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Abstract: Because of the large variabilities in brain tumors, automating segmentation remains a
difficult task. We propose an automated method to segment brain tumors by integrating the deep
capsule network (CapsNet) and the latent-dynamic condition random field (LDCRF). The method
consists of three main processes to segment the brain tumor—pre-processing, segmentation, and
post-processing. In pre-processing, the N4ITK process involves correcting each MR image’s bias field
before normalizing the intensity. After that, image patches are used to train CapsNet during the
segmentation process. Then, with the CapsNet parameters determined, we employ image slices from
an axial view to learn the LDCRF-CapsNet. Finally, we use a simple thresholding method to correct
the labels of some pixels and remove small 3D-connected regions from the segmentation outcomes.
On the BRATS 2015 and BRATS 2021 datasets, we trained and evaluated our method and discovered
that it outperforms and can compete with state-of-the-art methods in comparable conditions.

Keywords: medical image segmentation; brain tumor; deep capsule network; latent-dynamic
condition random field

1. Introduction

Brain tumor occurrences are substantial contributors to the worldwide mortality
rate. Brain tumors kill more individuals under the age of 40 in Australia than any other
malignancy, according to the Cure Brain Cancer Foundation. Furthermore, despite the
amazing improvement in the survival rate of other forms of cancer in Australia, its survival
rates are poor and have not improved substantially in the last 30 years [1]. The World
Health Organization (WHO) divides brain tumors into four categories based on cell origin
and behavior, ranging from the least aggressive to the most aggressive.

Tumors classified as grades I or II (low grade (LG) tumors) are non-malignant brain
tumors, whereas malignant brain tumors are classified as grades III or IV (high grade (HG)
tumors) [2]. HG tumors are life-threatening and have a maximum life expectancy of two
years, but LG tumors have a significantly longer life expectancy of up to ten years.

Segmentation of brain tumors using neuro imaging modalities is a significant step in
improving disease diagnosis, treatment planning, monitoring, and clinical trials. To deter-
mine the location and size of a brain tumor, precise segmentation is required. Brain tumors,
on the other hand, have characteristics that make perfect segmentation challenging [3].
Tumors can appear in a variety of locations and can be of virtually any shape or size.
Furthermore, they are typically poorly contrasted, and the intensity value of a tumor may
overlap with the value of healthy brain tissue.

Magnetic resonance imaging (MRI) is one of the most frequently performed diagnostic
procedures in neurology and neurosurgery [4]. The advantage of magnetic resonance
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imaging (MRI) is that it can observe the anatomy in all three planes: axial, sagittal, and
coronal. It also provides good details about the architectures of the brain, spinal cord, and
vascular system (Figure 1).

Figure 1. The brain, spinal cord, and vascular anatomy are all thoroughly detailed [4].

Neuroimaging techniques to segment brain tumors are important steps toward im-
proving disease diagnosis, treatment planning, monitoring, and clinical trial participation.
To determine the location and size of a brain tumor, it is necessary to conduct precise
segmentation. While brain tumors have unique characteristics that make precise segmenta-
tion difficult, they are not frequent. The development of tumors can occur in a variety of
locations and can take on practically any shape or size. Furthermore, they are frequently
poorly contrasted, and the intensity levels of malignancies and healthy brain tissues may
be similar in magnitude.

However, manual contouring of brain tumors has been attempted in the past, but it is
time-consuming and has low reliability across a wide range of operators [5,6]. Numerously-
automated or semi-automated approaches were developed in recent years (see, for ex-
ample, reviews in [7]), but challenges, such as the lack of accuracy when compared to
a specialist’s evaluation, have prevented their widespread clinical applications among
neuro-diologists and neurosurgeons. In a therapeutic setting, a fully automated proce-
dure that provides accurate and meaningful segmentation findings is necessary. The
proposed method makes use of multimodal brain tumor image segmentation (BRATS)
dataset [8] published by the University of Pennsylvania Center for Biomedical Image
Computer and Analytics, and headed “Description of the present suggested model”. Our
research contributes significantly by proposing an automated brain tumor segmentation
method that integrates deep CapsNet with LDCRF. The method is trained and tested on
the BRATS 2015 and BRATS 2021 datasets, where it outperforms state-of-the-art algorithms
in similar settings and has the potential to be competitive. The recommended method is
explained in Section 3 of our study. Our experimental results are presented in Section 4.
The suggested method is concluded in Section 5.

2. Related Work

Among the datasets published by the University of Pennsylvania Center for Biomedi-
cal Image Computer and Analytics (which is further described in the dataset section) is the
benchmark brain tumor segmentation (BraTS) dataset, which hosts an annual contest to
find the best models on the data. Tables 1 and 2 show summaries of dataset specifications.
Researchers have been able to develop and test cutting-edge brain tumor segmentation
algorithms using the BraTS dataset, which has grown in size over time (2012–2021), as the
number of patient cases has increased and the data split has improved, allowing them to
create and test cutting-edge brain tumor segmentation algorithms.

These algorithms can be divided into two groups:

i. Generative models that classify brain voxels based on image attributes and that require
prior knowledge via probabilistic atlas image registration and take into account the
spatial distributions of tissues and their appearances.
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ii. Discriminative models that define brain voxels based on image features and learn char-
acteristics from manually annotated data are used to classify and learn characteristics
from manually annotated data.

Table 1 introduces a summary of the current surveys.

Table 1. The current surveys.

The Title of the Survey Publish Year Remarking

State-of-the-art survey on MRI brain tumor
segmentation [8]

2013 Prior to 2013, a list of segmentation
methods was developed.

A survey of MRI-based brain tumor
segmentation methods [2] 2014

A survey about segmentation approaches of brain
MRI, which was carried out in the years preceding
2014; the results were published in 2014.

Recent advances in convolutional neural
networks [9]

2015
An investigation was conducted into the application
of convolutional neural networks in language
processing, computer vision, and speech recognition.

Probabilistic machine learning and artificial
intelligence [10]

2015 An overview of stochastic machine learning
techniques and the applications of these approaches.

A survey on deep learning in medical image
analysis [11]

2017
A detailed assessment of deep learning algorithms
for medical image processing is presented, including
both theoretical and practical considerations.

Deep learning for brain MRI segmentation:
state-of-the-art and future directions [12]

2018
This work provides deep learning algorithms for
brain MRI segmentation that relies on machine
learning.

Deep convolutional neural networks for the brain
image analysis on magnetic resonance
imaging: a review [13]

2018
Convolutional neural networks (CNNs) are
discussed in relation to their usage in evaluating
magnetic resonance imaging (MRI) of the brain.

Deep learning for generic object detection: a
survey [14] 2018 A detailed survey of deep learning-based object

detection methodologies.

A guide to deep learning in healthcare [15] 2019 Deep learning techniques to boost healthcare
applications are discussed in this survey.

Deep learning-based brain tumor
Segmentation: a survey [16]

2020 A comprehensive evaluation of deep learning to
segment the brain tumor.

Throughout the testing, validation, and training sets, as well as the targeted tasks of the
BraTS instance, Table 2 shows the distribution of BraTS datasets over time and throughout
all three sets since the start of the initiative in 2012, and continuing through 2020.

Table 2. BraTS dataset specification from 2012 to 2020.

Year Total
Data

Training
Data

Validation
Data

Testing
Data Processes Data Type

2012 50 35 N/A 15 Segmentation Pre-operative only
2013 60 35 N/A 25 Segmentation Pre-operative only
2014 238 200 N/A 38 Disease progression and segmentation Longitudinal
2015 253 200 N/A 53 Disease progression and segmentation Longitudinal
2016 391 200 N/A 191 Disease progression and segmentation Longitudinal
2017 477 285 46 146 Segmentation and survival prediction Pre-operative only
2018 542 285 66 191 Segmentation and survival prediction Pre-operative only
2019 584 300 80 204 Segmentation and survival prediction Pre-operative only
2020 620 340 80 200 Segmentation and survival prediction Pre-operative only
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The training and testing datasets for BraTS first two versions (2012–2013) were
35 mp MRI patient scans and 15 mp MRI patient scans, respectively, for the first two
iterations. It was in [17] that the findings and conclusions of the two initial editions were
presented, and it has since become the most public and downloaded manuscript in the
IEEE TMI journal, demonstrating the scientific research community’s interest in BraTS
effort as a community benchmark and publicly available database.

The following three BraTS instances (2014–2016) saw significant growth in the datase,
as well as the addition of longitudinal mp MRI scans in two successive waves. A contribu-
tion to the first wave of growth came from the Cancer Imaging Archive (TCIA) repository,
followed by a contribution from Heidelberg University, and a contribution to the second
wave of growth came from the University of CBICA (Pennsylvania’s Center of Biomedical
Image Computing and Analytics, Chicago, IL, USA), which was established in 2016 [18–20].
As a result of the review of the BraTS (2012–2013) findings, BraTS (2014–2016) incorporates
the ground truth data generated using the label fusion of the best-performing techniques,
which were previously unavailable.

As part of the BraTS dataset validation set, the University of Alabama in Birmingham
(UAB) and CBICA@UPenn submitted a dataset in 2017, following the machine learning
paradigm of training, validation, and testing datasets. This helped to fine-tune the algo-
rithm by following the machine learning paradigm of training, validation, and testing
datasets. As compared to the previous year, the number of reported cases more than
doubled, reaching 477 in 2017. Because of contributions from institutions, such as the MD
Anderson Cancer Center in Texas, the Tata Memorial Center in India, and the Washington
University School of Medicine in St. Louis, among others, the number of instances increased
to 542 in 2018 [21].

Regarding tumor segmentation, a U-Net model design [22] is one of the most effective
neural network model architectures currently available. To begin with, CNN layers are
contracted to collect context (essential attributes, such as glioma area borders), and then
CNN layers are expanded to localize predictions over the entire image (21 scans).

Feng et al. explored the use of ensemble techniques developed across numerous U-Net
models in 2020, and discovered that the combined forecasts outperformed the predictions
of single U-Net models [23]. As a result, because the group’s sub-models are trained to suit
both enhancing and non-enhancing tumors at the same time, each sub-model is unable to
segment a specific region of the glioma, which is a significant limitation.

The CNN-transformer combined model, termed BiTr-Unet [24], was proposed by
Qiran Jia and Hai Shu to perform brain tumor segmentation with respect to multi-modal
MRI data, developed in collaboration with Google. On the BraTS 2021 validation dataset,
the proposed BiTr-Unet achieves excellent performance, with mean Dice scores (0.9076,
0.8392, 0.8231), as well as mean Hausdor distances (4.5322, 13.4592, 14.9963) to the whole
tumor, tumor core, and enhancing tumor, respectively.

Antonio et al., using magnetic resonance imaging (MRI), suggested an accurate brain
tumor segmentation method that has a wide range of applications [25], including radio-
surgery planning. Automatic segmentation has been made possible by breakthroughs
in artificial intelligence, notably deep learning (DL), which have paved the way for the
abolition of labor-intensive and operator-dependent manual segmentation. It was the DL
model using pre-gadolinium and post-gadolinium contrast T1 and T2 FLAIR sequences
that the others outperformed, earning the highest Dice scores of 0.878 for the total tumor,
0.732 for the tumor core, and 0.699 for the active tumor. There was minimal difference
in performance when T1 or T2 sequences were not present, while FLAIR and T1C were
important considerations.

3. Suggested Method

Models trained on feature extraction were used to segment the entire tumor regions
from input MR images. These trained models were also put to the test against the extracted
features of testing MR images. Every trained model produced an output that represented
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the entire tumor region. Each model was trained using 80% of the data and then tested
using the remaining 20%.

Tumor segmentation entails assigning a class to every pixel in the image or 3D volume–
voxel. In the MRI image, a binary semantic segmentation for the brain tumor is performed
using deep learning algorithms. This binary segmentation labels each pixel as a tumor or
background. Pre-processing, segmentation, and post-processing stages are key processes of
our proposed method, which integrated CapsNet and LDCRF. We will go over each step in
detail in the sections below (Figure 2).

Pre-processing

Segmentation

Post-processing

Image slicing + 

N4ITK

Intensity Normalization

Deep Capsule Network (CapsNet)

Latent-dynamic Conditional 

Random Field (LDCRF)

3D-connected regions

Thresholding filter

Volume Data

T1               T1c           Flair            T2

Segmentation 

Result

Figure 2. Structure of our suggestion with respect to three key steps.

3.1. Pre-Processing

The memory amount that is required to process and store 3D volumes is one of the
difficulties in medical image segmentation. The problem is solved by using the overlap-tile
strategy to stitch test patches together to form a segmented test volume after training the
network on image patches. It also avoids border artifacts in the neural network by using
the valid part of the convolution [26]. According to inhomogeneity throughout the tumor
scans, caused via different magnetic field movements, dealing with MRI data is the second
most difficult task. This means that absolute intensity values in various MR images, or even
in the same MR images, have no meaning for the tissue they come from because they do
not stay the same. It is important to perform proper pre-processing on MR images. There
are many biases in the MRI scans of patients that make obtaining accurate segmentation
results difficult. The intensity values of the same tissues change a lot from time to time due
to bias field distortion. We first employed N4ITK to alleviate the bias field of every MR
image in this study [27,28].

The N4 bias field correction algorithm is a widely used approach for correcting low-
frequency intensity non-uniformity, often known as a bias or gain field, in MRI image
data. This approach does not require tissue classification and assumes a simple parametric
model. This filter requires one input image that is impacted by a bias field that we want to
fix. To achieve pixel-to-pixel compatibility, the mask picture and the primary input image
must occupy the same physical space. The revised deviation is then divided by subtracting
the gray-value of the highest frequency and then normalizing the intensity. The revised
deviation is denoted by ξ, and the MR image ready for normalization is denoted by V,
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which is made up of voxels v1, v2, . . . , vN . Each voxel’s intensity value vk is given as Ik. The
revised deviation ξ can then be determined using the following equation:

ξ =

√√√√ N

∑
k=1

(Ik − Î)2/N (1)

where Î signifies the highest frequency’s gray value. We also modified the intensity range
of the MR pictures to 0–255 linearly in order to analyze them as common images. In most
circumstances, the highest frequency’s gray value is near the strength of white matter. As a
result, converting the gray value of the greatest frequency to the same level is analogous
to converting white matter intensities to the same level. Similar intensities in multiple
MR images can have the same tissue significance after normalizing the revised deviation
(Figure 3).

(a)                   (b)                         (c)

Figure 3. The impact of MR image intensity bias and the outcome of bias field correction. (a) before
(b) the estimated bias field and (c) after the N4ITK bias field correction.

3.2. Segmentation

For the purpose of segmenting gliomas from MRI images, we used a deep capsule
network in conjunction with the latent conditional random field in this study. The network
was trained using T1, T1 post-contrast, Flair, and T2 sequences using 2D axial slices
(240 × 240). The network’s architecture allows for semantic segmentation, which involves
classifying all voxels in a slice. As a result, Deep CapsNet-based networks have faster
inference times than typical patch-based CNNs.

As depicted in Figure 4, the segmentation step of our model consists of two parts: a
Deep CapsNet and a latent-dynamic conditional random field. Image patches for Deep
CapsNet and slices for LDCRF were used to learn the proposed model. CapsNet was first
learned using image patches. Then, with the settings of the CapsNet fixed, we used image
slices from the axial view to learn LDCRF-CapsNet. Finally, the image slices were applied
to the entire network to fine-tune it. The brain images were segmented slice by slice during
the testing phase. The axial view was used to extract all of the slices. Following that, we
went over each component of the suggested segmentation model in detail.

Deep CapsNet

Segmentation 

Result
T1,  T1c,  Flair,  T2

LDCRF

Figure 4. Our brain tumor segmentation model’s structure.

3.2.1. Deep Capsule Network

In our suggested method, a patch size 33 × 33 is chosen from a 240 × 240 image size.
The patch extraction lowers the complexity of a convolution neural network by reducing the
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number of parameters. As a result, the model requires a specific set of high-level parameters
for tumor segmentation. The category of a particular voxel is proportional to the category
of its neighbors. Patches are sometimes utilized for training purposes. We utilized a
deep CapsNet with an 11-layer architecture that encapsulated the transfer learning and
segmentation layers. The transfer learning CNN model included three convolution layers
at first, then a max-pooling layer and two convolution layers. The output of the transfer
learning method was passed to the segmentation process, consisting of one convolution
layer, followed by one max-pooling layer, and then three completely convolution layers in
the form of a vector of 128 × 16 × 16. In the convolution and max-pooling layers, a tiny
kernel of 3 × 3 was employed as the filter, and in two completely convolution layers, a
dropout of rate 0.5 was used (Figure 5).

Vector size (128 x 16 x 16)

T1,  T1c,  Flair, T2

(4 x 33 x 33)

Convolution2D-1

Convolution2D-2 +

Dropout

Convolution2D-3 +

Dropout

Convolution2D-5

Convolution2D-4

Maxpooling2D-1

Maxpooling2D-2

Fully Convolution2D   

 + Dropout

Fully Convolution2D  

Fully Convolution2D   

 + Dropout

Segmentation: 5 layersLearning: 5 layers

Convolution2D-6

Figure 5. Structureof transfer learning and the segmentation CNN model.

Overfitting is a significant stumbling block to excellent performance in medical im-
age segmentation utilizing a convolutional neural network. To alleviate the problem of
overfitting, a dropout layer was implemented. A dropout layer with a rate of 0.8 was
used in the transfer learning layer. The segmentation layer had a dropout rate of 0.5 for
another dropout layer. The dropout rate had a significant impact on the complexity of
segmentation layers and the layers of a retrained convolutional neural network (CNN) that
used transfer learning.

3.2.2. LDCRF

Tumors in MR brain imaging are classified and assigned to different classes. LDCRF is
used as a classifier to assign each pixel to its label at this stage. LDCRF is a set of undirected
graphical models to label the sequential data [29,30]. Each label is associated with a single
color pixel (Figure 6). Because they provide a class label for each observation, LDCRF model
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is naturally utilized for classifying unsegmented sequences. Furthermore, throughout the
training and testing processes, it efficiently models infer-tumor action sequences.

                              

  x m   

h 1   h 2   h m   

  x 1   

  y 1     y 2     y m   

  x 2   

      

Figure 6. LDCRF model, in which xj is to the value of jth the corresponding observation, the hidden
state of xj is to hj. yj represents a label of xj, such that the gray circle is to the observation data.

We suppose that the sub-structure hidden variables denote vectors h = h1, h2, . . . , hm
for each sequence. Given the observation sequence x, the probability p(y|x, θ) is determined
as follows:

p(y|x, θ) = ∑
h:∀hi∈Hyi

p(h|x, θ) (2)

here, hi is one of a set of possible hidden states with respect to the label yj.

p(h|x, θ) =
1

Z(x, θ)
exp

( n

∑
i=1

Fθ(hi−1, hi, x, i)
)

(3)

where the number of transition feature functions θ = (λ1, λ2, . . . , λN f ; µ1, µ2, . . . , µNg) is
assigned by N f . The number of label feature function is to Ng, and the length of an
observation length of sequence x is n. Here, the Fθ is estimated as;

Fθ(hi−1, hi, x, i) =

∑
f

λ f t f (hi−1, hi, x, i) + ∑
g

µgsg(hi, x, i) (4)

where t f (hi−1, hi, x, i) is to a function of transition features at position i and position i− 1,
and sg(hi, x, i) denotes a function of the state feature in location i, λ f , and µg denote the
functions of the transition and label features, respectively. The normalized factor, Z(x, θ),
can be determined in the following way:

Z(x, θ) = ∑
h

exp
( n

∑
i=1

Fθ(hi−1, hi, x, i)
)

(5)

To learn the LDCRF model, the parameter θ = (λ1, λ2, . . . , λN f ; µ1, µ2, . . . , µNg) is cal-

culated using the learning data D = {(x(j), y(j))}Td
j=1. Here, x(j) is a training set observation

sequence (i.e., intensity color for each pixel), y(j) refers to the matching label sequence of
an observation sequence x(i). Moreover, Td represents the number of learning sequences.
Equation (6) calculates the objective function of the learning parameter θ, which maximizes
the log-likelihood of the learning dataset.

L(θ) =
Td

∑
j=1

log p(y(j)|x(j), θ)

=
Td

∑
j=1

( n

∑
i=1

Fθ(h
(j)
i−1, h(j)

i , x(j), i)− log Z(x(j), θ)
) (6)
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The BFGS optimization algorithm, which requires 300 iterations to converge, can be
used to accomplish the likelihood maximization [31].

∂L(θ)
∂θ

=
Td

∑
j=1

( n

∑
i=1

∂Fθ(h
(j)
i−1, h(j)

i , x(j), i)
∂θ

−

∑
x

p(h|x(j))
n

∑
i=1

∂Fθ(hi−1, hi, x(j), i)
∂θ

) (7)

Regarding the inference LDCRF model, a set of matrices was constructed with respect
to the probability of the label sequence y, given an observation sequence x [31]. Special start
h0 and end hn+1 states have been introduced to various expressions to make them easier to
understand. These are fictitious states. Assume that Equation (3) gives us p(h|x, θ). Mi(x)
is at the |S× S|matrix, defined as follows to every position i in the observation sequences;

Mi(h′, h|x) = exp
(

Fθ(h′, h, x, i)
)

(8)

Such that S = h1, h2, . . . , hl denotes a set of training data labels. The number of labels
is represented by l. The labels of S at time i are h′ and h. The conditional probability
p(y|x, θ) can be calculated using this notation as follows:

p(y|x, θ) =
∏n+1

i Mi(hi−1, hi|x)
Z(x, θ)

(9)

The inputs of products to these matrices represent the normalization Z(x, θ):

Z(x, θ) =
( n+1

∏
i=1

Mi(i)
)

start,stop
(10)

3.2.3. Merging of Deep CapsNet and LDCRF

The proposed brain tumor segmentation network is built using Deep CapsNet and
LDCRF, with CapsNet giving the prior probability of assigning every label to every voxel.
The prior prediction findings are regarded as the inverse of the single term LDCRF. Fur-
thermore, LDCRF can optimize the segmentation results worldwide based on the position
and the intensity information displayed in the pre-processed MR image for each voxel. The
spatial consistency and appearance of the segmentation results can then be assured.

3.3. Post-Processing

We fixed the labels of some pixels after post-processing the segmentation results by
deleting tiny 3D-connected regions and removing small 3D-connected areas using a simple
threshold. A small portion of the learning dataset was used to validate the values of
these thresholds.

4. Results and Discussions

The brain tumor image segmentation (BRATS) benchmark is an image segmentation
benchmark for brain tumors. On this benchmark, connected with the international confer-
ence of Medical Image Computing and Computer-Assisted Intervention (MICCAI), the
majority of segmentation techniques related to the state-of-the-art has been tested. Our
investigations are based on the RENA-ASNR-BRATS MICCAI’s 2015 and BRATS 2021
datasets. They include four MRI modalities (T1, T1c, flair, and T2), and the segmentation
labels of learning data. The data were randomly separated into learning and testing sets,
with learning data accounting for 80% of all images dataset. The testing dataset was carried
out of 20% of the data and was used to verify our suggested approach. Only the training
data had pixel labels, which were separated into four categories: necrosis, edema, enhanc-
ing, and non-enhancing tumors. A complete tumor (i.e., all classes of tumor), core tumor
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(enhancing, non-enhancing, and necrosis), and enhancing tumor were the three classes
used to evaluate the suggested method. Our system was implemented in the Matab2021a,
hp core-i7 computer with 16 GB of RAM that included a variety of ways and pre-trained
models for implementing the deep neural network.

4.1. Evaluation: BRATS 2015 Dataset

The dataset of BRATS 2015 contains 274 learning MR images, where 220 are to HGG
and 54 to LGG [32]. The modalities available for every patient include T1 weighted, gadolin-
ium (post-contrast T1-weighted), T2-Flair, and T2-weighted (Figure 7). The segmentation
results were assessed using three criteria: specificity, sensitivity, and dice similarity coeffi-
cient (DSC) are factors to consider [32]. Each metric was computed with respect to three
different types of tumor areas: complete, core, and enhancing tumors. The entire tumor
region is made up of necrosis, edema, and enhancing and non-enhancing cores. The core
area contains enhancing, non-enhancing cores, and necrosis. The enhancing core refers to
the only part of the enhancing region. By overlapping the expected output image O with
the manual segmented label L, the dice score was calculated. The dice similarity coefficient
was calculated by intersecting two images, pixel-by-pixel, estimated by;

DSC = 2 · |O ∩ L|
|O|+ |L| (11)

The sensitivity of the accurately-classified tumor labeling is a measure of the correct-
ness. It indicates how effectively the model is at detecting the tumor in a particular image;
it is expressed as:

Sensitivity =
|O ∩ L|
|L| (12)

Specificity is correctly used to calculate the accuracy of the recognized labels to the
typical output class. It assesses how well the model is at finding the tumor in its predeter-
mined location. It is calculated using the intersection of the expected normal label O∗ and
the actual normal label L∗.

Speci f icity =
|O∗ ∩ L∗|
|L∗|

(13)

Figure 7 depicts the suggested method’s segmentation results, emphasizing the efficacy
of the CapsNet, CapsNet + LDCRF, and CapsNet + LDCRF + post-processing models. The
four MRI modalities employed are shown in the top row, while the ground truth and
segmentation findings are shown in the bottom row.

According to the BRATS 2015 Challenge dataset, Table 3 displays Dice scores, sensitiv-
ity, and specificity of CapsNet, CapsNet + LDCRF, and CapsNet + LDCRF + Post-processing.
Table 3 shows that LDCRF can significantly enhance the accuracy of segmentation and post-
processing can further enhance segmentation accuracy. On all three areas of both datasets,
CapsNet + LDCRF + post-processing performs best. The results of our investigation of
the BRATS 2015 dataset are shown in Table 4 and were compared against state-of-the-art
methodologies reported to the BRATS challenge benchmark. According to the tumor core
and enhancement areas, the proposed methods outperform state-of-the-art approaches,
while producing equivalent outcomes to the complete tumor area. The enhanced perfor-
mance to the core and enhancing classes, as well as the high specificity values, are the
highlights of this effort. As indicated in Table 4, the majority of the outcomes reflect the
DICE score [32] utilized for comparison.
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T1                T1c                      Flair            T2

GT                   CapsNet CapsNet +            CapsNet +
LDCRF             LDCRF+ Post-pro.

Figure 7. Results of the segmentation on MR images with respect to MICCAI BRATS 2015 dataset.
Four input modalities are shown in the top row from left to right (T1, T1c, Flair, T2). Ground truth
(GT) as well as segmentation outcomes utilizing CapsNet, CapsNet + LDCRF, and CapsNet + LDCRF
+ post-processing, respectively, in the bottom row (left to right) with red label 1 (necrosis), green label
2 (edema), blue label 3 (non-enhancing), and yellow label 4 (enhancing).

Table 3. On the MICCAI BRATS 2015 dataset, segmentation outcomes with respect to the Dice score,
sensitivity, and specificity.

Methods
Dice Sensitivity Specificity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

CapsNet 0.82 0.80 0.81 0.79 0.76 0.78 0.86 0.84 0.82

CapsNet + LDCRF 0.87 0.84 0.82 0.85 0.82 0.80 0.88 0.86 0.83

CapsNet + LDCRF +
Post-processing 0.91 0.86 0.85 0.88 0.84 0.83 0.93 0.90 0.86

Table 4. On the BRATS 2015 Challenge dataset, comparison with different approaches.

Methods
Dice

Complete Core Enhancing

Kuan-Lun Tseng et al. [33] (DCNN) 0.85 0.68 0.87

L. L. Folgoc et al. [7] (CLDF) 0.79 0.67 0.70

A. R. P. Piedra et al. [34] (VCTB) 0.74 0.54 0.54

Bi Song et al. [35] (AG) 0.85 0.70 0.73

C. Adria et al. [36] (3DNeT3) 0.92 0.84 0.77

S. Hussain et al. [32] (ILinear) 0.86 0.87 0.90

Our Method 0.91 0.86 0.85

Kuan-Lun Tseng et al. [33] introduced a deep convolutional neural network that
focuses on global information rather than patch-based information. It generated the
best outcomes for the overall tumor areas. L.L. Folgoc et al. [7] suggested a cascade
of lifted decision forests (CLDF) as an enhanced implementation for the decision forests.
E.A.R. Piedra [34] described a technique of variability characterization of tumor boundaries
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(VCTB) based on the varied nature of brain imaging. Bi Song [35] used the anatomy-guided
(AG) approach to locate the region of interest (ROI) and then carried out the random forests
to determine the final segmentation outcome. Adria Casamitjana introduced 3-D CNN
(3DNet3), which carried out the best segmentation outcomes on the database of BRATS
2015 [36]. Adria Casamitjana suggested three potential 3D structures; however, only the
best was utilized for comparison with our study. A deep convolutional neural network
(DCNN)-based automated brain tumor segmentation algorithm was introduced by [32],
in which a patch-based strategy combined with an inception process was employed to
learn the deep network via collecting two co-centric patches for varied sizes from the input
image. Batch normalization, drop-out, the inception module, and non-linear activation are
all modules in deep neural networks that have been integrated to create a novel ILinear
nexus design. The results reveal that the majority of models and approaches focus on the
total tumor Dice score while enhancing the tumor area has the lowest outcomes. In the
core and augmenting regions, the proposed methodology, on the other side, outperforms
state-of-the-art procedures while delivering comparable outcomes over the whole tumor
region. In general, the suggested method uses a CPU to segment the entire brain in 4–6 min,
which is significantly faster than the method by S. Hussain et al. [32] (with an average
running time of 8 min).

4.2. Evaluation: BRATS 2021 Dataset

In [37], the BRATS 2021 dataset contains pre-operative MR scans for 2000 participants
separated into testing, validation, and training cohorts. The ground truth labels for training
segmentation models are given to 1251 subjects for the segmentation task. Each subject is
stripped to four 3D MRI modalities (T1, T1c, FLAIR, and T2). 240 × 240 × 155 pixels are
the dimensions of the input image. The ground truth labels are available to 585 subjects for
the classification task. Because the testing cohort is not accessible, the classification task’s
validation data contain image data of 87 people, which are given with no ground truth
labels but can be utilized for evaluating the performance of the model [38]. Figure 8 shows
the segmentation results of the proposed architectures, highlighting the effectiveness of
models CapsNet, CapsNet + LDCRF, and CapsNet + LDCRF + post-processing. The four
MRI modalities employed are shown in the top row, while the ground truth, in addition to
the segmentation outcomes for the proposed methods, are shown in the bottom row.

T1                T1c                      Flair            T2

GT                   CapsNet CapsNet +            CapsNet +
LDCRF             LDCRF+ Post-pro.

Figure 8. Results of segmentation on MR images with respect to the MICCAI BRATS 2021 dataset.
Four input modalities are shown in the top row from left to right (T1, T1c, Flair, T2). Ground truth
(GT) as well as segmentation outcomes utilizing CapsNet, CapsNet + LDCRF, and CapsNet + LDCRF
+ post-processing, respectively, in the bottom row (left to right) with red label 1 (necrosis), green label
2 (edema), blue label 3 (non-enhancing), and yellow label 4 (enhancing).
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The Dice scores of CapsNet, CapsNet + LDCRF, and CapsNet + LDCRF + post-
processing on the BRATS 2021 Challenge dataset are shown in Table 5. As can be observed,
LDCRF significantly improves segmentation accuracy, and post-processing improves seg-
mentation accuracy even more.

Table 5. In the MICCAI BRATS 2021 dataset, segmentation outcomes with respect to the Dice score,
sensitivity, and specificity.

Methods
Dice Sensitivity Specificity

Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

CapsNet 0.83 0.81 0.80 0.80 0.77 0.78 0.87 0.85 0.82

CapsNet + LDCRF 0.87 0.85 0.83 0.85 0.83 0.81 0.88 0.86 0.84

CapsNet + LDCRF +
Post-procesing 0.92 0.88 0.85 0.90 0.86 0.85 0.93 0.91 0.87

In all three areas of both datasets, CapsNet + LDCRF + post-processing perform
best. The suggested methods outperform state-of-the-art models for core and enhancing
tumor areas and produce comparable outcomes through tumor areas. Along with the high
specificity values, this work highlights the performances of core and enhancing classes.

The results of the comparisons with other approaches are described in Table 6, where
the Dice score is reported in the majority of the cases. According to the segmented brain
tumor on multi-modal MRI data, a CNN-transformer hybrid model called BiTr-Unet is
provided [24]. BiTr-Unet is a reliable and robust network for extracting both long-range and
local dependencies for 3D MRI scans, according to the validation data. In [39], a method
for 3D brain tumor segmentation from multimodal was used, as well as participation in
the BraTS 2021 challenge. They used an encoder-decoder-based segmentation network but
changed the training process to reduce redundancy during perturbations. In [40], the joint
graph convolution–image convolution neural network on the Brain Tumor Segmentation
(BraTS) 2021 challenge is considered. Each brain is modeled as a graph made up of separate
picture areas, first segmented using a graph neural network (GNN). Following that, a voxel
(simple) convolutional neural network (CNN) refines the tumorous volume identified by
the GNN, resulting in the final segmentation. Furthermore, due to the coarse supervoxel
generation step, this approach has difficulty in precisely delineating specific tumors and
tumor compartment boundaries. The presented method, on the other hand, outperforms
current procedures in the core and enhancing areas, whereas it yields comparable outcomes
through the complete tumor area.

Table 6. On the BRATS 2021 Challenge dataset; comparison with different approaches.

Methods
Dice

Complete Core Enhancing

Q. Jia and H. Shu [24] (BiTr-Unet) 0.91 0.84 0.82

M. M. R. Siddiquee and A. Myronenko [39] (SegResNet) 0.93 0.89 0.86

C. Saueressig et al. [40] (GNN-CNN) 0.89 0.81 0.73

Our Method 0.92 0.88 0.85

5. Conclusions

Segmenting brain tumors is considered a challenging research project in medical image
processing because of the unpredictable and fluctuating sizes and shapes of tumors. In
the proposed research, an automated method to segment the brain tumor is presented
to address this challenge, by merging the deep capsule network (CapsNet) and latent-
dynamic condition random field (LDCRF) data sets (LDCRF). There were three main
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steps in our method—pre-processing, segmentation, and post-processing—to carry out
the segmentation. Before normalizing the intensity of each MR image, N4ITK employed
pre-processing to make the bias field of every image accurate. To perform the segmentation
operation, CapsNet was trained using image patches. After that, we employed image
slices from the axial view to learn the LDCRF-CapsNet to train the integrating method
while keeping the settings of the CapsNet constant. We next post-processed the segmented
outcomes by eliminating small 3D-connected areas and applying a simple threshold method
to fix the labels of the pixels that were selected for processing. Our methodology was
trained and tested on the datasets from BRATS2015 and BRATS 2021, which are both
publicly available. When compared to previous studies, the findings are encouraging. The
proposed method can be improved in the future by integrating additional features and
employing a variety of classifiers and optimization techniques, among other things.
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