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[T I N

Abstract: Performing 3D reconstruction from a single 2D input is a challenging problem that is
trending in literature. Until recently, it was an ill-posed optimization problem, but with the advent
of learning-based methods, the performance of 3D reconstruction has also significantly improved.
Infinitely many different 3D objects can be projected onto the same 2D plane, which makes the
reconstruction task very difficult. It is even more difficult for objects with complex deformations or
no textures. This paper serves as a review of recent literature on 3D reconstruction from a single view,
with a focus on deep learning methods from 2018 to 2021. Due to the lack of standard datasets or 3D
shape representation methods, it is hard to compare all reviewed methods directly. However, this
paper reviews different approaches for reconstructing 3D shapes as depth maps, surface normals,
point clouds, and meshes; along with various loss functions and metrics used to train and evaluate
these methods.

Keywords: deep learning; 3D reconstruction; convolutional neural networks; textureless surfaces

1. Introduction

Three-dimensional reconstruction is the task of inferring the geometric structure of
a scene from a set of two-dimensional images. Given one or more 2D views of a scene,
we want to know the 3D shape and position in space of all the objects in the scene. This
can be seen as mapping the 2D points in the image space to 3D points in real-world space,
where for each 2D point (x, y) in the image, we want to recover the corresponding 3D point
(%,7,z) in world coordinates, where Z is the distance of the point from the camera.

There are two main ways to reconstruct a 3D scene: monocular reconstruction from
a single image, or multi-view reconstruction from multiple images taken from different
perspectives. The goal of both tasks is to infer the 3D geometry of the scene, but monocular
reconstruction can be more difficult because you only have one view of the scene. Multi-
view reconstruction is easier because you get more information about the hidden faces of
objects from different angles, making it easier to infer their shape and position.

The literature also distinguishes between the reconstruction of a whole scene as
opposed to the reconstruction of a single object. A scene is usually made up of a set of
objects, and scene reconstruction involves reconstructing not only the geometry of all the
objects in the scene but also their relative positions. Reconstruction of a whole scene is
generally harder than reconstruction of a single object because it involves dealing with
more complex shadows and occlusions. An image can be a projection of infinitely many
different shapes, which makes correctly reconstructing the 3D shape from a single image
very hard. Reconstruction of the non-visible faces of the object is challenging in particular
as the input image often provides no information about their shape. Bautista et al. [1]
showed that many existing monocular 3D reconstruction networks learn shape priors over
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training object categories to solve this problem. This makes it difficult for these networks
to generalize to unseen object categories or scenes. Tatarchenko et al. [2] demonstrated that
single-view 3D reconstruction networks do not reason about the 3D geometry of the object
from visual shape cues, but rather rely on object recognition to perform the reconstruction.

The reconstruction task is also made more difficult when there are no textures in the
scene. Without any distinctive features, it becomes harder to infer the 3D shape of an object
from a 2D image. This makes it difficult to create a complete and accurate 3D model of
the scene.

Three-dimensional reconstruction from visual data is a long-standing computer vision
problem with real-world applications in fields such as robotic surgery, autonomous vehicles,
and virtual and augmented reality. In recent years, deep learning has replaced the tradi-
tional computer vision algorithms for the problem of 3D reconstruction with promising
results. Deep learning networks have been shown to be more robust to noise and variations
in input data than traditional methods. Additionally, they are able to learn complex features
from data without any human intervention. This makes them well suited for tasks such as
3D reconstruction where there is a lot of variability in input images.

In this paper, we review different deep learning-based methods proposed for the
task of 3D reconstruction from a single view. We only focus on methods of reconstructing
individual objects. Our main contributions include:

*  An overview of the neural networks proposed for monocular 3D object reconstruction
in the last five years, including:

-  Bednarik et al. [3] and Patch-Net [4] for reconstruction of depth and normal maps
using a real dataset of textureless surfaces;

- HDM-Net [5] and IsMo-GAN [6], which reconstruct 3D point clouds from a
synthetic dataset of textured surfaces;

—  Pixel2Mesh [7], Salvi et al. [8], and Yuan et al. [9] for reconstruction of mesh-based
models using a subset of the ShapeNet [10].

* A summary of the major 3D datasets that are used by the discussed neural networks.
* A description of common metrics used to evaluate the 3D reconstruction algorithms.
* A comparison of the performance of these methods using different evaluation metrics.

The remainder of the paper is organized as follows. In Section 2, we present an
overview of related literature. Section 3 defines various methods of representing 3D data,
such as depth maps, normal maps, point clouds, 3D meshes, and voxels. In Section 4,
we introduce the major 3D datasets used by the networks reviewed in this paper. Then,
we discuss different deep learning methods proposed recently for 3D reconstruction in
Section 5. Section 6 defines the evaluation metrics used by these networks and lists the
results of various experiments conducted by these methods on different datasets. We
further discuss the experiment results in Section 7 before concluding our findings and
providing direction for future work in Section 8.

2. Related Work

The problem of 3D reconstruction from visual data has been well-studied in computer
vision literature, but reconstructing 3D geometry from images remained an ill-posed
problem before 2015 when researchers started using convolutional neural networks for
this task. Figure 1 shows the trend of related publications since then. In this section, we
shed some light on existing surveys that have previously reviewed the 3D reconstruction
methods in the literature.
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Figure 1. Interest in using deep learning-based methods for 3D reconstruction is reflected in the
number of publications on ScienceDirect matching the keywords “3d reconstruction” AND “deep
learning”, which have been exponentially growing since 2015.

Zollhofer et al. [11] published a report in 2018 on the state-of-the-art in monocular 3D
reconstruction of faces. The authors mainly focus on optimization-based algorithms for
facial reconstruction, but also briefly mention the emerging trend of using learning-based
techniques for this task. They conclude that they “expect to see heavy use of techniques
based on deep learning in the future”. In 2019, Yuniarti and Suciati [12] formally defined
3D reconstruction as a learning problem and showed an exponentially growing interest
in 3D reconstruction among the deep learning community. This paper talks about the
different ways of representing shapes in 3D, such as parametric models, meshes, and point
clouds, lists the 3D datasets available at that time, and summarizes various deep learning
methods for 3D reconstruction. Han et al. [13] published a more extensive review of single
and multi-view 3D reconstruction later that year. This work also distinguishes between the
reconstruction of scenes and reconstruction of objects in isolation, and reviews techniques
for both.

A large body of work in this area focuses solely on producing depth maps from
images, which represent a partial representation of 3D geometry. In this context, Laga [14]
extensively surveyed more than 100 key contributions using learning-based approaches
for recovering depth maps from RGB images. More reviews published in the following
years show the shift in trend from using plain CNNs to recurrent neural networks (RNNs),
residual networks, and generative adversarial networks (GANSs) for 3D reconstruction
with encouraging results [15,16]. Fu et al. [17] also published a review of single-view
3D reconstruction methods, focusing only on objects in isolation. They cover networks
proposed between 2016 and 2019 in their review.

3. Representing Shape in 3D

There are many different ways to represent the 3D shape of a scene. The depth and
normal maps can be used to represent the partial geometry of the scene which is limited to
the surfaces of the objects directly facing the camera. For a more complete representation,
point clouds, meshes, and voxels can be used. The 3D reconstruction networks can be
trained to reconstruct 3D scenes from 2D images in different ways. In this section, we
briefly introduce different ways of representing 3D data.
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3.1. Depth Map

For each pixel in an image, a depth map provides the distance from the camera to the
corresponding point in space. This gives a single-channel image of the same size as the input
image, with the corresponding depth value, z at each (x, y) position. The absolute depth
values are sometimes mapped to the range [0, 255] and, together with a normal RGB image,
the depth map is given as the fourth channel of the so-called RGB-D images with points
closer to the camera appearing darker and the points further away appearing brighter.

As depth maps are created from a single viewpoint, they represent a very sparse 3D
geometry of the scene containing only points directly in the line of sight of the camera. They
say nothing about the occluded planes, nor do they say anything about the 3D orientation
of different faces of an object in the scene. For this reason, RGB-D images are sometimes
called 2.5D because they cannot represent a complete 3D topology on their own. They are a
partial surface model, with only the shape of the front face of the surface represented.

3.2. Normal Map

A normal vector or a “normal” to a surface is a three-dimensional vector perpendicular
to the surface at a given point. Analogous to depth maps, normal maps provide normals
for each pixel in an image. This means that we can tell the 3D orientation of the surface at
any given point in space that is visible in this image.

When RGB-D datasets are combined with normal maps, we can extract both the
distance and orientation of every point in a scene from a single viewpoint. However, since
we are only seeing the scene from one perspective, information about the hidden surfaces
of the objects in the scene cannot be completely represented. Like depth maps, normal
maps also represent a partial surface model.

3.3. Point Cloud

A point cloud is a set of 3D points in space. Theoretically, they are able to exactly
represent a complete 3D scene by storing the position of every point in space. Depending
on how many and which points are present in the point cloud, it can be both a solid
and a surface model of the scene. However, due to limited computational memory, it is
often necessary to downsample them to reduce the size of the dataset. This can be done
by removing the points which are very close to each other or which are not needed to
understand the visible shape of the 3D surfaces.

Point clouds can be extremely useful for representing 3D shapes, but they can also be
difficult to work with. Sometimes it is necessary to convert them to a mesh in order to get a
more accurate representation of the object.

3.4. 3D Mesh

A mesh is a collection of 3D points (or vertices) that have been connected together
with edges to form the surfaces (or faces) of 3D objects. Vertices are connected in a way that
the faces are made up of many polygons adjacent to each other. Usually, these polygons
are triangles, and the meshes are called “triangulated meshes”. Meshes can be used to
represent the surface models of a 3D scene as “wireframes”.

3.5. Voxel

A voxel is a 3D equivalent of a pixel. Voxel-based models represent objects as a
collection of cubes (or voxels) stacked in space like a 3D grid. They represent a discretized,
solid model of the scene. Accuracy of the 3D model depends on the size of the voxels
making up the objects. The bigger the voxels, the more “pixelated” the surfaces of the
objects appear.

Like meshes, voxel grids can also be generated directly from point clouds where
several adjoining points are all approximated to a single voxel (or a cube) in space. This
process is called voxelization and is one way of downsampling the point clouds.
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4. Datasets

In this section, we introduce the datasets used by the networks discussed later in
Section 5. These datasets contain RGB images of different objects and their 3D shape in one
of the representations introduced above. Table 1 provides a summary of these datasets.

Table 1. Summary of the major 3D datasets in this paper. Most of the datasets contain textured
surfaces and are generated from synthetic 3D models. Real datasets captured directly with 3D sensors
are less common and smaller in size because of the difficulty associated with obtaining them.

Dataset Type Surface Texture Groundtruth Size
Bednarik et al. [3] Real Deformable No ?/I?}))? and Normal 26,445
Golyanik et al. [5] Synthetic Deformable Yes Point Clouds 4648
ShapeNet [10] Synthetic Mixed Yes 3D Mesh >300 M
. - 3D Meshes and
R2N2 [18] Synthetic Rigid Yes Voxelized Models 50,000
4.1. Real Textureless Surfaces Data
This RGB-D dataset of deformable textureless surfaces from [3] consists of 26,445 RGB
images, along with depth maps and normal maps for each image. These RGB images
and depth maps were collected using a Microsoft Kinect for Xbox One device. Normal
maps were computed by differentiating the depth maps. The dataset contains five different
types of objects: tshirt, hoody, sweater, a rectangular sheet of cloth, and a crumpled piece of
paper. The objects have no texture or colors on them. Figure 2a shows some samples from
this dataset.
FOE g A- 2 |
G N] et 4 L4 L i

| S

S .
N A <

(a)
Figure 2. Examples of images in the datasets of Bednarik et al. [3] and Golyanik et al. [5], which are
used to evaluate some of the networks in this paper. (a) The textureless surfaces dataset [3] contains
RGB images and corresponding normal and depth maps for 5 different real objects. (b) The synthetic
point cloud dataset of Golyanik et al. [5] has a deforming thin plate rendered with 4 different textures

under 5 different illuminations.

The tshirt, hoody, and sweater were worn by a person who made random motions to
simulate realistic creases. The sheet of cloth was fixed to a bar on the wall and manually
deformed, and the piece of paper was crumpled by hand to create different depths. Different
combinations of four light sources were used to create lighting variations across different
recording sequences. This included three fixed lights in front of the objects on the right, left,
and center, and one moving dynamic light in the room. Table 2 summarizes the number of
samples of each kind of object.
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Table 2. Summary of objects in the textureless surfaces dataset [3]. Sequences of data samples were
captured using a Kinect device at 5 FPS with varying lighting conditions across sequences.

cloth tshirt sweater hoody paper
sequences 18 12 4 1 3
samples 15,799 6739 2203 517 1187

4.2. Synthetic 3D Point Cloud Data

Golyanik et al. [5] generated a synthetic 3D dataset in point cloud representation.
Using Blender [19], they created a 3D scene with a thin plate undergoing various isometric
non-linear deformations. Four kinds of textures (endoscopy, graf fiti, clothes, and carpet)
were mapped onto the deformed 3D model, which was then illuminated in various settings
using five different light sources. The scene was viewed from five separate cameras at
different angles. In this way, a total of 4648 states were generated. Each state is represented
with 732 3D points sampled on a regular grid at rest and a consistent topology across states.
For each state, there is also a corresponding rendered 2D image viewing the object from
one of the cameras. Figure 2b shows some samples from this dataset.

4.3. ShapeNet

ShapeNet [10] is a large-scale dataset containing richly annotated 3D CAD models
organized according to the WordNet [20] hierarchy. It contains over 300 M models, 220 M of
which are classified into 3135 WordNet symsets [21]. ShapeNet is made up of many smaller
subsets. A major subset is called ShapeNetCore, which contains manually verified single
clean 3D models. It has two versions, v1 and v2, covering 55 and 57 categories respectively.
Processed meshes and annotations of these models can be downloaded online from the
ShapeNet website [22].

4.4, R2N2 Dataset

Choy et al. [18] took a subset of the ShapeNetCore v1 dataset containing 50,000 models
and 13 categories including plane, bench, cabinet, car, chair, monitor, lamp, speaker, firearm,
sofa, table, phone, and watercraft. For each object, the R2N2 dataset also makes available
its own 24 renderings of the models from different viewpoints in a 137 x 137 resolution,
and the 3D models themselves as meshes, point clouds and voxels.

5. Networks

This section introduces some of the recent methods proposed for reconstructing 3D
surfaces from a single 2D image. These are summarized in Table 3.

5.1. Bednarik et al.

Bednarik et al. [3] introduced a general framework for reconstructing the 3D shape of
textureless surfaces with an encoder—decoder architecture. Using a single RGB image, they
reconstruct the normal maps, depth maps, and triangulated meshes for the objects in the
images. Figure 3 shows an overview of their architecture. This network has an encoder
connected to three separate decoders, one each for reconstructing the normal map, depth
map, and the triangulated mesh. The encoder takes an RGB image of size 224 x 224 x 3 and
creates a latent representation of size 7 X 7 x 256. This encoding is fed to the three decoders.
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Figure 3. The textureless surface reconstruction network [3] (left) consists of an encoder A that takes
a masked image I}, as input and outputs a latent representation A. This is followed by three parallel
decoders @y, ®p, and @ that use A for reconstructing the normal map, depth map, and a 3D mesh
respectively. The indices of all maxpool operations in the encoder are saved when downsampling
(right). These indices are later used for non-linear upsampling in corresponding decoder layers.

The architecture of the encoder and the depth and normal decoders is based on Seg-
Net [23]. The encoder has the same layers as VGG-16 [24] except for the fully convolutional
layers. However, in contrast to VGG-16, the output channels at the convolutional blocks are
32,64,128,256, 264 respectively. As the normal maps and depth maps have the same spatial
size as the input image, the normal and depth decoders are symmetric to the encoder
with both having the same architecture except the number of channels at the final output
layer; the normal decoder has three channels and depth decoder has one channel. Like
SegNet, pooling indices at the max pooling layers in the encoder are saved, and used in
the normal and depth decoders to perform non-linear upsampling. For the mesh decoder,
a smaller network with a single convolutional layer followed by average pooling and a
fully connected layer is used.

The depth decoder is trained by minimizing the absolute difference between the
predicted and ground-truth depth values of the foreground, giving the loss function

o 1 X y|Df - ®p(A(T))),|BY
D

- X7 7 (1)
N n=1 Li B?

where D" is the ground-truth depth map and ®p is the depth decoder, which takes
the encoder output on the masked input image A(I},) and returns the predicted depth
map. The absolute difference is only calculated for the foreground pixels, i.e., where the
foreground mask B" has the value 1, and the sum of absolute differences is averaged over
all the foreground pixels.

To train the normal decoder, the angular distance between the predicted and ground-
truth normal vectors and the length of the predicted normal vectors are both optimized
using the loss function

‘CN — l i Zi (KL” (N?’ N:l) + El (N?))B? (2)
N n=1 Zi B?
with
_ N”N” 1
L,(N?,N") = arccos <1_1) —, 3)
B INFI[INF{ +€ /7
Ly(N?) = (IN}|| = 1)? @

where £, is the angular distance calculated as the arccos of the cosine similarity between the
predicted and ground-truth normal vectors, £; is the term that prefers unit normal vectors,
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and « is a hyperparameter that sets the relative influence of the two terms. Furthermore,
N" is the ground-truth normal map, and the N"” = ®y(A(I%)) is the predicted normal
map. As with depth loss, the normal loss is only calculated for foreground pixels.

Finally, for the triangulated mesh prediction, the mesh decoder optimizes the mean
squared error between predicted and ground-truth vertex coordinates. That is,

I} = @c(A(T)I? ®)

I

1M1
Lo==) =
N =V

As all three decoders take input from the same encoder with the same latent represen-
tation, they can be trained either jointly or separately. When trained jointly, the authors
of [3] show the accuracy of the reconstruction improves because the encoder is able to learn
more robust feature extractors. The textureless dataset described in Section 4.1 was used for
training and testing this network, and experiments showed poor reconstruction accuracy
for 3D meshes compared to normal and depth maps.

The network was trained using the Adam optimizer [25] with a fixed learning rate
of 1073 and ¥ = 10. The authors used Keras [26] with a Tensorflow [27] backend for
implementation and published the source code. At run-time, the network takes 0.016 s to
predict both depth and normal maps together, and 0.01 s when predicting either the depth
or normal map individually.

5.2. Patch-Net

Tsoli and Argyros [4] proposed a patch-based variation for better textureless recon-
struction. They take the network from [3] and change the block sizes to match VGG-16 [24],
ie., 64,128,256, 512, 512. They also remove the mesh decoder, keeping only the normal and
depth decoders. They divide the input image into overlapping patches and get per patch
reconstructions for normal and depth maps. These patches are then stitched together to get
the final normal and depth maps at the input image resolution, and use bilateral filtering
to smooth out inconsistencies that were not resolved by stitching. They call this network
Patch-Net (Figure 4). Since the network expects a 224 x 224 spatial size of the input, each
patch can have that size with the full image being even larger. This allows Patch-Net to get
a higher resolution reconstruction than [3] with better accuracy and generalization. It uses
the loss functions of Equations (2) and (1) on each patch to compute the normal and depth
loss respectively.

The network was trained using the Adam optimizer with a fixed learning rate of 1073.
The authors extended the source code from [3], and trained their network on an Nvidia
Titan V GPU with 12 GB memory. This code is not publicly available, and the authors do
not report inference-time performance.

5.3. HDM-Net

The Hybrid Deformation Model Network (HDM-Net) [5] is another approach for recon-
structing deformable surfaces from a single-view. Like [3] and Patch-Net, HDM-Net uses
an encoder-decoder architecture (Figure 5), but with only one decoder instead. However,
the encoder and decoder are not symmetric to each other in this network. They also have
a smaller depth, with only 9 convolution layers in the encoder instead of 13 convolution
layers in the VGG-16-based architectures. The upsampling in the decoder is performed
using transposed convolutions, as in [28], except at the first decoder layer where a non-
linear max-unpooling operation similar to [3,4,23] is used. HDM-Net directly learns the
3D shape and gives a dense reconstruction of the surface of size 73 x 73 x 3 as a point
cloud. It is trained on the synthetic point cloud data (Section 4.2) of a thin non-rigid plate
undergoing various non-linear deformations, with a known shape at rest. Three different
domain-specific loss functions are used to jointly optimize the output of the network,
with the goal of learning texture-dependent surface deformations, shading, and contours
for effective handling of occlusions.
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(224 x 224 x 3)

(224 x 224 x 32)

Patch-Net

Figure 4. Patch-Net uses Bednarik et al. [3]'s network with only depth and normal decoders. The input
image is divided into overlapping patches, and predictions for each patch are obtained separately.
Patch predictions are stitched to form the complete depth and normal maps .

latent representation
(28 x 28 x 128) —

L L

(56 x 56 x 128) (61 61x 64)
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[ Conv +BN [ DeConv + BN BN Max Unpooling
"1 DeConv only

Figure 5. Overview of the HDM-Net [5] architecture. It has an encoder that takes an RGB image of
size 224 x 224 x 3 and encodes it into a latent representation of size 28 x 28 x 128. This is then used
by the decoder to reconstruct a 3D point cloud of the surface with 73% points.

The first loss function is a common 3D regression loss that computes the 3D error
by penalizing the difference between the predicted 3D geometry S, and ground-truth 3D
geometry S, that is,

1 ¥ / 2
Lsp =~ Y IS, —SullF (6)
N n=1
where ||-|| 7 is the Frobenius norm. For each state n, the squared Frobenius norm of the
difference between predicted and ground-truth geometries is calculated, and then averaged
for all N states.

An isometry prior is used to constrain the regression space using an isometric loss
that penalizes the roughness in the predicted surface by ensuring that neighboring vertices
are located close to each other. The loss function is expressed in terms of the predicted
geometry S, and its smooth version S,

1 _
‘CisoA - N Z Hsn - sn”]—' (7)

with ,
5, = 1exp(_x+3/) S, 8)
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where * is a convolution operator and ¢? is the variance of Gaussian, and x and y stand for
the point coordinates.

The third loss function optimizes the contour shapes by computing a reprojection loss.
The predicted and ground-truth 3D geometries are first projected onto a 2D plane and
before computing their difference as

N
Lon. = 37 LIe(n(S0) —x(x(}) I ©)

where 7 is a differentiable 3D to 2D projection function and 7 is a function that thresholds
all positive values to 1 using a combination of tanh and ReLU. This gives contours as
0-1 transitions. The total loss is computed by adding all three losses with equal weights.

HDM-Net was trained for 95 epochs on a GEFORCE GTX 1080Ti GPU with 11 GB
of global memory. The training relied on the PyTorch framework [29] and took 2 days
to complete. At inference time, the network can reconstruct frames with a frequency of
200 Hz, or 0.005 s per frame. The source code was not published.

5.4. IsMo-GAN

An improved version of HDM-Net is the Isometry-Aware Monocular Generative
Adversarial Network (IsMo-GAN) [6], which introduces two key modifications to achieve
10-30% reduction in reconstruction error in different cases, including reconstruction of
textureless surfaces. First, IsMo-GAN has an integrated Object Detection Network (OD-
Net) that generates a confidence map separating the background from the foreground.
Secondly, IsMo-GAN is trained in an adversarial setting, which is different from the
training of the simple auto-encoder-based networks discussed in previous sections. The OD-
Net is a simplified version of U-Net [28] with fewer layers than the original. It takes a
224 x 224 x 3 RGB image and outputs a grayscale confidence map indicating the position
of the foreground in the image. The confidence map is binarized [30] and the target image
is extracted using Suzuki et al.’s algorithm [31]. The masked-out input image is then passed
to the Reconstruction Network (Rec-Net), which has skip connections like HDM-Net and
has a similar architecture but with fewer layers. Like HDM-Net, the Rec-Net outputs a
73 x 73 x 3 size point cloud. OD-Net and Rec-Net together make up the generator of
IsMo-GAN. The discriminator network consists of four convolution layers followed by a
fully connected layer and a sigmoid function. IsMo-GAN uses the LeakyReLU activation
everywhere, instead of ReLU which was used in all other networks discussed previously.
Figure 6 shows an overview of the IsMo-GAN network.

IsMo-GAN penalizes the output of the Rec-Net with the 3D loss (Equation (6)) and
isometric loss (Equation (7)) from HDM-Net, where the predicted geometry is equal to the
generator output on the input image, i.e., S, = G(I). In addition to this, for adversarial
training, IsMo-GAN uses cross entropy (BCE) [32], defined as

1 M n
Lg= - MN = = log (D(G(I},))) (10)
for the generator G, and
1 M N
Lp= -2 Y Y [log(D(S},)) +1log (1 - D(G(T})))] (11)

m=1n=1

for the discriminator D, where M is the number of states, and N is the number of im-
ages for each state. The adversarial loss is then defined as the sum of the generator and
discriminator losses

Luiw = Lc + Lp, (12)
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and it represents the overall objective of the training which encourages IsMo-GAN to
generate more realistic surfaces. It is a key component that lets IsMo-GAN outperform
HDM-Net [5] by 10-15% quantitatively as well as qualitatively on real images. The adver-
sarial loss makes up for the undesired effects of the 3D loss and the isometry prior by acting
as a novel regularizer for the surface deformations. This network is trained and evaluated
on the same dataset as HDM-Net, as well as on the 3D mesh data of the cloth object from
the subset of the Bednarik et al. [3]’s real textureless surfaces dataset.

The OD-Net and Rec-Net were both trained separately for 30 and 130 epochs respec-
tively, using the Adam optimizer with a fixed learning rate of 10~ and a batch size of 8.
IsMo-GAN was implemented using PyTorch, but the source code was not made public. It
takes 0.004 s to run an inference, which is a 20% improvement over HDM-Net.

predicted
oint cloud
: 2 Liso

Point Cloud i , -
—————————— > pens
Generator 5 | Discriminator || Lady.
‘; L3p 7\
.o (73x73x3) | i
groundtruth
. (73x73x3) |

Figure 6. Overview of IsMo-GAN [6]. The generator network accepts a masked RGB image, seg-
mented by the object detection network (OD-Net), and returns a 3D point cloud. The output and
ground-truth are fed to the discriminator which serves as a surface regularizer.

5.5. Pixel2Mesh

Pixel2Mesh [7] is a deep learning network that reconstructs 3D shape as a triangulated
mesh from a single RGB image. It was proposed in 2018 [7] and is one of the earliest methods
for monocular 3D reconstruction. Its primary idea is to use graph-based convolutions [33]
to regress the mesh vertices. The network is made up of two parts: a VGG-16-based feature
extractor and a graph-based convolution network (GCN). The feature extractor network
takes a 224 x 224 image to reconstruct. Additionally, the GCN takes an ellipsoid mesh
with 156 vertices and 462 edges. The feature extractor network then feeds the extracted
perceptual features at different stages to the GCN in a cascaded manner, which refines the
initial mesh in a coarse-to-fine manner by adding details at each stage. The GCN finally
outputs a mesh with 2466 vertices (Figure 7). Each mesh deformation block in the GCN
is made of 14 layers of graph-based convolutions with ResNet-like [34] skip connections.
Their job is to optimize the position of existing vertices to get a mesh matching the object
shape. This is followed by a graph unpooling layer that interpolates the mesh to increase
the number of vertices.
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Figure 7. The Pixel2Mesh [7] network consists of two parallel networks that take an RGB image and
a coarse ellipsoid 3D mesh, and learn to regress the 3D shape of the object in the image. The key con-
tribution is the graph-based convolutions and unpooling operators in the bottom half of the network.

Pixel2Mesh combines four different loss functions to optimize its weights. These in-
clude the Chamfer loss [35] to constraint the location of mesh vertices, a normal consistency
loss, a Laplacian regularization to maintain the neighborhood relationships when deform-
ing the mesh, and an edge length loss to prevent outliers. The total loss is then calculated
as a weighted sum of the individual losses. The network is trained and evaluated on the
R2N2 subset [18] of the ShapeNet dataset [10], which consists of synthetically rendered
images and 3D mesh ground truth. The network is also qualitatively evaluated on the
Stanford Online Products dataset [36], which contains real-world images of objects without
any 3D labels.

Pixel2Mesh was implemented using Tensorflow and the official source code is available
on GitHub. It used the Adam optimizer with a weight decay of 175 and a batch size of
1 to train for 50 epochs, with the initial learning rate of 37°. The training took 72 h on
Nvidia Titan X GPU with 12 GB memory, and the trained network can reconstruct a mesh
containing 2466 vertices in 15.58 ms.

5.6. Salvi et al.

A new category of networks is adding self-attention modules [37,38] to 3D reconstruc-
tion networks. Salvi et al. [8] proposed one such network, which improves Occupancy
Networks (ONets) [39] by adding self-attention to them. ONets consist of three parts:
a feature extractor, a decoder, and a continuous decision boundary function, called the
occupancy function o : R — {0, 1}, that classifies each point from the space as whether
or not it belongs to the surface. This provides a general 3D representation that allows
extracting meshes at any resolution. ONets are an extension of the autoencoders discussed
in previous sections, where the encoders functioned as feature extractors, followed by a
decoder to reconstruct the 3D shape.

In the networks discussed previously as well as ONets introduced in [39], the feature
extractors are based on CNNs. Standard CNNs work with local receptive fields and need
very deep architectures to successfully model global dependencies. This is because the
features they learn are relatively shallow and do not capture the long-range correlations
in natural images. To address this limitation, self-attention modules were introduced
that calculate the response at a given position as a weighted sum of the features at all
positions. This allows them to efficiently model global dependencies with much smaller
networks than traditional CNNs. Salvi et al. [8] show that adding self-attention modules at
different locations in the feature extractor can improve the performance of an Occupancy
Network. When used earlier in the network, self-attention allows the network to focus
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more on finer details. When used later in the network, it allows the network to extract better
structural features. Figure 8 depicts one such feature extractor proposed by [8], showing a
ResNet-18 [34] network with four self-attention modules.

feature vector

N N (1x 1 x 256)
AN IR
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Figure 8. The “attentioned” ResNet-18 [34] network with four self-attention blocks [37] added to it.
This encoder network is used by [8] to extract image features, which are fed to a decoder with five
Conditional Batch Normalization blocks followed by an occupancy function.

They train their network on the synthetic R2ZN2 dataset [18] (see Section 4.4) using
an ensemble approach, where the ensemble is made up of one specialized ONet for each
object type. This is supported by their experiments which show that self-attention-based
ONets have better results if trained for each category separately. The network was also
qualitatively evaluated on a subset of the Stanford Online Products dataset [36], which
contains real images, and showed a more consistent and better reconstruction of meshes
when compared to existing approaches. Self-attention in decoders was not used due to
computational limitations.

Adam optimizer with a learning rate of 10~ and weight decay of 1~ was used for
training the network for 200 K steps. All other hyperparameters were kept the same as
in [39]. The source code for this network is not available.

5.7. VANet

Another network that uses the attention mechanism is the View Attention Guided
Network (VANet) [9]. It uses channel-wise view attention and a dual pathway network for
better reconstruction of occluded parts of the objects, and defines a unified approach for
both single and multi-view reconstruction. As shown in Figure 9, the proposed architecture
consists of a main pathway and an auxiliary pathway. The main path uses the first view of
a scene to reconstruct a 3D mesh. If any more views are available, they are then fed to the
auxiliary path, which aligns them with the main view and uses the additional information
from these new views to refine the reconstructed mesh. The main view features after the
encoder are pooled along the spatial dimensions using global average pooling to get a
channel descriptor of shape 1 x 1 x C. This is then sent to a system of fully connected layers
followed by a sigmoid function to generate a channel-wise attention map «,,;,. These
attention weights are then used to re-calibrate the computed feature maps. If auxiliary
views are available, they are used to enhance the less-visible parts in the original view.
A max pooling operation is used to select permutation invariant auxiliary view features,
which are multiplied by 1 — «;,,;, and finally added to the main view features. These are
then sent to a vertex prediction module to generate the reconstructed 3D mesh. The vertex
prediction module is based on the mesh deformation module of Pixel2Mesh [7].

VANet is trained using the same four loss functions as Pixel2Mesh, and evaluated
on the R2N2 subset [18] of the ShapeNet dataset [10]. Using the Adam optimizer with an
initial learning rate of 2 x 10~° and a batch size of 1, the network was trained for 20 epochs.
It was implemented in Tensorflow but the source code was not published.
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Figure 9. Overview of VANet [9], a unified approach for both single and multi-view reconstruction

with a two-branch architecture.

5.8. 3D-VRVT

Vaswani et al. [37] initially proposed the Transformer architecture for natural language
processing (NLP) tasks. These methods used the self-attention mechanism to let the network
understand longer sequences of text to compute a representation for the whole sequence.
Salvi et al. [8] used the self-attention mechanism from Transformers in their “attentioned”
ResNet encoder to extract better features for 3D reconstruction. However, their input is
not sequential (Section 5.6). Dosovitskiy et al. [40] proposed a novel architecture called
Vision Transformers that breaks down images into patches and treats those patches as part
of a sequence. Using a linear projection, vector embeddings for each patch are obtained.
This sequence of patch embeddings is then fed to a Transformer network. Inspired by
this, Li and Kuang [41] proposed a Vision Transformer-based network (Figure 10) for
reconstructing voxels from a single image. They call this network 3D-VRVT.

3D-VRVT uses a Vision Transformer as an encoder, that takes a 224 x 224 RGB image
as input and produces a feature vector of size 768 which is fed to a decoder network.
The decoder network has a fully connected layer that upscales the feature vector to 2048
and then reshapes it into a 3D tensor of shape 256 x 23. This is followed by four 3D
deconvolutions with a kernel size of 4, stride 2, and padding 1 that iteratively refine the 3D
grid until it has the resolution 32 x 323. Each deconvolution operation is also followed by a
3D batch normalization and a GELU activation function. Then, a final deconvolution with
kernel size 1 is applied to get a grid of 1 x 323. This is passed through a sigmoid activation
function before getting the final voxel output.

Table 3. Summary of all 3D reconstruction networks discussed in this paper.

Literature Architecture Output Method Dataset Type Runtime [s]
. based on
Bednarik et al. [3] Zﬁicﬁf};ﬁ;:hree normal map, depth ~ SegNet [23] with real, deformable, 0.016
(2018) decoders map, and 3D mesh  VGG-16 [24] textureless surfaces ’
backbone
converts image to
. patches, gets 3D
Patch-Net [4] VAE with one normal and depth ~ shape of patches real, deformable,
encoder and two -
(2019) decoders maps using [3], textureless surfaces

and stitches them
together
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Table 3. Cont.

Literature Architecture Output Method Dataset Type Runtime [s]
simple
autoencoder with
Hybrid skip connections svnthetic
Deformation VAE with one like ResNet [34], dy form. t;l
Model Network encoder and one 3D point cloud combines 3D weel(l)- texiuree/ d 0.005
(HDM-Net) [5] decoder regression loss surfaces
(2018) with an isometry
prior and a contour
loss
integrates an
Isometry-Aware OD-Net to svnthetic
Monocular GAN with two segment d)é formal;le
Generative sequential VAEs as foreground, well-tex ture, d
Adversarial a generator and a 3D point cloud and trains in an surfaces and real 0.004
Network simple CNN as adversarial setting deformable !
(IsMo-GAN) [6] discriminator along with 3D loss textureless s:ur faces
(2019) and isometry prior
from [5]
feature extractor
two-lane network based on
. with a feature VGG-16 [24], feeds  synthetic, rigid,
le())(f gMeSh 7] extractor and a 3D mesh cascaded features well-textured 0.016
graph based mesh to the GCN that surfaces
predictor (GCN) uses graph
convolutions
uses channel-wise
two-lane feature .
attention and
extractor for both . .
sinele or information from
View Attention mu%ti—view all available views  synthetic, rigid,
Guided Network reconstruction 3D mesh to extract features,  well-textured -
(VANet) [9] (2021) ! which are then sent  surfaces
followed by a -
7 to a Pixel2Mesh-
mesh prediction
based [7] mesh
network -
vertex predictor
ResNet-18 [34]
VAE based on ::ff?:tf;rmgg synthetic, rigid
Salvi et al. [8] ONets [39] with parametric Y s T1gid,
. . modules, followed  well-textured -
(2020) self-attention [37] representation
in encoder by a decoder and surfaces
an occupancy
function
encoder based on
Vision .
Transformers [40] both synthetic and
3D-VRVT [41] encoder-decoder voxel grid followed by a ’ real, rigid, 0.009
(2021) architecture & y well-textured ’

decoder made up
of 3D
deconvolutions

surfaces

The network was trained on the ShapeNet dataset. It used an SGD optimizer and a
warm-up cosine annealing learning rate with a momentum of 0.9. The learning rate ranged
between 27> and 273. The training relied on a PyTorch implementation and continued for
600 epochs on Nvidia Titan V GPU, including 10 warm-up epochs. At test time, it takes

8.82 ms to reconstruct an object with this network.
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Figure 10. 3D-VRVT takes one image as input and uses a Vision Transformer encoder to extract a

feature vector. This is then fed to a decoder that outputs the voxel representation of the object.

6. Comparison

We described different 3D reconstruction methods in this paper, which were trained

by their authors on various datasets and evaluated on different error metrics. In this
section, we first formally define the various error metrics used for the evaluation of 3D
reconstruction methods. We then describe comparable experiments on similar datasets by
different networks, and report and compare the performance of those methods.

6.1. Metrics

1.

Depth Error (Ep): The depth error metric is used to compute the accuracy of depth
map predictions. Let Ok and @y be the point clouds associated with the predicted
and ground-truth depth maps respectively, with the camera matrix K. To remove the
inherent global scale ambiguity [42] in the prediction, O is aligned to ground-truth
depth map D’ to get an aligned point cloud O as

Ok = Q(Ok, D’) (13)
where () is the Procrustes transformation [43]. Then, the depth error £p is calculated as

o Lill©k — Ok|[B

L

| LB}

(14)

Note that the foreground mask B in the equation ensures that the error is only calcu-
lated for foreground pixels. Smaller depth errors are preferred.

Mean Angular Error (Epr4): The mean angular error Epr4r metric is used to calculate
the accuracy of normal maps, by computing the average difference between the
predicted and ground-truth normal vectors. The angular errors for all samples are
calculated using Equation (3), and then averaged for all samples. Smaller angular
errors indicate better predictions.

Volumetric IoU (E;01): The Intersection over Union (IoU) metric for meshes is calcu-
lated as the volume of the intersection of ground-truth and predicted meshes, divided
by the volume of their union. Larger values are better.

Chamfer Distance (£cp): Chamfer distance is a measure of similarity between two point
clouds. It takes the distance of each point into account by finding, for each point in a
point cloud, the nearest point in the other cloud, and summing their squared distances.

Y rrunlleyn2 (15)

xe@ ¥

2
CD |®| Z mlon y” + |®
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where ||-||2 is the square of Euclidean distance. A smaller CD score indicates a bet-
ter value.

5. Chamfer-L1 (Ecp,): The Chamfer distance (CD) has a high computational cost for
meshes because of a large number of points, so an approximation called Chamfer-L1
is defined. It uses the L1-norm instead of the Euclidean distance [8]. Smaller values
are preferred.

6.  Normal Consistency (Enc): The normal consistency score is defined as the average
absolute dot product of normals in one mesh and normals at the corresponding
nearest neighbors in the other mesh. It is computed similarly to Chamfer-L1 but the
L1-norm is replaced with the dot product of the normal vectors on one mesh with
their projection on the other mesh [8]. Normal consistency shows how similar the
shapes of two volumes are, and is useful in cases such as where two meshes might
overlap significantly, giving a high IoU, but have a different surface shape. Higher
normal consistency is preferred.

7. Earth Mover’s Distance (Eppyp ):

The Earth Mover’s Distance computes the cost of transforming one one pile of dirt,
or one probability distribution, into another. It was introduced in [44] as a metric for
image retrieval. In case of 3D reconstruction, it computes the cost of transforming the
set of predicted vertices into the ground-truth vertices. The lower the cost, the better
the prediction.

8. F-score (Ef):

The F-score evaluates the distance between object surfaces [2,45]. It is defined as the
harmonic mean between precision and recall. Precision measures reconstruction accu-
racy by counting the percentage of predicted points that lie within a certain distance
from the ground truth. Recall measures completeness by counting the percentage
of points on the ground truth that lie within a certain distance from the prediction.
The distance threshold 7 can be varied to control the strictness of the F-score. In the
results reported in this paper, T = 104.

6.2. Experiments

The RGB-D dataset consisting of normal and depth maps of real data [3] was used
by Bednarik et al. and Patch-Net in their experiments. This dataset contains five different
textureless surfaces. Experiments were conducted where the network was trained with
samples from one surface and then evaluated on samples from another surface. For example,
in the experiment “cloth-hoody”, the network was trained on the cloth object and evaluated
on the hoody object. The depth and angular errors for these experiments are summarized
in Table 4. Patch-Net outperforms [3] in almost all experiments on both the metrics.

Table 4. The textureless surfaces dataset [3] is used to compare the performance of different depth
and normal map reconstruction methods. 128 x 128 size patches were used in the Patch-Net. Bold
values show the best results for each metric.

Metric Ep (mm) | Emak (degrees) |
Method Bednarik et al. [3] Patch-Net [4] Bednarik et al. [3] Patch-Net [4]
cloth-cloth 17.53 £ 5.50 12.80 +-4.45 17.37 £12.51 14.72 +3.39
tshirt-tshirt 17.18 + 18.58 13.70 + 3.83 18.07 £12.71 18.63 +4.43
cloth-tshirt 26.26 = 7.72 22.74 +7.20 25.74 4 15.81 24.29 4-3.80
cloth-sweater 38.93 +-10.36 30.10 4= 10.00 31.52 +19.07 27.94 +-4.79
Cloth—hoody 43.22 +24.81 31.09 +8.73 32.54 +21.15 29.73 +£2.52
cloth-paper 24.16 +7.15 14.53 +-4.48 35.53 +22.16 24.52 +5.96

The HDM-Net and IsMo-GAN networks were evaluated on the synthetically generated
point cloud dataset consisting of a thin, deforming plate with various textures and under
different illuminations [5]. The 3D error &;p and its standard deviation over a set of frames



J. Imaging 2022, 8, 225

18 of 23

&y are reported in Table 5. Results are reported for each of the four textures in the network,
under a constant illumination.

Table 5. Comparison of different point cloud reconstruction methods using the synthetic thin plate
dataset [5] under one illumination. Bold values show the best results for each metric.

Metric &Esp (mm) | &y (mm) |
Method HDM-Net [5] IsMo-GAN [6] HDM-Net [5] IsMo-GAN [6]
endoscopy 48.50 33.60 13.50 14.80
graffiti 49.90 33.30 22.00 20.80
clothes 48.90 35.30 26.40 24.20
carpet 144.20 110.50 26.90 26.80
mean 72.88 53.18 22.20 21.65

For a small subset of the cloth object in the textureless dataset, ground-truth 3D meshes
are also provided. For this cloth data, the 3D error is reported for [3], HDM-Net, and IsMo-
GAN. In addition, the authors of [6] removed the textures from surfaces in the synthetic
thin plate data to create another textureless data. They report the 3D error on this data
for HDM-Net and IsMo-GAN. We summarize these results for textureless mesh and point
cloud reconstruction in Table 6.

Table 6. Comparison of mesh reconstruction from textureless data. As can be seen, IsMo-GAN
outperforms [3] and HDM-Net on the real textureless cloth data by 26.5% and 10.5% respectively,
and it outperforms HDM-Net on the synthetic textureless thin-plate data by 31.9%. Bold values show
the best results.

Metric Esp (mm) |

Method Bednarik et al. [3] HDM-Net [5] IsMo-GAN [6]

cloth [3] 21.48 17.65 15.79
plate [5,6] - 99.40 67.70

For most other experiments, the Choy et al. [18] subset of the ShapeNet dataset [10],
described in Section 4.4, is used. For each of the 13 objects in this dataset, various error metrics
are reported for the task of mesh reconstruction. Table 7 summarizes these results, reporting
the F-score, Earth Mover’s Distance, and the Chamfer Distance metrics. Salvi et al. [8] report
the IoU, Chamfer-L1, and normal consistency metrics on the same dataset. These results are
summarized in Table 8.

Table 7. Comparison of (A) Pixel2Mesh [7] and (B) VANet [9] on the Choy et al. [18] subset of the
ShapeNet dataset [10]. VANet outperforms Pixel2Mesh in all metrics, with 10-40% improvement.
Bold values show the best results for each metric.

Metric Er (%) 1 Eemp Ecp
Method A B A B A B
plane 71.12 77.01 0.579 0.486 0.477 0.304
bench 57.57 67.69 0.965 0.770 0.624 0.362
cabinet 60.39 63.30 2.563 1.575 0.381 0.327
car 67.86 69.53 1.297 1.185 0.268 0.235
chair 54.38 60.74 1.399 0.957 0.610 0.443
monitor 51.39 60.35 1.536 1.269 0.755 0.459

lamp 48.15 56.26 1.314 1.086 1.295 0.879
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Table 7. Cont.

Metric Er (%) 1 Eemp 4 Ecp 4
Method A B A B A B
speaker 48.84 53.49 2.951 2.283 0.739 0.562
firearm 73.20 77.24 0.667 0.473 0.453 0.333
sofa 51.90 56.83 1.642 1.376 0.490 0.400
table 66.30 70.78 1.480 1.173 0.498 0.334
phone 70.24 72.27 0.724 0.573 0.421 0.298
watercraft 55.12 62.12 0.814 0.718 0.670 0.450
mean 59.73 65.20 1.380 1.071 0.591 0.414

Table 8. Comparison of (A) Pixel2Mesh [7], (C) Salvi et al. [8] and 3D-VRVT [41] on the Choy et al. [18]
subset of the ShapeNet dataset [10]. With self-attention after ResNet layers, Ref. [8] improves IoU
by 25%, normal consistency by 8.9%, and reduces the average Chamfer-L1 distance approximately
11 times. Ref. [41] further improves the IoU by 9% with a Vision Transformer architecture containing
multi-headed self-attention. Bold values show the best results for each metric.

Metric Erou T Ecp, 4 Enc T

Method A C D A C A C
plane 0.420 0.645 0.608 0.187 0.011 0.759 0.868
bench 0.323 0.493 0.563 0.201 0.016 0.732 0.813
cabinet 0.664 0.737 0.794 0.196 0.016 0.834 0.876
car 0.552 0.761 0.855 0.180 0.014 0.756 0.855
chair 0.39 0.534 0.553 0.265 0.021 0.746 0.829
monitor 0.490 0.520 0.555 0.239 0.026 0.830 0.863
lamp 0.323 0.379 0.436 0.308 0.045 0.666 0.722
speaker 0.599 0.660 0.725 0.285 0.028 0.782 0.839
firearm 0.402 0.527 0.597 0.164 0.012 0.718 0.804
sofa 0.613 0.689 0.716 0212 0.019 0.820 0.866
table 0.395 0.535 0.617 0218 0.019 0.784 0.861
phone 0.661 0.754 0.805 0.149 0.012 0.907 0.937
watercraft 0.397 0.568 0.604 0212 0.018 0.699 0.801
mean 0.480 0.600 0.654 0216 0.019 0.772 0.841

7. Discussion

There are many different methods for 3D reconstruction from 2D images. In this
paper, we discussed several of them—including those that use depth maps, normal maps,
point clouds, surface meshes, or volumetric data. Each of these approaches has its own
advantages and disadvantages, but no one method is perfect. This makes the task of 3D
reconstruction an ill-posed problem, which requires careful consideration when choosing
a method to use. In single-view 3D reconstruction, this becomes even more challenging
because the network has to reconstruct the shape of surfaces that may not even be visible
in the image at all.

We discussed two methods that reconstruct the 3D shape of textureless surfaces.
In general, the more distinctive textures an image contains, the easier it is to reconstruct in
3D. With only a single RGB image—that contains surfaces with no distinctive textures—
dense reconstruction in 3D can be very difficult. That is why Bednarik et al. [3] and
Patch-Net only reconstruct the so-called 2.5D shape in form of normal and depth maps.
They both use a very similar network architecture, but the authors of [4] use a patch-based
strategy instead of reconstructing the whole image together. By doing so, they are able
to reduce the depth error by 25.3% and the mean angular error of the surface normals
by 13.0%. Later, Shimada et al. [6] used a subset of the same textureless surfaces data to
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directly reconstruct 3D meshes. They report results for HDM-Net and their own IsMo-GAN
network, showing 17.8% and 26.5% improvement respectively over [3]’s original textureless
surfaces method for meshes.

HDM-Net, like [3], is an encoder-decoder network and has a similar VGG-16 backbone
but fewer convolutional layers. The major difference in the encoder is the ResNet-like
skip connections. In [3], the decoder consisted of only one convolutional layer, followed
by pooling and a fully connected layer. HDM-Net uses a much larger decoder with
transposed convolutions for upsampling. Finally, while [3] for its mesh decoder used a
simple mean squared error loss function, HDM-Net combines that with two more loss
functions that enforce isometry and contour constraints. The skip connections, a larger
decoder, and domain-specific loss functions help HDM-Net get a significantly improved
reconstruction compared to [3]. IsMo-GAN takes the isometry constraints from HDM-Net
and uses an adversarial training setting to improve the mesh reconstruction accuracy for
textureless surfaces even further.

HDM-Net and IsMo-GAN also evaluate their methods on a synthetic dataset of a
deforming plate with a variety of textures. In addition to the adversarial training, IsMo-
GAN’s integrated Object Detection Network and the choice of LeakyReLU activation
instead of ReLU help it outperform HDM-Net when reconstructing 3D point clouds by
10-30% in various experiments.

Next, we talked about two methods that reconstruct 3D meshes using Choy et al. [18]’s
rendered images of the ShapeNet dataset; Pixel2Mesh [7] and VANet. Both use a dual-
lane architecture with separate roles for each lane. Pixel2Mesh has one lane for feature
extraction, which feeds cascaded input to the other lane that performs the reconstruction.
On the other hand, VANet’s two lanes are both for feature extraction, and have shared
weights. VANet can be used for both single and multi-view reconstruction, and the first lane
extracts features from the main view while the second from all auxiliary views. The feature
vectors extracted from both lanes are concatenated and sent to another module that has
an architecture similar to Pixel2Mesh’s mesh reconstruction lane. This uses graph-based
convolutions to generate a mesh from extracted features. By primarily improving their
feature extractor, which uses channel-wise attention, VANet was then able to use the same
reconstruction network as Pixel2Mesh to get up to 40% reduction of the average Chamfer
distance error (see Table 7).

Finally, we discussed Salvi et al. [8]’s attentioned occupancy network for reconstructing
the 3D shape as a continuous function. The motivation for this type of output is to have
a standard method for efficiently representing a 3D shape. In this network, an encoder
with ResNet-18 backbone is augmented with several self-attention blocks to improve
comprehension of global dependencies in the input images. This is then passed to a
decoder network and an occupancy function to get the final output, which can then be
used to obtain a mesh at any resolution. The mesh output is compared to Pixel2Mesh
using several metrics, and Salvi et al. [8] get 11 times smaller average Chamfer-L1 distance
than Pixel2Mesh. No metrics directly comparing this method with VANet are reported,
but as this also uses the same ShapeNet dataset, and the reported Chamfer-L1 distance
is a variant of the standard Chamfer distance reported by VANet, it can be assumed that
self-attention in VANet’s encoder would improve reconstruction accuracy of that network,
as well. However, as the authors of [8] showed in some of their experiments, the benefit
from self-attention modules was highest when used at the early layers of the encoder as
opposed to the later layers.

8. Conclusions

This paper reviewed several methods for monocular 3D reconstruction and concluded
that it remains an ill-posed problem. This is primarily because of a lack of a standardized,
one-size-fits-all method of representing 3D shapes, as well as the non-availability of stan-
dard datasets that cover the whole range of objects to be reconstructed. For example, while
there are a lot of large-scale synthetic datasets, real-world 3D datasets are rare and smaller
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on average. This is because of the inherent difficulty of capturing real 3D data. When it
comes to textureless surfaces, there are even fewer datasets available, and those that are
available only contain RGB-D data. Standard datasets for deformable textureless surfaces
with ground-truth point clouds or meshes provided are not available. This is why most
textureless reconstruction methods only reconstruct depth maps or surface normals.

As discussed before, most networks in 3D reconstruction are made up of encoder-
decoder architectures, which in turn are based on semantic segmentation networks such as
SegNet and UNet. Various enhancements in these networks have shown promise, including
the use of domain-specific losses that enforce various shape constraints on the surfaces.
An example of this is the isometry prior used by some networks. Other networks have
shown that using ResNet-like skip connections improves the representation power of the
network, giving better results. Attention-based methods have also shown good results,
with self-attention modules when compared with ResNet'’s skip connections, improving
the performance of previous methods manifolds. However, self-attention is an expensive
process that cannot be practically used everywhere in the encoder-decoder networks.
Instead, their use is limited to the earlier layers of the encoder. Like self-attention, the use
of max pooling indices from the encoder layers in the decoder layers is also an expensive
process as it requires additional memory at each forward pass. Some networks have
successfully used interpolation and transposed convolutions for upsampling, eliminating
the need for pooling indices from the encoder. Using adversarial training in a GAN-based
network also showed significantly better results. The GAN-based network also performed
significantly faster than all other methods reviewed in this paper, generating point clouds
at 250 Hz frequency, thus making it suitable for runtime 3D reconstruction. Transformers
are also gaining traction for vision tasks, with one network using Vision Transformers for
single-view 3D reconstruction. This network shows promising results in reconstructing a
low-resolution voxel grid, and improves the IoU on the ShapeNet dataset by 9% compared
to other state-of-the-art methods.

In the future, 3D reconstruction research can benefit from more datasets, especially
for textureless surfaces and from real-world objects. For depth maps and surface normals,
simple RGB-D cameras such as Microsoft Kinect may be used, but it is generally very
challenging to collect real-world datasets of the same size as can be generated synthetically.
Collecting ground-truth point clouds or 3D meshes from real-world objects poses an even
bigger challenge because of the more specialized equipment required. Synthetic datasets
focusing on textureless surfaces, in particular, and including both deforming and rigid
surfaces, can be generated using software like Blender. In addition to dataset creation,
methods to deal with the bottlenecks created by self-attention modules and pooling indices
also need to be studied. The full potential of Transformers in the context of single-view 3D
reconstruction is also still unknown. Finally, the use of adversarial training and generator-
discriminator networks for 3D reconstruction needs to be further explored.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-Dimensional

3D Three-Dimensional

CAD Computer-Aided Design

CNN Convolutional Neural Network
GAN Generative Adversarial Network
NLP Natural Language Processing
RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

RNN Recurrent Neural Network
VAE Variational Autoencoder

vOC Visual Object Classes
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