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Abstract: Temporal-action proposal generation (TAPG) is a well-known pre-processing of temporal-
action localization and mainly affects localization performance on untrimmed videos. In recent
years, there has been growing interest in proposal generation. Researchers have recently focused on
anchor- and boundary-based methods for generating action proposals. The main purpose of this
paper is to provide a comprehensive review of temporal-action proposal generation with network
architectures and empirical results. The pre-processing step for input data is also discussed for
network construction. The content of this paper was obtained from the research literature related to
temporal-action proposal generation from 2012 to 2022 for performance evaluation and comparison.
From several well-known databases, we used specific keywords to select 71 related studies according
to their contributions and evaluation criteria. The contributions and methodologies are summarized
and analyzed in a tabular form for each category. The result from state-of-the-art research was further
analyzed to show its limitations and challenges for action proposal generation. TAPG performance
in average recall ranges from 60% up to 78% in two TAPG benchmarks. In addition, several future
potential research directions in this field are suggested based on the current limitations of the
related studies.

Keywords: temporal-action proposal generation; time-series analysis; proposal evaluation network;
video descriptor

1. Introduction
1.1. Background

Recent developments in computer vision have led to video analysis and understand-
ings focusing on video categorization or captioning in academic and industrial fields. Since
video content is generally based on motion information of objects and humans, their ac-
tions are the main key feature in video analysis and understanding. However, real-world
videos (e.g., YouTube, Instagram, TikTok, and so on) are usually untrimmed. Therefore,
temporal-action localization is one of the most important research topics in video under-
standing. Temporal-action localization focuses on action instances or proposals presented
in untrimmed videos and categorizes their action classes and video content. Similar to
object localization in an image, there are two fundamental processes in temporal-action lo-
calization consisting of temporal-action proposal generation (TAPG) and action recognition
for localization and classification. As far as we are concerned, action recognition has shown
significant progress and promising classification performance. In contrast, TAPG still has
much room for improvement, especially in action proposal quality. Hence, several recent
studies have aimed to improve TAPG to generate high-quality proposals to be utilized as
input data for action recognition.

In general, TAPG techniques are utilized to classify whether the temporal proposals
from untrimmed videos are background or action, and negative or positive results, respec-
tively. There are two main techniques: anchor- and boundary-based techniques. The first
technique generates candidate proposals with a pre-defined or fixed duration in multiple
temporal scales. Then, a confidence score can be evaluated from each candidate. However,
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they are inflexible to various action proposal durations and have imprecise boundaries due
to the fixed length of candidate proposals. Recently, a boundary-based technique was intro-
duced to solve this problem in anchor-based methods. This technique was concerned with
boundary prediction by utilizing the frame-level context information around the bound-
aries. Therefore, they could generate action proposals with a flexible duration and high
accuracy of boundary prediction. Meanwhile, it was sensitive to noise and rich confidence
scores from each candidate could not be extracted compared to anchor-based techniques.
In addition, other researchers focused on how to optimize or train existing TAPG models
to increase the accuracy of action boundary prediction. Semi- and weakly supervised
learning [1,2] were discussed to minimize the size of training data and optimization time.
Conlfiguration of external modules (e.g., human detection, attention network, and so on) in
the TAPG model [3,4] was also an important factor to improve prediction accuracy.
Although the TAPG model is similar to object localization (especially in region-based
convolutional neural networks (R-CNN) [5]) for generating or localizing the candidate
proposal, temporal localization has several challenges and differences, as follows:

1.  High computation: as well as a spatial feature, TAPG also includes a temporal feature
(1D temporal-series information), resulting in high computational cost.

2. Unclear boundary: Since there is no standard definition to distinguish between
background and action proposals [6,7], proposal classification is based on personal
opinions. It may be subjective to annotators and is ambiguous to both annotators and
TAPG modeler/model designers. For example, drinking water could be started by
pouring water into a cup or when water is put into the mouth.

3. Action class variation: There is the large number of action classes for handling several
categories in action recognition. Since each action class has a specific characteristic
(e.g., viewpoints, lighting condition, duration, and so on), it is unreliable to design a
network for handling every action category.

4. Temporal length variation: Action proposals in untrimmed videos also have large
variation in the temporal length. For example, shaking hands can only take a few
seconds while a cooking process can take about 5 min. This causes the long-tail
problem from imbalanced data. In addition, there are spatial variations similar to
object localization (e.g., multi-sized objects, occlusion, and so on).

1.2. Survey Methodology

The related studies were initially searched using the keyword; “Temporal action
proposal’, from 2012 to 2022. The three well-known databases—Scopus, Web of Science,
and IEEE Xplore—are within the scope of this screening procedure. Most of the articles
were selected from top-tier conferences in computer vision (e.g., AAAI, CVPR, ICCV,
and so on). The scope of this review article is primarily determined by ‘temporal action
proposal generation’.

The article selection process is shown in Figure 1. There were four main steps, consist-
ing of identification, screening, eligibility, and including. In the first step, the total number
of related studies was 174. After finding duplicate articles, 4 articles are excluded. By
considering only recent TAPG and its related work, only 71 were chosen for this evalua-
tion. The selected publications are composed of three categories: conference proceedings
(60.26%), journals (24.36%), and grey literature (arxiv) (15.38%). Figure 2 shows the num-
ber of these publications each year with the majority being in the past few years. After
excluding irrelevant articles, 23 recent studies on TAPG were chosen by analyzing their
significance in this area of research and evaluation criteria.
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1. Identification 2. Screening 3. Eligibility 4. Including
Total number of temporal After removing duplicate After checking eligibility The remaining number of
action proposal: 174 articles excluding: 4 excluding: 99 article: 71

Figure 1. Block diagram of the article selection process.
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Figure 2. The number of publications from selected articles to the year of publication.

1.3. Contribution

This paper aimed to give a survey summarizing deep-learning-based techniques from
recent studies on TAPG. Unlike a survey on temporal action localization [8], the related
works in this review article focused on the proposal quality (e.g., confidence score, the
proposal boundary accuracy, and so on) excluding action classification in their contributions.
In addition, the proposal quality assessment was provided to obtain the advantages and
limitations of related approaches.

1.4. Organization of the Work

As shown in Figure 3, the rest of this paper is organized as follows: Section 2 lists
the input data for TAPG network, including temporal-action proposal benchmarks and
video descriptors. Section 3 outlines the taxonomy for the TAPG model and its contribu-
tion. Section 4 describes how to evaluate the performance of proposal prediction models
in various aspects. Experimental results from recent studies are analyzed and discussed
in Section 5. The list of recent applications utilized by TAPG is provided in Section 6.
Section 7 discusses the current challenges and suggests future directions. Section 8 con-
cludes the review.
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Figure 3. The organization of comprehensive review of TAPG.

2. Input Data for TAPG Network

This section reviews the input data for video analysis from recent research related to
TAPG. The input data could be categorized into two components: video data and descriptor.
The video data can be downloaded from public datasets along with their action classes
and temporal annotations. On the other hand, a video descriptor contains temporal and
spatial features from an input video for feeding into the TAPG network. Therefore, the
video dataset and the video-descriptor extraction can be summarized as follows:
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2.1. Temporal-Action Proposal Datasets

As stated in the Introduction, the dataset for evaluating TAPG should have a high
variation in video conditions (e.g., camera viewpoint, the number of action classes, tem-
poral length, and so on) and provide untrimmed video annotation for temporal proposal
localization. According to the Introduction, TAPG is one of the important components
in temporal-action localization. The dataset related to temporal-action localization could
be considered and evaluated in TAPG. The datasets’ videos were annotated with specific
purposes for action localization and classification. The datasets were listed as follows:

THUMOS 2014 [9] was introduced to evaluate action recognition. This challenge was
based on the UCF101 dataset [10] with video-level annotation consisting of 101 action
classes in total. In 2014, there were 413 videos with temporal annotations for temporal-
action localization. There were 200 and 213 videos for validation and testing, respectively.
However, only 20 classes were provided in untrimmed videos. In addition, the ambiguous
class was provided as the 21st action class in this dataset, where it represented unnatural
motion or undecided action.

ActivityNet v1.3 [11] is a large-scale video benchmark for human-activity understand-
ing. It is also used annually for a temporal-action detection challenge in CVPR. The dataset
provided URL link for each videos. However, some of them could not be downloaded
directly due to privacy restrictions or video removal by owners. All videos in ActivityNet
v. 1.3 could be obtained by contracting the ActivityNet dataset official website. The total
number of videos was 19,994 untrimmed videos consisting of 10,024, 4926, and 5044 videos
for training, validation, and testing, respectively. The video duration was within 115 s
on average. The number of classes was 200 categorized into 5 main classes with several
subclasses. The average number of action proposals in each video was 1.54, where around
53.7 percent had a very short duration (0 to 30 s).

MEXaction2 [12] is a temporal-action proposal dataset focusing on two types of action,
horse riding and bull-charge—-cape. The number of video is 117 videos totaling 77 h from
films produced between 1945 and 2011. Their videos were extracted from Institute National
de I’Audiovisuel (INA), UCF101, and YouTube videos. The proposals from this dataset
were categorized as 1336, 310, and 329 proposals for training, validation, and testing,
respectively. Even though MEXaction2 has a moderate number of annotated videos, there
is a limitation in terms of imbalanced data and high variability in point of view. In addition,
videos extracted from old films have low resolution and are hard for classification.

MultiTHUMOS [13] presents a temporal-action proposal dataset with dense and multi-
class annotated videos. It was updated from the THUMOS dataset. The total number of
videos is 400 videos of 30 h with 38,690 temporal proposals and 65 action classes. Since it is
the dense dataset, there are 1.5 labels per frame on average, and 10.5 action classes of each
video. The MultiTHUMOS dataset is a challenging dataset for temporal-action proposal
because there are many fine-grained action categories with low visual inter-class variation.

Charades [14] focuses on realistic activities without video editing or trimming. Their
videos consist of 267 people recording videos in their own homes, of indoor activities. There
are 9848 annotated videos with an average temporal length of 30 s and over 15% of them
are multi-person interactions or activities. The videos from this dataset were categorized as
7985 and 1863 proposals for training, and testing, respectively.

AVA [15] is one of the large datasets providing both spatial and temporal positions for
action proposal. It means that more than action annotations could be occurring in the same
scene. There are 430 videos with 15 minutes average length and 80 action classes. With
the various action labelings, there are 1.58 million action annotations in both spatial and
temporal domains.

As far as we concerned, there are only two datasets (THUMOS 2014 and ActivityNet
v1.3) utilized for TAPG evaluation in related studies due to a reasonable number of data
annotations and high variation in action classes. In general, their temporal annotations
were assigned as temporal boundaries (starting and ending time) for each action proposal,
as shown in Figure 4.
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Figure 4. The example of untrimming dataset temporal annotation from ActivityNet v1.3 [11].

2.2. Video Descriptor Extraction

Since input data from temporal-action proposal datasets are videos or frame sequences
having their characteristics or video descriptors, their features should not contain only
spatial features but also temporal features. Similar to image classification and object
localization, deep-learning-based techniques were recently applied to this research. In
recent research, the networks were designed for action recognition in untrimmed videos.
Most TAPG researchers tended to adapt their architectures by utilizing the output scores of
the top FC-layer. This network would later be trained by an action recognition network.
Several models for extracting video descriptors were inspired by convolutional neural
networks (CNNs) according to the following designs:

2.2.1. ConvNet + LSTM

The image-classification network had a high performance for classifying spatial infor-
mation. CNN could be modified for video classification that also had temporal informa-
tion. The video features were extracted independently from each frame across the whole
video [16]. To deal with temporal information, a recurrent layer (e.g., long short term
memory (LSTM) [17,18]) was included. This layer was designed for encoding features from
each frame as a sequence of spatial information. Therefore, CNN with LSTM helped to
encode, state and capture both temporal ordering and long-range dependencies within
the frame sequences. For network optimization, many researchers utilized cross-entropy
loss on the output at every temporal position. In the testing process, the video descriptors
could be extracted from the last layer of the CNN with LSTM from the last frame of the
given video.

2.2.2. 3D ConvNets (3D Convolution)

Since temporal information was considered as the third dimension of input data, 3D
convolution [19-22] was a conventional approach to extract video descriptors similar to
standard 2D convolutional networks. This network helped to directly visualize hierarchical
representations of spatio-temporal data by using 3D kernels. However, there were issues
with time complexity due to a larger number of model parameters from 3D convolutions.
Although these methods aimed to deal with longer video durations, they processed only
short sequences of fixed lengths ranging from 64 to 120 frames due to the limitations of
computational cost and GPU memory. It was still non-trivial for these methods to learn
from the entire video, due to their limited temporal coverage.

2.2.3. Two-Stream Network

By utilizing LSTM or 3D convolution, actions with low-level motion might not be
captured, while this motion was critical information in several cases. In addition, their net-
works required much time complexity from large models and ran through frame sequences.
To solve these problems, the two-stream network [23] was designed by utilizing image and
optical-flow classification networks represented as RGB and flow streams, respectively. It
captured short temporal snapshots of videos by averaging predictions from a single image
and a stack of 10 optical-flow images as input data or video snippets. Since an optical-flow
image has two channels for horizontal and vertical directions, the flow stream has an
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adapted input convolutional layer with twice the RGB stream. Video features from each
video snippet were extracted independently from the previous two-stream network [23],
which supported only the short-range temporal structure. Since the video descriptor from
the whole video could not be extracted, this method might not suitable for videos with
various durations. Temporal segment network (TSN) [24] was designed for capturing
features from the whole frame sequences with their modified two-stream networks. Unlike
a traditional method, the segment consensus function was added as a post-processing step.
All outputs in RGB and flow streams from each video snippet were fed into a segment
consensus function to predict video descriptors with the relation among video snippets.

2.2.4. I3D Network

The Inflated 3D ConvNets (I3D) network [25] was introduced by combining mer-
its between two-stream networks and 3D convolutions with a series connection. In the
two-stream network, the output data were generated frame by frame according to the
RGB stream. On the other hand, the I3D network utilized 3D convolution to extract video
descriptors over the frame sequence from the output features of two-stream networks. This
combination helped to extract seamless spatio-temporal features for a video descriptor.
Even though experimental results from the I3D network revealed a more promising perfor-
mance than the two-stream network and 3D convolution, the pre-trained parameters for
the two-stream network from the image domain were not optimized for 3D convolution
in video tasks. Therefore, parallel inflated 3D convolution [26] was introduced to solve
this matter. The inflated operation was regarded as an adaptation task rather than a pre-
training process. In these networks, 3D convolution was treated as a 3D space container
arranging multiple 2D convolutions in parallel to accommodate the neural connections of
the 2D space.

2.2.5. TSP Network

The structure of 3D convolution and the two-stream network were designed for
extracting the spatio-temporal features of action recognition from datasets focusing on
trimmed videos. In this case, it used only visual features from action temporal proposals,
and background proposals were not considered in this case. Therefore, temporally sensitive
pretraining (TSP) [27] was proposed for untrimmed videos, where features from back-
ground proposals were taken into account to improve temporal sensitivity. Since TSP was
concerned with background and action proposals, two classification heads were utilized
to train the encoder. The first head was similar to networks in trimmed videos where it
helped to categorize action, including background proposals (without action). On the other
hand, the main role of the second head was classifying the input frame sequence to be an
action or a background proposal. Combining the results from the two heads, TSP is suitable
for action localization in TAPG.

3. The Review of TAPG Network

Temporal-action proposal generation could be categorized into several categories
depending on their purpose or scope of the study. In terms of network design, the TAPG
network is categorized into anchor-based and boundary-based techniques, where their
differences are temporal boundary precision and the confidence score on each proposal.
In this section, the deep-learning-based methods for TPAG are reviewed by focusing
on these two techniques. To fulfill the advantages and improve prediction performance,
complementary techniques and additional techniques are also discussed. Hence, the related
studies are categorized into four aspects, as follows.

3.1. Anchor-Based Technique

This technique refers to the temporal refinements of pre-defined anchors with a fixed
size of temporal length. In recent studies, the top-down approach was focused on enriching
proposal features to generate their confidence scores. The whole scheme was similar to
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action recognition from trimmed videos, except the pre-processing was included to localize
the proposal as the input for recognition. Therefore, there were two main stages, as shown
in Figure 5, consisting of proposal localization and proposal classification. The first stage
was to sample videos into several snippets, where non-overlapped temporal proposals
were generated with the same temporal length. The last stage was utilized for extracting
the video descriptor and classifying the class of each snippet, whether background or action
proposals. The contribution summary for anchor-based techniques is shown in Table 1.

Table 1. Contribution summary of anchor-based techniques.

Ref.  Contribution
Proposal localization [28] - Introducing regression network for extracting video features in long untrimmed videos (every
16 or 32 frames).
[29] - Proposing non-overlapping video-descriptor extraction though whole-video data without relying
on the sliding-window technique or sampling the video into multiple small video snippets.
[30] - Randomly localizing the action proposals while ignoring unnecessary temporal proposals.
[31] - Introducing the snippet relation score to recognize temporal proposals within a specific
action class.
[32] - Presenting more action-proposal stages to handle the variation in action class and temporal length.
Proposal classification [30] - Adapting reinforcement learning for the TAPG network.

[31,33] - Utilizing a pyramid network as a distilling mechanism to capture video features with various

temporal lengths.

[33] - Analyzing the bidirectional relations among temporal proposals by relation-aware module.
[3] - Adapting the transformer for object detection to visualize the global view of an action proposal
and reduce time complexity.
Post-processing [32] - Proposing variable margin cosine loss to increase temporal-boundary localization accurately.

[3]

- Generating the proposals via a relaxation mechanism to reduce ambiguous characteristics
between action and background proposals.

----------------- P
1 : . Video 1
1 z | 1 descriptor 1
1 1 1 . 1
1 g: ! 1! Descriptor
: E: ! | extraction 1
1 1 1 1
I ;L 1 ° : 1 ° ° 1 3
g1 1 1 5
_ =}
g | ° 1! ° ° : g
SR R — . ! - Video . ! s
o 1S | I : descriptor . £
£z ! ! Descriptor Action 1 £
g, 8 Snippet #2 P — -
b :'g: ! pp ! extraction classification 1 a2
é‘l 2 | ' Video : g
£ [ i 1
1
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B! 1! Descriptor
18 Snippet #1 e I
[y =fy — : . extraction classification 1 g
| =3 1 1 1 :L‘E
| B ) N N Ll 1
L e = L e e e e e e e e — 1
Proposal localization Proposal classification

. Action proposal

Figure 5. The general pipeline of an anchor-based technique.

TURN, 2017: In the first technique, a sliding-window-based technique was deployed
for proposal localization. Temporal Unit Regression Network (TURN) [28] was the tradi-
tional study for an anchor-based technique. Furthermore, 3D ConvNets (C3D [34]) was
utilized as a video descriptor extraction. A video descriptor was extracted from each video
snippet (every 16 frames) from the input video sequences. Clip pyramid was introduced to
handle the variation in action proposals with various temporal lengths. There were two
outputs generated by TURN, consisting of confidence scores and temporal coordinates de-
termining whether the video snippet contained action and estimating the action boundaries
(starting and ending time).
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SST, 2017: Since a sliding-window technique might have dis-connectivity within
the proposal or video snippet features and required high time complexity, Single-Stream
Temporal (SST) action proposal [29] was introduced for extracting a video descriptor as a
single stream without using sliding windows. To predict action proposals continuously,
a recurrent model architecture was included to design a sequence encoder, as shown in
Figure 6, for receiving C3D features [34] from the frame sequence (every 16 frames) of
video data. In addition, their training process relied on a recurrent network with very long
input video sequences without compromising model performance.

! ‘ Action
| classification

Sequence encoder

Frame

Video o
descriptor | :
! ‘ 1 Action
" | classification
1
| ]
[ ® g
1 ()
° I ° =]
1 | s
Video I e ° b
descriptor ! 1 €
1 ©
1 - =
1. : Action b
@ classification 3
1 5
Video | : o
descriptor | |
1
1
1
1

. Action proposal
Figure 6. SST network architecture utilizing sequence encoder [29].

SAP, 2018: As a top-down approach, generating and searching action proposals
through whole-video data generally requires a large time complexity and huge computa-
tional cost. Instead of focusing on every temporal position or video snippet in video data,
the self-adaptive proposal (SAP) model [30] technique used a random search for action
proposals by utilizing a sequence of transformations of the temporal window in random po-
sitions and covering action proposals that were as large as possible. The temporal positions
were randomized by reinforcement learning based on the Deep Q-Learning algorithm [35].
Each video scenario was optimized independently. Moreover, a regression network was
included to revise the offsets between predicted temporal proposals and the ground truth.

SRG, 2019: Untrimmed video characteristics usually contain several action propos-
als with similar action classes from each video snippet. It is well-known that temporal
proposals with high recall and accurate boundaries could be generated as the overall per-
formance. However, the proposal with specific action classes provided an unsatisfactory
performance. This problem could be caused by the ignorance of relations among action
proposals within untrimmed videos. To overcome this problem, Snippet Relatedness-based
Generator (SRG) [31] presented snippet relatedness, to consider the local relations among
temporal proposals. Snippet relatedness indicated that temporal positions were related to
a specific action instance (e.g., jumping, walking, and so on). Therefore, the main score
sequences included relatedness and starting and ending probabilities, where relatedness
scores aimed to improve score sequence in specific action instances. To effectively learn
the snippet relatedness, a pyramid non-local operation was also introduced to capture
long-range dependencies among temporal proposals locally and globally.

CMSN, 2019: Action proposals from video snippets are usually continuous events
and do not suddenly start or end. Therefore, the temporal stages close to the starting
and ending time should be defined. The Continuous Multi-Stage Network (CMSN) [32]
introduced a complete action-proposal stage consisting of ready, start, conform, end, and
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follow, occurring sequentially. There were six temporal stages, including background
proposals. Ready and follow are the earlier and later stage of action proposals, respectively.
Confirm is a stage between the starting and ending time. CSMN utilized ConvNet +
LSTM [36] to encode video descriptors from video snippets. The feature was utilized to
evaluate six stages of temporal proposals.

RapNet, 2020: Even though boundary-based techniques were effective in locating
temporal boundaries, long-range contextual information was not taken into account, and an
action with various temporal lengths was omitted. Relation-Aware Pyramid Network (Rap-
Net) [33] presented a u-shaped architecture to generate temporal proposals from video de-
scriptors via C3D [34]. To extract long-range contextual information, RapNet was enhanced
by Relation-Aware Module, capturing bidirectional relations among local information as
distilling context, to find a relationship between past and future content for augmenting
multi-granularity temporal proposal generation. In addition, video-snippet confidence
scores were considered to adjust the temporal boundaries as a post-processing step.

RTD-Net, 2021: Transformers were recently utilized in object detection with simpler
architectures, smaller networks (in terms of the number of parameters), more throughputs,
and quicker training. Since TAPG is similar to object detection, the transformer was able
to predict temporal boundaries or proposals. Relaxed Transformer Decoders Network
(RTD-Net) [3] firstly introduced TAPG with a transformer decoder modified by a vision
transformer for object detection [37], as shown in Figure 7. The input of the transformer
utilized temporal features extracted by a temporal network from each descriptor. This
model was able to observe inter-proposal dependencies from global features and reduce
computational cost. To overcome the over-smoothing effect from an encoder, the original
transformer modified the boundary-attentive architecture with three prediction heads
consisting of proposals, completeness scores, and classification scores. In addition, a
relaxed matching scheme was introduced to relieve the strict criteria of a single assignment
to each ground truth.

Relaxed matcher

l

Sequence of video descriptors

Transformer
decoder

. Predicted Action proposal

Actual action proposal
Figure 7. RTD-Net [3] architecture with relaxed matcher.

3.2. Boundary-Based Techniques

As mentioned in the introduction, an anchor-based technique has a limitation on
action proposals with various temporal lengths due to the fixed sizes of sliding windows.
Even though pyramid-based or u-shaped architectures was utilized, the boundary precision
from some action proposals, especially very short temporal length (less than 30 s), provided
insufficient performance. Instead of predicting temporal positions, temporal boundaries
(starting and ending time) were the focus of this technique which is considered a bottom-up
approach to generate video descriptors before finding temporal information. Its general
pipeline is categorized into three stages, as shown in Figure 8. The video descriptors from
each snippet are normalized with specific sizes in the descriptor grouping. Then, this
descriptor is fed into a classification module consisting of temporal and proposal modules.
The first module generates the boundary probability sequence, then applies a boundary
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matching mechanism to generate candidate proposals in the second module. Finally, the
post-processing step generates the action proposals. This technique helps to predict the
probability of temporal boundaries and cover the flexible temporal duration of action
instances. The contribution summary for boundary-based techniques are shown in Table 2.

Table 2. Contribution summary of boundary-based techniques.

Ref.  Contribution
Descriptor grouping [36] - Introducing action confidence grouping to discriminate between complete and incomplete
proposals.
[38] - Estimating the specific points from video descriptors to predict temporal boundary and
confidence score and minimize time consumed.
[39] - Redesigning from BMN and BSN as 2D information between starting and ending time.
Classification module [40] - Designing temporal and proposal modules to handle the "local to global” fashion for boundary
and proposal prediction, respectively.
[39,41] - ]Jointly unifying framework between temporal and proposal modules.
[39] - Introducing an auxiliary supervision via confidence-score classification.
[4,42]  -Including a graph neural network to display a relationship between temporal and proposal
modules.
[43] - Mutually regularizing the learning process of intra- and inter-phase consistency of action
temporal proposals
[4] - Augmenting the transformer to capture long-range dependencies in a classification module.
Post-processing [41] - Generating densely temporal proposals by temporal-boundary matching mechanism.
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Figure 8. The general pipeline of a boundary-based technique.

TAG, 2017: The learning-based bottom-up scheme for TAPG was introduced in Tem-
poral Actionness Grouping (TAG) [36] for forming confidence scores from video snippets
through video data. This method was inspired by a watershed algorithm [44] to generate
temporal proposals. The scheme was able to handle various video durations or a number of
video snippets. Temporal Segment Network (TSN) [45], or a two-stream network, was uti-
lized for extracting video descriptors from each snippet. Then, their features were encoded
by TAG to generate confidence scores and distinguish between action and background pro-
posals. All scores were grouped into temporal proposals of various granularities. Besides
action and background proposals, the incomplete proposals were added as the third result
for handling overlapping proposals among video snippets.

BSN, 2018: This research work was proposed to handle action proposal characteristics
(e.g., flexible temporal length, precise temporal boundaries, and reliable confidence scores).
Even though the first bottom-up approach was introduced by TAG [46], the temporal
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boundary was omitted in their TAPG model. Boundary Sensitive Network (BSN) [40]
was designed to extract local and global features from normalized video descriptors for
localizing temporal boundaries and retrieving candidate temporal proposals, respectively.
Temporal boundaries (starting and ending time) from each candidate time were evaluated
to generate starting, ending, and action probability sequences as local information. On
the other hand, global information was obtained from proposal-level features via directly
combining temporal locations with high starting and ending probabilities separately in a
temporal module. Then, both pieces of information were combined as confidence scores in
each candidate’s temporal proposals using a confidence module.

BMN, 2019: The current bottom-up proposal-generation methods utilize multiple
stages to predict temporal boundary and confidence scores. However, they cannot effi-
ciently generate adequately reliable confidence scores for retrieving proposals. Boundary-
Matching Network (BMN) [41] was introduced as the first unified framework in bottom-up
proposal generation methods for the confidence evaluation of densely distributed proposals.
The temporal proposal could be denoted as a matching pair between starting and ending
time from temporal proposals, which were combined as a 2D confidence map representing
densely distributed proposals. The temporal and confidence modules were optimized
jointly as a unified framework.

DPP, 2019: Even though the previous bottom-up approach succeeded in handling
action proposals with various temporal lengths, their temporal proposal quality relied on
action grouping or normalized video descriptors. In addition, their strategy was complex
and time consuming. To solve this issue, Deep Point-wise Prediction (DPP) [38] was
introduced as a simple yet efficient method that does not utilize any predefined sliding
windows to generate temporal proposals. Inspired by the feature pyramid network [47],
the model was designed for extracting temporal features in different temporal lengths
or scales from low to high levels via a top-down pathway. Similar to other approaches,
there were three main scores consisting of the confidence scores (action and background
proposals), starting scores, and ending scores of different temporal lengths.

DBG, 2020: The previous boundary-based techniques predicted temporal boundaries
as 1D information, starting and ending probabilities, in each temporal position. This
strategy lacked global features for action proposals with blurred boundaries and various
temporal lengths. Dense Boundary Generator (DBG) [39] was introduced to employ a
global proposal feature and predict boundary maps as 2D information, where starting and
ending probabilities were matched with both starting and ending time. Moreover, the base
module was designed specifically for RGB and optical flow from video descriptor. The
two-stream network [24] was utilized to extract the rich local temporal video representation
as input, to exploit the rich local behaviors within the video sequence.

BC-GNN, 2020: Boundary-based techniques were utilized for finding starting and
ending times. Thus, the relationship between action contents and their temporal boundaries
could be defined. Therefore, Boundary Content Graph Neural Network (BC-GNN) [42]
was proposed to implement predicted temporal proposals via a graph neural network,
where temporal boundaries (starting and ending time) and action content were represented
as a node and edge between them, respectively. Then, BC-GNN presented a novel graph
computation operation for updating nodes and edges to predict the candidate temporal
proposals and their confidence scores with higher quality.

IntraC and InterC, 2020: This research work [43] introduced a mechanism for the
mutual regularization of temporal boundaries consisting of starting, continuing, and ending
stages. These three stages were predicted as ordering triplets independently. However,
other studies ignored their relations, leading to reduced temporal boundary precision,
especially on input videos lacking sufficient discriminative information. Therefore, this
framework focused on finding the relations among three stages in both the intra-phase and
inter-phase. The intra-phase loss had the main role of reducing discrepancy inside each
stage independently. On the other hand, the inter-phase loss was utilized for maintaining
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consistency among the three stages. Finally, these potential constraints could be realized by
joint optimization between the intra-phase and inter-phase.

ATAG, 2021: Irrelevant frames from complicated action proposals were also an impor-
tant issue in TAPG, where their frame-level proposal features had various characteristics
and were hard to classify. However, only local proposal features were insufficient to de-
liver promising performance. To overcome this problem, Augmented Transformer with
Adaptive Graph (ATAG) [4] utilized an augmented transformer with an adaptive graph
network. A vanilla transformer [48] was utilized for generating action scores, especially
on complicated action proposals. On the other hand, an adaptive graph network helped
to exploit the temporal position and gradient information among temporal proposals or
adjacent features, to classify local proposal features from irrelevant frames.

3.3. Complementary Technigues

With the merits of anchor- and boundary-based techniques, many researchers tended
to propose complementary techniques between these two methods. A complementary
technique is a combined module from the anchor- and boundary-based techniques to
design the TAPG network. There was no standard network architecture for this technique.
The contribution summary for complementary techniques are shown in Table 3. These
networks were designed for a specific purpose, as described below.

Table 3. Contribution summary of complementary techniques.

Ref. Contribution
Descriptor grouping  [49] - Designing boundary adjustment and proposal ranking network from sliding windows to
retrieve proposals ignored by boundary-based techniques.
Classification module  [50] - Including the anchor-based technique in the classification module with parallel architecture.
[51] - Modifying temporal and proposal modules from BSN and BMN with a vision transformer.
Post-processing [50] - Integrating scores from the confidence module and anchor-based technique to enrich the
proposal quality.
[51] - Including the sliding-window technique to generate sparse multi-scale temporal proposals.

CTAP, 2018: Even though a sliding window technique was able to cover all temporal
segments in the videos, their predicted temporal proposals provided imprecise temporal
boundaries. On the other hand, more precise temporal boundaries could be achieved
by temporal and proposal modules in the boundary-based technique. However, tempo-
ral proposals with low confidence scores might be ignored. Therefore, Complementary
Temporal Action Proposal (CTAP) [49] utilized complementary characteristics from the
two techniques. A two-stream network [23] was utilized as video descriptors for both
sliding windows and modules in a boundary-based method, where they were designed as a
parallel structure. Since action proposals with low confidence scores could be omitted, this
complementary structure helped to fill the omitted action proposals with a sliding-window
method. Finally, the post-processing module helped to rank the predicted proposals and
adjusted the temporal boundaries.

MGG, 2019: This technique [50] introduced the boundary-matching mechanism for
densely distributed temporal proposals. Multi-Granularity Generator (MGG) was an-
other TAPG utilizing complementary characteristics. The anchor- and boundary-based
techniques designed a parallel architecture evaluating confidence scores and generating
candidate temporal proposals, respectively. Instead of relying on a sliding-window tech-
nique, candidate temporal proposals were generated by utilizing a u-shaped architecture
with lateral connections for handling various temporal lengths from each action instance.
On the other hand, the middle time (besides starting and ending time) was taken into ac-
count for calculating action scores. Finally, the output from the two methods was combined
as final temporal proposals.
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TRAN, 2021: The TAPG with a transformer [52] was the focus of TAPG with trans-
former (TRAN) [51] to capture rich long-range dependencies. Anchor-based and boundary-
based techniques were presented to capture frame- and proposal-level contexts, respectively.
The overall network architecture was similar to other boundary-based techniques (e.g.,
BSN, BMN, and so on), but a temporal sliding window was utilized to generate candidate
temporal proposals. Moreover, a sparse sampling mechanism was utilized to generate
the sparse proposal sequence instead of the densely distributed proposals, which brought
imbalanced data distribution between background and action temporal proposals.

3.4. Additional Techniques

As described above, many studies tended to focus on the modification of the TAPG
network to improve classification performance. However, other studies aimed to propose
techniques to solve issues related to data such as the amount of annotated data, imbalanced
data, and the characteristics of the TAPG dataset. Since annotating video sequences requires
a large amount of time and labor effort, semi-supervised learning was taken into account to
reduce the amount of annotated data [2]. In addition, temporal length might vary greatly,
resulting in a large variation in temporal proposals called a long-tail problem. The weighted
loss function and re-sampling training data were used to reduce the effect of imbalanced
data. In addition, a characteristic of several TAPG datasets was that the action was usually
performed by a human. With respect to this, an attention model focusing on human regions
could be utilized for extracting salient features. The following section discusses additional
techniques related to the specific characteristics of the TAPG dataset:

Supervised learning: To achieve high temporal-boundary prediction accuracy,
supervised-learning-based techniques were utilized by recent TAPG networks. How-
ever, these techniques required a large amount of annotated temporal action intervals from
untrimmed videos. On the other hand, unsupervised learning-based techniques [53] (with-
out data annotation for training) usually have a poor overall performance for generating
temporal proposals. Therefore, the semi-supervised-based technique was firstly introduced
in this study [1]. With a small amount of annotated training data, this technique helps to
achieve label efficiency. Mean Teacher [54] was modified for a semi-supervised framework.
The model consisted of time warping and time masking for providing perturbations for
time-sensitive tasks and optimizing models to be more robust and generalize better to
unseen data.

Even though the semi-supervised learning technique was a well-known method for
minimizing the number of annotated temporal action intervals from untrimmed videos,
the perturbations ignored the temporal interactions, which were critical for learning robust
action representations. This issue could be solved by using a fully non-annotated temporal
action proposal. Therefore, self-supervised learning was the focus of this research [2], to
fulfill proposal features for non-annotated video data on TAPG with semi-supervised learn-
ing using the Mean Teacher model [54]. Their model, based on self-supervised learning,
designed two simple perturbations for temporal-feature shifting [55] and temporal-feature
flipping. The first module had a role to move some randomly selected channels of feature
maps. The overall features were flipped by the second module.

Imbalanced data: Despite the improvement in temporal proposal generation, the
failed experimental cases were not deeply analyzed, especially in action proposals with
various temporal lengths. According to this research [56], several actions with short
temporal lengths were missing in the previous works, where this problem was caused
by imbalanced temporal lengths in the TAPG benchmark. To solve this problem, the
scale-invariant loss was proposed for confidence regression to reduce the effect of a low
sample of action with a short duration. In addition, the module for predicting temporal
boundaries included a u-shaped architecture to enhance global proposal features with
higher precision.

Besides action temporal length, there was an imbalance between the number of positive
and negative samples. The two-stage re-sampling [57] was presented to balance positive—
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negative samples and samples with various temporal lengths. Their experiment utilized
a modified version of BSN (BSN++) for evaluation. Moreover, the u-shaped architecture
included nested skip connections to capture rich contexts in temporal boundaries. In
addition, a bi-directional boundary matching mechanism was introduced, where reversing
video descriptors were utilized as input data. In general, starting time could be found
by observing a sudden change from background to action proposals. By using video
descriptors with reversed directions, a sudden change in the opposite direction could be
handled by the various types of action proposals.

Attention mechanism: Since actions in public videos are usually performed by hu-
mans, the TAPG network should be focused on the spatial and temporal region containing
the human body. To realize this concept, Agent-Environment Network (AEN) [58] de-
veloped a prepossessing step to localize humans or agents performing an action within
action proposals by the human detector, as shown in Figure 9. Moreover, an environmental
pathway was introduced to visualize how agents interacted with the environment, helping
action classification.

Descriptor
extraction

Environment
feature extraction
Video
descriptor

Transformer

Human
detector

Transformer
encoder Multi-agent

feature

Current frame

Figure 9. The architecture of AEN [58] with transformer encoder for extracting a video descriptor of
each video snippet.

4. Evaluation Metric

TAPG evaluation is considered as a binary classification between action and back-
ground proposals, which are positive and negative samples, respectively. There are four
parameters for TAPG evaluation, consisting of true positives (T P), false positives (FP), true
negatives (TN), and false negatives (FN). The relations for these parameters are shown
in Table 4. The intersection of union (IolU) in the temporal domain is taken into account
for evaluating the TAPG network because TAPG is similar to object detection in a spatial
domain. In the temporal domain, loU is considered as the overlap between predicted and
actual temporal proposals (both action and background proposals) by the TAPG network
and ground truth, respectively. IoU can be calculated by Equation (1).

P,NP,

ToU =
T BUun

)

where P, and P, are predicted and actual proposals, respectively. IoU is used for checking
temporal localization accuracy from predicted proposals. Without action classification, the
number of the predicted proposal is the only focus. Therefore, related studies tended to
utilize recall (R) and average recall (AR) for evaluation. A recall is the coverage of correct
prediction. Specifically, a recall is how many actual positive samples in the testing set are
identified. AR is an average recall over the number of predicted proposals ordered by their
confidence scores (from high to low). The calculation formulas of R and AR are depicted in
Equations (2) and (3)
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where Ay is an average number of predicted proposals. In an evaluation procedure, the
TAPG network is tested from 1 to 100 Ay. In general, AR@100 is used as the primary
evaluation metric in most recent related works. To classify recall, IoU is utilized as a
threshold which has range of [0.5: 0.05: 0.95] and [0.5: 0.05: 1.0] for ActivityNet and
THUMOS, respectively. Moreover, the area under the curve (AUC) between AR and Ay is
calculated to check the total performance of the TAPG network.

Table 4. The logic relation of binary classification parameters.

Prediction/Actual Results Action Proposal Background Proposal
Action proposal True positive (TP) False positive (FP)
Background proposal False negative (FN) True negative (TN)

5. Results and Discussion

According to the TAPG evaluation metric, most related studies were concerned about
the quantity of predicted temporal proposals. Therefore, AR@Ax was utilized in their
evaluation. In THUMOS 2014, their videos were evaluated with various numbers of
predicted proposals (from Ay = 50 to Ay = 1000), as shown in Table 5. However, the
evaluation of ActivityNet focused on overall performance with AR@100 and AUC due to
the large amount of video data, as shown in Table 6. The related studies have different
scopes and purposes; therefore, the network evaluations have different aspects, as follows:

5.1. Performance Evaluation on Network Architecture

As mentioned in Section 3, the proposed TAPG network architecture was categorized
into the anchor-, boundary-, and complementary-based techniques. Their empirical results
are depicted in Tables 5 and 6 on various video descriptors. Table 5 indicates that AR
is increased with higher Ay or the larger number of predicted proposals. The recent
experimental results showed that the recent boundary-based technique had more AR
than anchor-based techniques by focusing on the temporal boundary. However, the most
effective TAPG network utilized the merit between these two techniques. It showed that the
complementary technique should be considered and further developed, where the effective
networks were aided by a transformer (e.g., RTD-Net, ATAG, and TRAN) or attention
networks (e.g., RapNet). In terms of the video descriptor, the two-stream network was
utilized and had more AR than other descriptors (C3D and I3D).

Without data annotation in test video data from ActivityNet, the related studies
evaluated their networks with validation video data as shown in Table 6. Unlike the
THUMOS dataset, the recent anchor-based techniques were more effective than boundary-
based techniques due to the characteristics of video data in ActivityNet. Even though the
boundary-based technique was designed for various temporal lengths on action proposals,
the action proposal with a very short temporal length (less than 30 s) was ineffective for
their boundary prediction. This problem is still a challenge for this dataset because 53.7% of
action proposals have a very short temporal length. This limitation of the boundary-based
technique also dropped the performance of a complementary technique. Even though a
two-stream network was utilized for the descriptor extraction from most related studies in
ActivityNet, the results from 3D convolution had higher AR with the same TAPG network
architectures (e.g., RapNet and BSN).
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Table 5. TAPG network comparison on THUMOS 2014 using AR@Ay.

Model Name Video AR@50 AR@100 AR@200 AR@500 AR@1000
Descriptor
Anchor-based techniques
TURN, 2017 C3D 19.63% 27.96% 38.34% 53.52% 60.75%
Two-stream 21.86% 31.89% 43.02% 57.63% 64.17%
SST, 2017 C3D 19.90% 28.36% 37.90% 51.58% 60.27%
SRG, 2019 Two-stream 41.19% 49.72% 56.71% 63.78% X
CMSN, 2019 C3D 40.40% 46.71% 52.46% X X
Two-stream 43.77% 50.55% 56.48% X X
RapNet, 2020 C3D 29.72% 37.53% 45.61% 55.26% 61.32%
Two-stream 40.35% 48.23% 54.92% 61.41% 64.47%
RTD-Net, 2021 13D 41.52% 49.32% 56.51% 62.91% X
Boundary-based techniques
TAG, 2017 Two-stream 18.55% 29.00% 39.61% X X
BSN, 2018 C3D 29.58% 37.38% 45.55% 54.64% 59.48%
Two-stream 37.46% 46.06% 53.21% 60.64% 64.52%
13D 36.73% 44.14% 49.12% 52.26% X
BMN, 2019 C3D 32.73% 40.68% 47.86% 56.42% 60.44%
Two-stream 39.36% 47.72% 54.72% 62.07% 65.49%
13D 37.03% 44.12% 49.49% 54.27% X
DPP, 2019 C3D 25.88% 34.79% 43.37% X X
DBG, 2020 C3D 30.55% 38.82% 46.59% 56.42% 62.17%
Two-stream 37.32% 46.67% 54.50% 62.21% 66.41%
BC-GNN, 2020 C3D 33.31% 40.93% 48.15% 56.62% 60.41%
Two-stream 40.50% 49.60% 56.33% 62.80% 66.57%
ATAG C3D 34.47% 41.92% 49.60% 58.49% 62.24%
Two-stream 43.52% 51.86% 59.48% 66.04% 70.28%
IntraC & InterC, 2020 13D 44.23% 50.67% 55.74% X X
Complementary techniques
CTAP, 2018 Two-stream 32.49% 42.61% 51.97% X X
MGG, 2019 C3D 29.11% 36.31% 44.32% 54.96% 60.98%
Two-stream 39.93% 47.75% 54.65% 61.36% 64.06%
TRAN, 2021 Two-stream 43.90% 53.50% 60.20% 66.70% 68.80%

Table 6. TAPG network comparison on ActivityNet ver 1.3 using AR@Ay and AUC (Val).

Model Name Video Descriptor AR@1 AR@100 AUC
Anchor-based techniques
TURN, 2017 C3D X 49.74% 54.16%
SRG, 2019 Two-stream X 74.65% 66.06%
RapNet, 2020 C3D X 78.63% 69.93%
Two-stream X 76.71% 67.63%
RTD-Net, 2021 Two-stream 33.05% 73.21% 65.78%
Boundary-based techniques
BSN, 2018 C3D X 75.61% 67.47%
Two-stream 32.17% 74.16% 66.17%
BMN, 2019 Two-stream X 75.03% 67.10%
TSP 34.99% 76.63% 69.04%
DBG, 2020 Two-stream X 76.65% 68.23%
BC-GNN, 2020 Two-stream X 76.73% 68.05%
ATAG, 2021 Two-stream X 76.75% 68.50%
IntraC & InterC, 2020 13D X 75.27% 66.51%
Complementary techniques

CTAP, 2019 Two-stream X 73.17% 65.72%
MGG, 2019 Two-stream X 74.54% 66.43%
TRAN, 2021 Two-stream 34.90% 76.50% 68.30%

5.2. Performance Evaluation on Additional Techniques

This section described the performance evaluation of the network optimization tech-
niques in the TAPG network. The related studies used additional techniques for the TAPG
network to solve following problems: supervised learning [1,2], imbalanced data [56,57],
and attention mechanism [58]. To evaluate the performance in those problems, BMN [41]
was selected to be utilized as the TAPG network for performance comparison as follows.
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5.2.1. Supervised Learning

The experimental results evaluating semi-supervised learning [1] and self-supervised
learning [2] are shown in Figure 10. This experiment utilized BMN as the TAPG network
with the two-stream network. The results indicated that the performance with a lower
amount of annotated data obtained a lower value in AR@Ay. On the other hand, semi-
supervised learning helped to increase an average recall in every Ay and ratio of annotated
data. By focusing on the non-annotated data, self-supervised learning outperformed
semi-supervised learning.

AR@50 AR@100 AR@200

@ Original X with semi-learning @ Original X with semi-learning @ Original X with semi-learning
with self-learing with self-learning with self-learning
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Ratio of annotated data Ratio of annotated data Ratio of annotated data

Figure 10. The AR@AN from BMN using the original two-stream network [41], with semi-learning [1],
and with self-learning [2].

5.2.2. Imbalanced Data

Since the imbalanced data of temporal action lengths was one of the main challenges
(especially in ActivityNet), scale-invariant (SI) loss from [56] was evaluated using BMN
and DBG, as shown in Table 7. In their experiment setup, the temporal length of action
proposals was categorized by the ratio (s) of their video duration consisting of short
(0.0 <5 < 0.06), medium (0.06 < s < 0.6), and long (0.6 < s < 1.0). Table 7 shows that
the TAPG network without SI loss was ineffective to action with short temporal length.
There was an improvement by using SI-loss in both BMN and DBG of around 1% and 4%,
respectively. Specifically, because the imbalance issue in DBG was not as severe as in BMN,
AUC gains for DBG are not as much as BMN. However, it was still acceptable. In average
scales, it proved that networks with Sl-loss outperformed their original versions.

Table 7. The ablation study of scale-invariant (SI) loss [56] from BMN [41] and DBG [39] with the
two-stream network using AUC in ActivityNet.

Methods 0.0 <s < 0.06 0.06 < s < 0.65 0.65<s<1.0 Average Scales
BMN 36.53% 70.43% 94.48% 67.10%
BMN with SI-Loss 40.24% 70.32% 94.41% 67.98%
DBG 39.07% 72.18% 93.08% 67.90%
DBG with SI-loss 40.57% 70.25% 94.73% 68.23%

5.2.3. Attention Mechanism

This section evaluated effects of an attention mechanism focusing on the agent or
human regions proposed by AEN [58]. The THUMOS 2014 was analyzed as shown
in Table 8. Their empirical results indicated that overall performance was improved by
extracting features from specific regions of interest. However, some action proposals
without an agent might be ineffective in this case, although this issue was not mentioned in
their experiment.

Table 8. The ablation study of AEN [58] from BMN [41] with C3D using AR@Ay in THUMOS 2014.

Methods AR@50 AR@100 AR@200 AR@500 AR@1000

BMN 32.73% 40.68% 47.86% 56.42% 60.44%
BMN with AEN 33.26% 42.93% 50.32% 59.10% 64.03%
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5.3. Result Analysis on Related TAPG Network

This section discusses the result of our evaluation. Even though there is a standard
evaluation criterion mentioned in Section 4, other aspects should be discussed. As the
most promising performance in Table 5, a boundary-based technique was selected for our
analysis. In our experiment, BMN [41] was implemented and evaluated by using a pub-
lic open-source code (https:/ /github.com/JJBOY/BMN-Boundary-Matching-Network)
(accessed on 2 August 2021) on ActivityNet v1.3 [11]. We found several limitations, sum-
marized below, that should be improved upon in future research.

5.3.1. The Temporal Proposal with Similar Pattern

In general, proposals with similar patterns (e.g., viewpoint, background, and so on)
are classified as the same classes (action or background proposal). If action and background
proposals have similar patterns, it might cause false positives in predicted proposals
and generate imprecise action boundaries as the result. To visualize this hypothesis, the
confidence maps from examples with and without similar patterns between action and
background proposals are shown in Figures 11 and 12.

Figure 11 shows the confidence maps (bottom row) from a video with similar patterns
(Figure 11a,b). The actual confidence map from Figure 11c indicated the action proposal
within the green circles. However, the predicted confidence map (Figure 11d) was different
to its ground truth. The TAPG model tended to focus on background proposals (yellow
circles) and some action proposal scores (green circles) were suppressed. On the other
hand, a video with a different pattern for the background (Figure 12a) and action proposals
(Figure 12b) was effective for the TAPG model. The actual confidence map (Figure 12c)
was similar to its predicted map (Figure 12d). It indicated that the TAPG model was able
to localize the action proposals more precisely. Therefore, the pattern between action and
background proposals is one of the main factors for classifying proposals and the TAPG
model should be concerned about this problem.

[ 20 40 60 80

60
End time End time

(c) (d)

Figure 11. The example video with similar background from ActivityNet [11] consisting of (a) back-

ground proposal, (b) action proposal, (c) actual and (d) predicted confidence map, where green and
yellow indicate the correct and wrong temporal locations of action proposal, respectively.
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Start time

Figure 12. The example video without similar background from ActivityNet [11] consisting of
(a) background proposal, (b) action proposal, (c) actual and (d) predicted confidence map, where
green and yellow indicate the correct and wrong temporal locations of action proposal, respectively.

5.3.2. Contiguous Action-Proposal Merging

According to various temporal lengths, action proposals with long temporal lengths
were effective in the TAPG model. However, the proposals with short temporal lengths
were ignored. As mentioned in Section 5.2.2, this problem was caused by the imbalance of
data in temporal lengths. On the other hand, it can be affected by the proposal merging from
a group of contiguous proposals. If the temporal boundaries are too close to each other, the
TAPG might merge two or more proposals as one proposal with a longer temporal length.

Figure 13 shows the example of videos (Figure 13a,b) with contiguous action proposals
and their confidence maps by our experiment. As you can see in Figure 13c, there was a
group of contiguous action proposals within a green circle. However, their predicted scores
in Figure 13d were focused between their earliest start time and the latest ending time.
It indicated that there was a merged proposal by a TAPG model. Therefore, contiguous
proposals and proposal merging should be considered, to solve actions with various
temporal lengths, especially in action proposals with short temporal lengths.

o 20 40 60 80
End time

(d)

Figure 13. The example video contiguous action proposals from ActivityNet [11] consisting of (a)

background proposal, (b) action proposal, (c) actual and (d) predicted confidence map, where green
and yellow indicate the group of action proposal and their merging proposals, respectively.
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6. Applications

In practical applications, TAPG had the main role of extracting action proposals
from input video data. As described in the Introduction, these action proposals were
mainly utilized as the pre-processing step for trimming videos in various applications
(e.g., temporal action localization (TAL) [8,59-61], video retrieval [62-64], video highlight
detection [65-67], video summarization [68,69], and so on). These applications and their
related works were briefly described, as follows.

6.1. Temporal Action Localization

Different from TAPG, TAL was an extended work of TAPG including action recogni-
tion. TAL aimed to localize the temporal position of each action class (Figure 14), where
TAPG helped to extract candidate proposals. The output action classes were dependent on
their scopes of studies. Daily-life activity from ActiviyNet and THUMMOS was the focus
of the research to handle public videos. The SlowFast network [59] was proposed to focus
on the variations in action speed. Specific incident or accident detection was discussed
by Rendon-Segador et al. [60]. In addition, the TAL could be developed for extracting the
spatial locations [61] of each action class, similar to object detection, as shown in the red
rectangular boxes in Figure 14.

Ajis Singh

| Background Playing field hockey Background |

—= Time

Figure 14. Example of temporal and spatial positions (within red rectangular boxes) by TAL from
ActivityNet [11].

6.2. Video Retrieval

Video retrieval is the approach for facilitating the video search of large public video
collections by indexing their contents or categories. Without examining the video contents,
video search relies on metadata such as captions or keywords. TAPG could be utilized
in video retrieval for extracting relevant frames or proposals from their video captions
and contents. The video retrieval is generally divided into two major modules (feature
extraction and similarity model). The similarity model is the main part for checking the
similarity of visual features from video contents in the database.

6.3. Video Highlight Detection

Besides action detection and classification, video highlights are another important
process for video categorization or video search with similar techniques. TAPG can be
modified for detecting highlight proposals, capturing a user’s primary attention within an
untrimmed video, especially in a sports video. This application has the potential to signifi-
cantly ease video search. The highlight is generally cued by observing or extracting latent
signals from their benchmarks, depending on user’s demands or perspectives. Weakly
supervised learning [65] is considered in order to minimized time complexity because this
application has a large number of video categories.
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6.4. Video Summarization

Video summarization is an application for generating a short synopsis and excluding
unnecessary content. It helps to summarize untrimmed video data by selecting its infor-
mative or key frames. The output from a video summarization usually consists of a set of
video frames (video-key-frames), ordered by time [68]. As mentioned in the Introduction,
an action was considered as the main key feature for video analysis and understanding.
Action proposals could contain the key frames for video summarization. Similar to video
highlight detection, the type of video-key-frames are several and there is a large number of
video categories. Currently, weakly supervised learning is the main focus of this research.

7. Future Direction

As discussed in previous sections, limitations can be overcome for future directions in
TAPG. This section discusses several interesting directions from the related experimental
results. The future trends may be as follows:

7.1. Non-Prior Knowledge Attention Mechanism

Vision attention mechanisms have received much attractive throughout the last decade.
As mentioned in AEN [58], the action should be performed around the agent or human
regions. An attention mechanism was taken into account to extract their agent features.
However, action proposals might exclude the human body, as shown in Figure 15. These
action proposals focused on the specific object in the scene instead. Without agents, these
proposals might be ignored by AEN. In addition, the problem on merging of contiguous
action proposals might be an focus of this research. In addition to focusing on agents or
objects, attention mechanisms focusing on the temporal domain should be discussed to
emphasize contiguous action proposals, especially on short proposals. Therefore, the new
attention mechanism should not rely on a prior-knowledge guide learning to handle all the
circumstances of action proposals. In addition, a vision transformer for self-attention [70]
should be applied to solve this issue in the future.

Polishing forniture Carving jack-o-lanterns Applying sunscreen Making cake

Figure 15. The examples of action proposals without human body part from ActivityNet [11].

7.2. Joint Learning of Audio Information

Audio information could be considered as a relevant feature in action recognition and
classification. However, only image information was taken into account in recent studies
on TAPG. By observing videos in the benchmarks, the characteristics between action and
background proposals (Playing accordion) are ambiguous and hard to distinguish, as
shown in Figure 16. Even though they have similar postures, the person in the scene does
not play music in the background proposal. To handle this problem, audio information
should be included. Recently, related studies have leveraged the natural synchronization
between image and audio to learn an acoustic representation [71]. It means that the audio
information from the action and background proposal could be distinguished from their
acoustic representation. Therefore, audio information will be salient information for video
analysis in the future direction.
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A
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Figure 16. The examples of action (left) and background (right) proposals from playing an instrument
in ActivityNet [11].

7.3. New Video Descriptor

A video descriptor is one of the most important factors for predicting action proposals.
As far as we are concerned, TSP [27] was the only proposed video descriptor designed for
TAPG and TAL. Besides action proposals, TSP also extracted features from background
proposals or negative samples to increase TAPG performance. Even though TSP has
a higher performance in AR than other video descriptors from their experiment [27],
this descriptor was rarely utilized in several related studies due to a fair improvement.
The related studies tended to utilize public and extracted video descriptors. Therefore,
several descriptors should be discussed in future research for obtaining their strengths and
weaknesses. Then, more video descriptors can be proposed to overcome the previous video
descriptors specifically designed for the TAPG network, as another future work.

8. Conclusions

This paper conducted a comprehensive review of deep-learning-based techniques
for temporal-action proposal generation. Related studies were discussed including video
descriptors and their TAPG networks, consisting of anchor-based, boundary-based, and
complementary techniques. Besides the network architecture, additional techniques were
also included. Recent TAPG studies, including its benchmark, were selected from specific
keywords of TAPG and evaluation metrics during 2012 and 2022. The empirical results
showed that the two-stream network yielded higher performances in average recall in
both TAPG benchmarks (AcitvityNet v1.3 and THUMOS 2014). Based on our result
analysis, there were two main weak points in recent work consisting of similar patterns
among proposals and contiguous proposal merging. In addition, the various aspects of the
predicted action proposals were discussed for a specific purpose. Over the past few years,
the related studies on TAPG tended to focus on the attention mechanism to extract salient
features via the attention module and self-attention from the vision transformer.

Since TAPG is expected to play a significant part in temporal action localization and
video analysis, TAPG networks should generate a promising performance (at least 90%
in AR@100) for practical use. The TAPG network should be proposed and designed for
specific action categories. Since untrimmed videos is the main input data for TAPG, video
descriptor and attention modules should be redesigned instead of being adapting from
other research (e.g., trimmed video classification, object detection, and so on). In addition,
all information from a video, including audio, could be utilized to distinguish temporal
proposals, especially on action proposals with sound such as playing musical instruments.
Therefore, TAPG still has a gap for improvement on several complicated and challenging
issues as future directions.
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