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Abstract: An important factor in the successful marketing of natural ornamental rocks is providing
sets of tiles with matching textures. The market price of the tiles is based on the aesthetics of the
different quality classes and can change according to the varying needs of the market. The classifi-
cation of the marble tiles is mainly performed manually by experienced workers. This can lead to
misclassifications due to the subjectiveness of such a procedure, causing subsequent problems with
the marketing of the product. In this paper, 24 hand-crafted texture descriptors and 20 Convolution
Neural Networks were evaluated towards creating aggregated descriptors resulting from the combi-
nation of one hand-crafted and one Convolutional Neural Network at a time. A marble tile dataset
designed for this study was used for the evaluation process, which was also released publicly to
further enable the research for similar studies (both on texture and dolomitic ornamental marble tile
analysis). This was done to automate the classification of the marble tiles. The best performing feature
descriptors were aggregated together in order to achieve an objective classification. The resulting
model was embodied into an automatic screening machine designed and constructed as a part of
this study. The experiments showed that the aggregation of the VGG16 and SILTP provided the best
results, with an AUC score of 0.9944.

Keywords: marble tile sorting; deep learning; machine learning; texture description; CNN; feature fusion

1. Introduction

The marble industry holds an important share in the economic life of the regional unit
of Drama, which belongs to the administrative region of Eastern Macedonia and Thrace
in Northern Greece (Figure 1). In the Falakron mountain area, many excellent varieties of
dolomitic marble [1] are quarried and shipped all over the world. Dolomitic marbles are
a magnesium (Mg)-rich variant of marble and are generally of better quality than calcite
(Ca)-rich marble. One of the best products, Grey Lais, is quarried by Solakis S.E.

The key factor to success, besides the high quality of the raw material quarried,
is the classification of the different types of tiles into different categories based on the
ornamentation. This is still performed manually and, therefore, can, in some cases, lead to
the shipment of tiles that do not correspond to the same quality level. Texture analysis is a
valuable tool in many real-world applications, and it is also a very promising technology
to automate the quality classification of the natural stone dolomitic marble tiles and thus,
boost the price of the product.

Since 2005 many scientific papers have been published about the classification of
ornamental natural stones using machine learning (ML) techniques. Most research has
been performed on marble. In 2005 an attempt was made to classify “Crema Marfil Sierra de
la Puerta” marble slabs into three categories. The achieved classification rate was 98.9% [2].
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Using mathematical morphology segmentation and classification of colored and polished
marble tiles was achieved [3]. Convolutional Neural Network (CNN) approaches were
first applied to granite tile classification in 2017. In this approach, small patches of images
taken from granites were used in order to augment the dataset, and a majority voting
procedure was taken into account [4]. In 2010, functional neural networks were tested
in order to classify granite tiles [5]. In 2019, DNNs were also used for the first time with
promising results [6]. In 2020, the VISUAL Geometry Group 16 (VGG16) CNN was used to
identify images of peridotite, basalt, marble, gneiss, conglomerate, limestone, granite, and
magnetite quartzite with a recognition probability greater than 96% [7].

Figure 1. The location of (1) the city of Drama, (2) the dolomitic marble quarry at the village of
Kokinoghia in the regional unit of Drama.

Our research team has been working since 2020 to develop an automatic pipeline to
replace the manual classification of natural stone tiles made from marble slabs. In 2021, three
papers were published by our team regarding this topic. In the first paper, 24 image descriptors
were tested with 7 classifiers [8]. The results showed that the Extreme Gradient Boost (XGB)
classification algorithm [9] performed best with the XCS-LBP [10] texture descriptor. In the
second paper [11], 15 Convolutional Neural Networks (CNN) were examined. The results
showed that the DenseNet201 [12] performed best in this task. Furthermore, the results were
interpreted using Gradient-weighted Class Activation Mapping (Grad-CAM) [13]. In the third
paper, regression rather than classification was used to assign quality values to the marble
tiles. In this case, MobileNetV2 (MNV2) [14] achieved the best results [11]. The next step of
this research was to investigate if the aggregation of hand-crafted descriptors (HCDs) and
CNNs could further improve the performance of the dolomitic marble tile classification.

The contribution of this paper can be summarized in the following four points. First,
to highlight the improvement regarding the classification accuracy, 20 HCDs and 24 CNNs
are first presented and evaluated in terms of their ability to classify dolomitic marble tiles
into predefined quality categories. Secondly, the aggregation of HCDs and CNN-based
types of features for the classification of marble tiles is presented for the first time in the
literature. As a result, the aforementioned aggregation leads to the classification of tiles
with very high accuracy, solving the issue of this categorization in realistic conditions (as
part of a larger, integrated production system). Lastly, the release of such a dataset will
further enable the research on texture analysis in real-life scenarios, as well as the analysis
of dolomitic ornamental marble tiles regarding their quality or other features.

Due to the nature of the problem that this study aims to solve, that is, texture classifi-
cation, the HCDs that are employed have been extensively used in the literature to solve
such problems. In addition to that, due to the deep architecture and a large number of
layers of CNNs, they have the ability to perform their own type of (automatic) feature
extraction. On the one hand, HCDs have the ability to extract local features from the
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images, generating features that can be visually understood, while CNNs extract global
and abstract features from the images. Therefore, the aggregation of those two types of
features allows us to solve this classification problem, in the context of a production system,
with a very high accuracy rating. In this study, first, the performance of each HCD and
CNN model is evaluated separately so as to present their performance and, as a result,
highlight the important improvement regarding the results when they are aggregated to a
single feature vector.

In Section 2, the characteristics of the marble texture are discussed. Section 3 presents
an in-depth analysis of the proposed methodology. The results are presented in Section 4.
This paper closes with a discussion and the conclusion in Sections 5 and 6, respectively.

2. Dolomitic Marble Texture Description

Polished tiles of dolomitic marble from the quarries in the Kokkinoghia region present
a non-stationary texture. Furthermore, no two tiles are 100% identical. The ornamentation
is the result of the metamorphism and deformation of initially layered sedimentary rocks,
which make up 94% of the light-colored mineral dolomite CaMg(CO3)2 and 6% of the
darker CaCO3 calcite [15].

Due to the wide range of ornamentation encountered in the polished tiles, it is possible
to establish a wide range of classes. Nevertheless, the current marketing strategies of
Solakis S.A. imposed a three-fold classification. These three classes can be described as
follows. Class A has a fine bedded parallel ornamentation consisting of dark (calcite)
and light-colored (dolomite) lines (Figure 2a). In Class B, tile cracks of random angles
are present and cut the motive of Class A (Figure 2b). These cracks are the result of post-
metamorphic tectonization. In Class C, patches of dark-colored calcite create unwanted
impurities (Figure 2c).

Figure 2. The three types of marble tiles used in the dataset supplied by Solakis S.A. (a) Class A,
(b) class B, and (c) class C.

3. Methodology
3.1. Dataset Description

The initial dataset, exclusively created for this research project, consists of 982 stone
tiles, with an original size of 30 × 60 cm. The dataset, which was manually classified into
three classes by specially trained workers, was extremely unbalanced. To overcome this
problem, the dataset was reduced to 441 tiles, with each class consisting of 147 samples.
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The dataset is available on GitHub (https://github.com/MachineLearningVisionRG/d-
dom-dataset) (accessed on 6 July 2022).

3.2. Dataset Acquisition

The tiles were fed manually onto a mechanical roller table, which moved the tile into
the diffusion box, where the digital image was acquired on the fly. At the exit, a mechanical
arm transports the tile onto the corresponding class’s pile. This automatic screening
machine designed and constructed my INTERMEK A.B.E.E. (Figure 3a) consists of the
diffusion box where the digital image is captured and the robotic arm that is moving the
marble tiles to one of three piles based on the developed ML model.

The marble tile digital images were acquired by a MV_CA050-10GM/GC digital
camera equipped with a MVLMF0824M-5MP lens at a 90 cm distance. L.E.D. arrays were
used as a light source inside a diffusion box (Figure 3b).

Figure 3. Image acquisition. (a) The automatic screening machine constructed by Intermek A.B.E.E.,
(b) schematic of the digital image acquisition inside the diffuser box.

3.3. Hand-Crafted Descriptor Learning

In our experiments, 24 texture descriptors are included (Table 1): two key-point detec-
tors and descriptors, namely Oriented FAST and rotated BRIEF (ORB) [16] and Scale Invari-
ant Feature Transform (SIFT) [17]. A total of 17 local pattern descriptors that are divided into
four categories: Four local ternary patterns (LTP), namely: SILTP [18], CSLTP [19], CSSILTP,
and XCSLTP [20]; Two local derivative patterns (LDP), namely: Center-Symmetric LDP
(CSLDP) [21] and Center-Symmetric Local Deritative Mapped Pattern (CSLDMP). Two local
mapped patterns (LMP), namely: eXtended Center-Symmetric LMP (XCSLMP) [22] and
Center-Symmetric LMP (CSLMP) [23]. Nine local binary patterns LBP), namely: eXtended
Center-Symmetrical LBP (XCSLBP) [10], Center-Symmetric LBP (CSLBP) [24], Elliptical-
LBP (ELBP) [25], LBP-NRI Uniform [26], LBP-ROR [27], LBP-Uniform [28], OLBP [29],
SCSLBP [30], and VARLBP [28]. Five other types of descriptors: Haralick [31], Gabor [32],
GLCM [33], Histogram of Oriented Gradients (HOG) [34], and TAS [35].

For the extraction of the aforementioned descriptors, the LBP Library [10], Local
Descriptors for Image Classification [36], Mahotas [37], and Scikit-image libraries were
used. Moreover, the LBP-NRI Uniform corresponds to the non-rotation-invariant uniform
patterns variant of the LBP descriptor; the LBP-ROR to rotation invariant and LBP-Uniform
to an improved rotation and grayscale invariant version of the descriptor.

The reasoning behind the choice of the aforementioned descriptors is due to their
wide use in texture classification problems and extensive application for texture feature
extraction in various cases, from biometric identification [38] and character recognition [39]
to texture classification [40–42] and others [43,44].

https://github.com/MachineLearningVisionRG/d-dom-dataset
https://github.com/MachineLearningVisionRG/d-dom-dataset
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Table 1. HCD used in the study.

Type of Descriptor Name

Key-point Detectors and Descriptors Oriented FAST and rotated BRIEF (ORB)
Scale Invariant Feature Transform (SIFT)

Lo
ca

lP
at

te
rn

D
es

cr
ip

to
rs

Local Ternary Patterns (LTP)

SILTP
CSLTP

CSSILTP
XCSLTP

Local Derivative Patterns (LDP) Center-Symmetric LDP (CSLDP)
Center-Symmetric Local Dritative Mapped Pattern (CSLDMP)

Local Mapped Patterns (LMP) eXtended Center-Symmetric LMP (XCSLMP)
Center-Symmetric LMP (CSLMP)

Local Binary Patterns (LBP)

eXtended Center-Symmetrical LBP (XCSLBP)
Center-Symmetric LBP (CSLBP)

Elliptical-LBP (ELBP)
LBP-NRI Uniform

LBP-ROR
LBP-Uniform

OLBP
SCSLBP
VARLBP

Other

Haralic
Gabor
GLCM

Histogram of Oriented Gradients (HOG)
TAS

As the feature vector of each descriptor depends heavily on the parameters chosen,
a grid search hyperparameter optimization algorithm was employed. The performance of
each group of parameters was evaluated according to the F1-score of a K-Nearest Neighbors
classifier. This process is better illustrated in Figure 4.

Figure 4. Flowchart of the evaluation process for a single parameter group of an HCD.

It should be noted that, in the cases of HOG, ORB, and SIFT, as the feature vector that
was being extracted was very large, PCA was applied, with the number of components
explaining at least 90% of the variance. For the LTP, LDP, LMP, and LBP types of features,
a density histogram with varying bins was computed and used as the feature vector. As for
the Gabor feature, the feature extraction process included the following steps:

1. calculate the real and imaginary response of the filter applied to the image,
2. calculate the magnitude between the real and imaginary response, and
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3. calculate the mean and standard deviation of the magnitudes from all the filters.

Specifically, a total of 12 filters were being applied to each image, derived from the
combination of 3 frequencies (i ∗ sqrt(i), with iε{2, 6, 10}) and 4 orientations (3 linearly
spaced values ε[0, π]).

After finding the best parameters for each descriptor, 7 estimators were employed and
evaluated, and their results were compared, namely:

1. Support Vector Machine (SVM) (with RBF kernel),
2. K-Nearest Neighbor (kNN),
3. Random Forest (RF),
4. Multilayer Perceptron (MLP),
5. Logistic Regression (LR),
6. Stochastic Gradient Descent (SGD),
7. Extreme Gradient Boost (XGB).

Similarly, a hyperparameter optimization was applied for each estimator, using the
Bayesian search algorithm provided by the Scikit-optimize library. This technique tests a
fixed number of parameter settings from specified distributions, contrary to the exhaustive
grid search that runs through all the parameter combinations. The performance of each
group of parameters was evaluated using the mean F1-score over a 10-fold cross-validation
technique. The training process of a single estimator for a given HCD is depicted in Figure 5.

Figure 5. Flowchart of the training and validation process of an estimator.

3.4. Convolutional Neural Network Training

It is obvious that the available dataset is very small to train a CNN from scratch.
Therefore, a transfer-learning technique was employed on 20 state-of-the-art CNNs, namely
(Table 2): DenseNet121 (DN121), DenseNet169 (DN169), DenseNet201 (DN201) [45], Ef-
ficientNetB0 (ENB0), EfficientNetB4 (ENB4), EfficientNetB6 (ENB6) [46], InceptionRes-
NetV2 IRNV2, InceptionV3 (IV3) [47], MobileNet (MN), MobileNetV2 (MNV2) [14], NAS-
NetMobile (NASNM) [48], ResNet101 (RN101), ResNet101V2 (RN101V2), ResNet152
(RN152), ResNet152V2 (RN152V2), ResNet50 (RN50), ResNet50V2 (RN50V2) [49], VGG16,
VGG19 [7], and Xception (XC) [50].

Those CNNs were pretrained on the ImageNet database and are available from the
Keras Library. The reasoning behind choosing those specific networks and applying
transfer learning techniques, in general, is manifold. First, the application of conventional
ML models (such as the ones mentioned in Section 3.3) has the important limitation of
requiring a lot of data that have the same distribution between classes. For this reason,
the study employs homogeneous transfer learning (same feature space), which transfers
the knowledge across domains [51], so as to solve the present problem. To perform the
transfer learning process, models that have already been trained in other domains are
required, and, therefore, the aforementioned available models were employed. Secondly,
those models are considered state-of-the-art models, having very good results when tested
on the ImageNet database (above 70% Top-1 Accuracy). Additionally, these models have
been applied in numerous studies to tackle other problems through transfer learning
techniques [52–54], performing satisfyingly without the need to design and build models
from scratch. Moreover, a very important limitation in many studies regarding the choice
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of model is the size of the network and inference speed. Many applications require the use
of lightweight models or models that can predict the target output fast. However, those
limitations do not apply in this study, and, therefore, the choice of model was not limited.

Table 2. CNNs used in the study.

CNN Type Name

EfficientNet
ENB6
ENB4
ENB0

ResNet
RN152
RN101
RN50

ResNetV2
RN152V2
RN50V2

RN101V2

Visual Geometry Group VGG16
VGG19

MobileNet
MNV2

NASMN
MN

DenseNet
DN169
DN121
DN201

Other
XC
IV3

IRNV2

The models used in this part of our study are the most popular ones regarding both
their performance on the ImageNet database and their availability. Transfer learning re-
quires a model that has already been trained on a (very) large database and has acquired
great knowledge regarding the classification process in various tasks. Moreover, as the tar-
get domain (classification of dolomitic marble tiles) is very different compared to the origi-
nal domain the models were trained on, the choice of the model is not simple nor straightfor-
ward. Specifically, the original domain focuses on generalization and object categorization,
while the study’s domain is texture classification. For this reason, almost all of the available
models were employed and compared their transfer learning performance extensively.

For the transfer learning and fine-tuning process, the following steps were followed:

1. Remove the original output layer
2. Freeze the model’s weights
3. Add a Global Average Pooling 2D layer
4. Add a Dropout layer with a 20% rate
5. Add a Dense layer (output layer) with a softmax activation function for the three

quality classes
6. Train only the newly added layers
7. Unfreeze the model’s weights
8. Train the unfrozen weights

The modification process of the aforementioned CNNs can be seen in Figure 6
(steps 1–5).
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Figure 6. Modification process of the CNNs.

For the training and evaluation process of the models, a 10-fold cross-validation
technique was employed, splitting the dataset into 90% training set and 10% testing set,
with 10% of the training set being used for validation. In each training step (5 and 7),
the model was trained for 50 epochs, as their performance started to converge at that point,
at the same time trying to prevent any overfitting that may occur. Moreover, during the fine-
tuning process, the number of trainable layers that yielded the best results was explored.
Specifically, the network’s performance was evaluated by training 25%, 50%, 75% and 100%
of the layers (during steps 6 and 7). The fine-tuning process was evaluated by using the F1-
score, with accuracy, precision, recall and F1 scores being calculated. For the experiments,
the Tensorflow Library was used and Scikit-Learn for performance evaluation. Lastly,
the images were resized to 224 × 224 pixels (as per the models’ input requirements), and in
each model, they were preprocessed by using each model’s corresponding preprocessing
function. It should be mentioned that during the training process, the input images were
randomly flipped, both horizontally and vertically, producing augmented training data.

3.5. Feature Aggregation

In this step, the methodology proposed by [55] was followed, aggregating the features
extracted from the HCDs and the CNN models towards improving the classification
accuracy of the constructed marble tiles screening system.

The first step of the feature aggregation process is to combine the feature vector of an
HCD and the one of a CNN model. As the two types of features are very different, the choice
of which HCD feature vector to aggregate with which CNN feature vector is not simple.
Moreover, the evaluation of all the combinations is not feasible either, as the total number
of combinations is as high as 480, requiring a lot of computation, while the presentation of
its results would be very hard. Therefore, the best HCD in each category and best CNNs of
each group were chosen (Figure 7) so that the search space of all combinations is reduced
significantly. More specifically, the categories of HCD were the following: LBP, LDP, LMP,
LTP, key-point descriptors and the “other” type (as mentioned in Section 3.3 and Table 1).
Similarly, from the CNNs, the best model in each group was chosen, with the groups
namely being: DenseNet, EfficientNet, ResNet, ResNetV2, VGG, Inception/Xception and
NASNet/MobileNet. This way, the complementarity of the two types of features is tested
more efficiently by testing combinations with different types of HCDs (ternary, mapped,
local, etc.) and all the different types of model architectures in regards to the model’s depth
(number of layers) and the number of parameters.



J. Imaging 2022, 8, 191 9 of 18

Figure 7. Flowchart of the proposed methodology.

Secondly, for the feature extraction process of the CNN models, an additional layer
had to be added before the Global Average Pooling 2D layer, consisting of 1000 units and,
as a result, extracting a feature vector of 1000 values. Each model was then trained for
15 epochs (similarly to the transfer learning process, when the model started to converge
and before any overfitting happened) on the whole dataset. Then, the output of the Global
Average layer was taken as the feature vector for all the images, creating a dataset of
CNN-extracted feature vectors for all the available images.

4. Results

In this study, 24 HCDs, 20 CNNs and the aggregation between 6 HCDs and 7 CNNs
were compared in terms of their performance in classifying dolomitic marble tiles based on
their aesthetic value. The experiments were conducted using a desktop computer equipped
with a CPU with 12 cores and 24 threads, 32 GB RAM and a GPU with 24 GB of VRAM. It
should be noted that after finding the best parameters of each model, their performance
was evaluated using the leave-one-out cross-validation technique, where in each fold, only
one sample is used for testing. Therefore, the cross-validation was performed 441 times,
once for each sample. Using the results of this step, the Receiver Operating Characteristic
(ROC) curve and the Area Under Curve (AUC) metrics were calculated. The same process
was followed during the feature aggregation step, where the model that performed the
best in the first case was used. In the case of the experiments where transfer learning was
applied, the mean score of the test folds was used as the evaluation score of each model.

4.1. Hand-Crafted Features Performance

Figure 8 depicts a plot containing a ROC curve and the AUC of the model with the
best performance for each HC feature, having a total of 24 lines.

The best performing descriptor was the SILTP, with a 0.8326 AUC score, followed very
closely by XCSLBP with a 0.8298 and XCSLMP with a 0.8271 AUC score, all using the SVM
RBF classifier. In general, the performance of all the descriptors remains above 0.6371 AUC,
with the only descriptors performing above 0.8000 AUC score being the aforementioned
ones. The results are presented in more detail in Table 3.
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Figure 8. ROC curves and AUC scores of the best performing model for each HCD.

Table 3. Validation results obtained for the best performing classifier on average (SVM).

Descriptor Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%) AUC

CSLBP 58.50 58.32 58.50 58.40 0.7743

CSLDMP 56.69 56.69 56.69 56.68 0.7166

CSLDP 60.32 59.73 60.32 59.88 0.7541

CSLMP 53.29 52.97 53.29 52.96 0.7154

CSLTP 55.10 55.95 55.10 55.39 0.7336

CSSILTP 58.05 58.05 58.05 58.05 0.7588

ELBP 62.36 62.20 62.36 62.27 0.7813

Gabor 53.52 54.37 53.52 52.50 0.7098

GLCM 54.42 54.20 54.42 54.08 0.6946

Haralick 64.85 64.47 64.85 64.47 0.7719

HOG 47.39 47.58 47.39 47.08 0.6342

LBPNRIUniform 59.64 59.65 59.64 59.64 0.7939

LBPROR 48.30 48.65 48.30 48.42 0.7056

LBPUniform 57.82 57.37 57.82 57.09 0.7348

OLBP 60.77 60.52 60.77 60.62 0.7741

ORB 40.14 39.09 40.14 38.42 0.6425

SCSLBP 55.78 55.18 55.78 55.17 0.7344

SIFT 47.39 47.52 47.39 47.43 0.6683

SILTP 66.67 66.61 66.67 66.62 0.8315

TAS 51.25 51.05 51.25 51.07 0.7048

VARLBP 51.02 51.38 51.02 51.17 0.6966

XCSLBP 65.53 65.64 65.53 65.56 0.8054

XCSLMP 67.12 67.18 67.12 67.14 0.8314

XCSLTP 55.33 55.80 55.33 55.23 0.7293



J. Imaging 2022, 8, 191 11 of 18

The results show that there is a lot of room for improvement regarding the classifica-
tion accuracy when extracting local features from the texture images. On average, the HCDs
performed poorly in the classification process on the specific dataset, with the best per-
forming descriptor being the SILTP with 66.67% Accuracy, 66.61% Precision, 66.67% Recall,
66.61% and 0.8315 AUC. The XCSLMP descriptor performed about the same regarding the
AUC score but better in regards to the rest of the metrics, with 67.12% Accuracy, 67.18%
Precision, 67.12% Recall, 67.14% and 0.8314 AUC. The results obtained also highlight that
the SVM model’s prediction probabilities (how confident the model is about its prediction)
are both low and high; low because the AUC combined with the rest of the performance
metrics is not high enough to assume that the model can classify the textures correctly and
confidently and high because, when comparing the high AUC with the low F1 metric, it
shows that the model is confident about its incorrect predictions.

4.2. CNN Learned Features Performance

Figure 9 depicts a plot containing a ROC curve and the AUC for each fine-tuned model.

Figure 9. ROC curves and AUC scores of each CNN model.

In this case, the results are much more satisfying, with all the models having an
AUC score of above 0.9400 and many of those having above 0.9700. More specifically,
the best performing model was the DenseNet201 with a 0.9853 AUC score, followed by
EfficientNetB0 with 0.9846, two very different architectures regarding the size of the model.
In general, all the EfficientNet models performed above 0.9800, showing that the specific
architecture works well in this type of problem. On the other hand, the worst performance
was observed by the Xception model, with 0.9415 AUC, followed by ResNet50V2 with
0.9500. The results are presented in more detail in Table 4.

The models, in general, show a high classification rate while also having confident
predictions. This is highlighted by the high average scores along with the high AUCs. For
example, DenseNet201, which performed the best, has 92.18% Accuracy, 82.49% Precision,
92.18% Recall and 92.05% F1 score.
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Table 4. Validation results obtained from the CNN learned features.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%) AUC

DenseNet121 88.61 89.33 88.60 88.44 0.9670

DenseNet169 90.87 91.40 90.88 90.72 0.9783

DenseNet201 92.18 92.49 92.18 92.05 0.9853

EfficientNetB0 93.02 93.41 93.02 92.94 0.9846

EfficientNetB4 92.97 93.20 92.97 92.89 0.9833

EfficientNetB6 92.35 92.57 92.35 92.25 0.9823

InceptionResNetV2 90.99 91.28 90.98 90.88 0.9802

InceptionV3 84.13 84.65 84.14 83.86 0.9526

MobileNet 89.23 89.66 89.23 89.10 0.9670

MobileNetV2 85.88 86.38 85.89 85.69 0.9575

NASNetMobile 87.30 87.64 87.30 87.14 0.9642

ResNet101 88.15 88.79 88.16 87.95 0.9672

ResNet101V2 85.71 86.24 85.72 85.55 0.9604

ResNet152 88.94 89.45 88.95 88.80 0.9699

ResNet152V2 84.18 84.80 84.17 84.03 0.9495

ResNet50 88.95 89.20 88.95 88.84 0.9697

ResNet50V2 84.01 84.92 84.01 83.74 0.9500

VGG16 87.64 87.98 87.64 87.58 0.9618

VGG19 87.41 87.80 87.41 87.35 0.9564

Xception 82.94 83.29 82.94 82.70 0.9415

4.3. Aggregated Features Performance

In this step of the experiments, the performance of the SVM RBF model is evaluated,
following the same methodology as before, on the aggregated features. Figure 10a shows a
plot containing a ROC curve and the AUC score for each combination of features, while
Figure 10b shows the best AUC scores of each HCD when aggregated with the features
extracted from the CNNs. In the first case, the combinations are different in each case,
with the Haralick and SILTP descriptors performing the best in the two aggregated cases.
Additionally, the ROC curves in the figure are not distinguishable at all, highlighting two
facts: (1) the best performance for each case is quite high, with the lowest being that of
0.9932 AUC, and (2) the comparative performance of the HCDs (when aggregated with the
feature vector of generated by the VGG16 network) is negligible, showing that the problem
has been solved to a very high degree. In all cases, the best-performing CNN features were
that of the VGG16 model, performing above 0.9900 in all cases, with the best combination
being with the SILTP feature at 0.9944 AUC. The worst performance was observed by SIFT
with a 0.9932 AUC score. The results highlight the assumption that was made in Section 3.5,
where the complementarity of the two types of features is not straightforward nor evident.

In Figure A1, the corresponding stacked bars are presented in a comparative manner.
These plots reveal that the applied aggregation strategy explores the complementarity of
the hand-crafted and the learned features by providing more efficient aggregated features.
The results are presented in more detail in Tables 5 and 6.
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Figure 10. Best ROC AUC scores obtained for (a) each HCD along with its best CNN aggregation,
(b) each CNN along with its best HCD aggregation.

Table 5. Validation results obtained for each HCD and its best CNN aggregation.

Feature Name CNN Name Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%) AUC

CSLDP VGG16 95.46 95.50 95.46 95.47 0.9940

Haralick VGG16 95.46 95.50 95.46 95.47 0.9940

SIFT VGG16 95.01 95.03 95.01 95.01 0.9932

SILTP VGG16 95.01 95.04 95.01 95.01 0.9944

XCSLBP VGG16 95.46 95.50 95.46 95.47 0.9939

XCSLMP VGG16 95.46 95.48 95.46 95.47 0.9941

Table 6. Validation results obtained for each CNN and its best HCD aggregation.

Feature Name CNN Name Accuracy
(%)

Precision
(%)

Recall
(%)

F1
(%) AUC

DenseNet201 XCSLBP 92.29 92.32 92.29 92.28 0.9804

EfficientNetB0 Haralick 89.12 89.18 89.12 89.11 0.9789

InceptionResNetV2 Haralick 91.16 91.18 91.16 91.17 0.9842

MobileNet CSLDP 92.06 92.14 92.06 92.05 0.9902

ResNet101V2 SILTP 93.20 93.20 93.20 93.19 0.9911

ResNet50 SIFT 94.10 94.11 94.10 94.10 0.9921

VGG16 SILTP 95.01 95.04 95.01 95.01 0.9944
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5. Discussion

The approach proposed in this paper has been formerly used on experimental
datasets [55,56]. In this work, real-world natural non-stationary digital images of dolomitic
marble tiles, rather than artificially compiled datasets, were used. Furthermore, apart
from the LBP HC descriptor used in similar works [55] to aggregate the CNNs, in total 6
HCDs were used in the experiments presented here. The aggregation of the CNNs and
HC descriptors produced better AUC scores. In the case of the SILTP HCD, an AUC of
0.8326 was achieved. Furthermore, in the case of the standalone VGG16 CNN, an AUC of
0.9618 was achieved. When these two groups of features were aggregated, the score of the
AUC increased to 0.9944. This represents an improvement of 12.92% in the case where only
the SILTP HCD was used and 3.27% in the case where only the VGG16 CNN was used.
HCDs were also used in the experiments. In Figure 11, the area of the green circle excluded
depicts the best AUC scores as per each aggregated feature. It should be noted that the
VGG16 CNN was tested with each HC descriptor, and the best-performing HCDs were
tested on the seven best-performing CNNs. In order to keep the representation simple,
only the best two (XCSLMP and SILTP) out of the six scores are presented in the case of the
VGG16. In former works of our team, a similar imbalanced dataset with 986 digital images
was used. In this case, the best score for the three class problem was a 65.06% F1-score
when using the XCS-LBP texture descriptor with the XGB classifier [8] and the DN201 with
an accuracy of 83.24% [57].

Figure 11. Graphic representation of the experiments and the best AUC scores as per each aggre-
gated descriptor.

Moreover, the results of Figure 10a highlight that smaller (depth-wise) networks
complement the features extracted by the HCDs better. In other words, smaller networks
extract features that do not “overlap” with the ones that are extracted by the HCDs. As a
result, the aggregated feature vector describes almost the entirety of the characteristics of
each dolomitic marble quality class. This is highlighted by the fact that all of the HCDs’
best-performing model is the VGG16, which is a very dense network as it has a depth of
only 16 layers with a total of 138 million parameters, compared to the larger architectures
of DenseNet201 which has 402 layers and (only) 20 million parameters.

On the other hand, each CNN’s best aggregation is different in each case, highlighting
the fact that each model and, therefore, architecture and number of parameters extract
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different features that are complemented by different HCDs in each case. Additionally,
almost all of the networks are complemented by different types of HCDs; for example,
DenseNet is complemented by an LBP descriptor, while MobileNet by an LDP. Haralick and
SILTP descriptors seem to complement more than one network specifically Haralick com-
plements EfficientNetB0 and InceptionResNetV2, while SILTP complements ResNet101V2
and VGG16.

6. Conclusions

The results of the experiments indicate that the aggregation of the SILPT HCD and the
VGG16 CNN for extracting features performed better compared to the total of 24 HCD and
20 CNNs. This outcome is very important for the development of an efficient visual marble
screening machine for the three classes studied here. Each class of the dataset provided by
Solakis S.A., and presented in this work, can be subdivided into more than three subclasses.
As marketing schemes change, more classes may be necessary to meet customers’ needs.
Therefore, our future work involves testing the resulting model on more than the three
marble classes used in this work.

Furthermore, better digital images provided by the automatic screening machine
constructed by Intermek A.B.E.E. will deliver a better dataset to further tune the model.
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Appendix A

The stack bars of Figure A1 depict the performance of each individual CNN model
(red) and HCD (orange), as well as their aggregation’s performance (blue).

Figure A1. Cont.

https://github.com/MachineLearningVisionRG/d-dom-dataset
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Figure A1. Stacked Bars, (a) Accuracy, (b) F1, (c) Precision, (d) Recall, (e) AUC score.
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