze the results of a single-branch network on the whole datasets.
The results are provided in Table 3 for both datasets. First, we can notice that the obtained
accuracy for KTH-TIPS2 (80%) is similar to the ones obtained by classical deep networks
in [49]. Second, we notice that the accuracy obtained on our UJM-TIV dataset with the same
settings as the ones used on KTH-TIPS2 is much lower. This means that a single-branch
network performs better on KTH-TIPS2 than on our dataset. We think that it is directly
related to the higher intra-class variability of our dataset.

Table 3. Model accuracy of single branch network with KTH-TIPS2 and UJM-TIV when considering
all the views.

Train Data Test Data Val. Accuracy

KTH-TIPS2 Train KTH-TIPS2 Test 80.00
UJM-TIV Train UJM-TIV Test 55.26

4.3.2. Multi-View Learning

In this section, we provide results on both datasets when the networks are trained
and tested on the selected views. We consider the views by pairs in order to test our deep
architecture for the two views. Thus, we have trained a network (single- or two- views)
with the images of the two considered views (the training set) and tested on the same views
(the test set).
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The results are provided in Table 4 for the KTH-TIPS2 dataset and in Table 5 for our
UJM-TIV dataset. First, we can notice that considering only two views for training overall
reduces the accuracy compared when training on the whole dataset (which was 80% for
KTH-TIPS2 and 55% for UJM-TIV). This is not surprising since here, the network has been
trained on fewer data than when the whole dataset was used. Second, we observe that
the multi-view network significantly outperforms the single-view network for all selected
view pairs. This clearly shows that multi-view learning is a relevant solution for material
classification. Furthermore, we can notice that the improvement provided by the multi-
view training over the single-view training is much higher when the two views present
very different appearances. This is the case for the dataset KTH-TIPS2 between view9 and
view10 (+46% improvement), where there is a difference of 45◦ for the viewing direction
between the two views. For our dataset, the improvement from a single view to two views
is important for almost all the considered pairs of views. This is due to the high variation
in appearance between the views for our dataset.

Table 4. Model accuracy of single-view and multi-view learning on KTH-TIPS2.

Train Data Test Data Single-View
Accuracy

Multi-View
Accuracy

Improvement
(%)

view1, view2 view1, view2 56.90 68.53 +29.76
view3, view4 view3, view4 60.34 67.24 +10.26
view5, view6 view5, view6 56.91 71.98 +20.94
view7, view8 view7, view8 39.66 47.41 +16.35
view9, view10 view9, view10 34.48 64.22 +46.31

view11, view12 view11,view12 37.93 67.24 +43.59

Table 5. Model accuracy of single-view and multi-view learning on our UJM-TIV dataset.

Train Data Test Data Single-View
Accuracy

Multi-View
Accuracy

Improvement
(%)

view1, view2 view1, view2 50.28 79.52 +36.77
view3, view4 view3, view4 60.00 75.29 +20.31
view5, view6 view5, view6 44.48 95.71 +53.52
view7, view8 view7, view8 51.32 96.52 +46.83
view9, view10 view9, view10 65.59 95.29 +31.17

view11, view12 view11, view12 66.63 94.56 +29.54
view13, view14 view13, view14 80.33 89.34 +10.08
view15, view16 view15, view16 53.91 83.78 +35.65

These results clearly show that our dataset is well designed to train networks for
material classification and that the proposed Siamese architecture is a relevant solution for
two-view learning.

To go a step further in the analysis, we propose looking at the confusion matrices
for one experiment where the multi-view approach clearly outperforms the single-view,
i.e., the tests on views 5 and 6 for the UJM-TIV dataset. These confusion matrices are
displayed in Figure 14.

These matrices clearly show that many classification failures are avoided when multi-
ple views are considered. Indeed, we can see in Figure 14a that many images are misclassi-
fied as a lettuce leaf or wood when using a single view, while most of the predictions are
correct (diagonal) on Figure 14b.
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(a) Single view (b) Multi-view

Figure 14. Confusion matrix for (a) Single-view model and (b) multiview model when using view5
and view6 from UJM TIV dataset.

4.3.3. Experiments with a State-of-the-Art Solution

The previous experiments have shown that the results of a basic network not specif-
ically designed for material classification can be strongly improved when considering a
multi-view approach. As a final experiment, we checked if a very accurate state-of-the-
art solution can also benefit from our contribution. Consequently, we have selected an
approach adapted to material classification and based on the deep Fisher score [50]. This
solution exploits orderless pooling and sparse coding and requires a training phase con-
stituting three consecutive steps. We have trained and tested this network on all the view
pairs presented in Tables 4 and 5 in the context of single-view and multi-view learning. The
results appear in Tables 6 and 7.

Table 6. State-of-the-art model [50] accuracy of single-view and multi-view learning on KTH-TIPS2.

Train Data Test Data Single-View
Accuracy

Multi-View
Accuracy

Improvement
(%)

view1, view2 view1, view2 94.7 97.5 +3.0
view3, view4 view3, view4 90.0 96.67 +6.90
view5, view6 view5, view6 90.83 95.83 +5.22
view7, view8 view7, view8 92.50 98.33 +5.93
view9, view10 view9, view10 92.50 95.83 +3.47

view11, view12 view11, view12 90.00 94.17 +4.40

These results confirm that the tested network is relevant for material classification,
since it outperforms all the results from Tables 4 and 5. Second, we can notice that, even
with such an accurate network, moving from single-view to multi-view learning improves
the results for almost all the experiments. Since the results of single-view classification are
already very high, the relative improvements are much lower than in the previous case
with a baseline network. Nevertheless, the average improvement on the KTH-TIPS2 dataset
(Table 6) is significant (around 4.8%), and the results are almost perfect on the UJM-TIV
dataset when combining the strong network from [50] and the proposed multi-view ap-
proach (Table 7). This last experiment clearly shows that our contribution can be exploited
to boost the results of any state-of-the-art solution to the material classification task.
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Table 7. State-of-the-art model [50] accuracy of single-view and multi-view learning on our UJM-
TIV dataset.

Train Data Test Data Single-View
Accuracy

Multi-View
Accuracy

Improvement
(%)

view1, view2 view1, view2 100 98.99 −1.02
view3, view4 view3, view4 99.44 100 +0.56
view5, view6 view5, view6 99.85 100 +0.15
view7, view8 view7, view8 99.88 100 +0.12
view9, view10 view9, view10 99.56 100 +0.44

view11, view12 view11, view12 99.88 100 +0.12
view13, view14 view13, view14 99.80 100 +0.20
view15, view16 view15, view16 98.31 99.58 +1.28

5. Conclusions

In this paper, we have proposed several contributions to material classification. We
have introduced a new dataset with large intra-class variability. The variations in appear-
ance within each class are due to large range of acquisition conditions and the selection
of diverse material samples. We have shown that classical deep networks cannot easily
generalize on such data, demonstrating the need for alternative solutions for this task. In
order to exploit the appearance variations across viewing conditions, we have proposed
leveraging the strengths of recent solutions in multi-view learning. We have shown that a
Siamese architecture significantly outperforms the single-branch alternative by merging
features from two views. Obviously, increasing the number of views at the input of the
network is a solution that will be investigated in our future works. The challenge here is to
extract features from uncontrolled views and to merge them into a general representation
of the considered sample. Next, we plan to demonstrate that multi-view learning could
also contribute to better reconstructing (photometrically) complex spatially varying BRDF
and to improve the efficiency of single-image SVBRDF-based rendering methods (see [51]).
In this context, it could be interesting to augment the datasets with synthetic data [52–54],
for which we can control the input BRDF.
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