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Abstract: Increasingly complex numerical analyses require more and more precise, accurate and
varied input parameters in order to achieve results that are as realistic and reliable as possible.
Therefore, experimental analyses for material parameter identification are of high importance and a
driving force for further developments. In this work, opportunities by applying fractal analysis to
optical measurement data of a shear cutting process are investigated. The fractal analysis is based
on a modification of the concept of scale-space filtering. Scale exponent fields are calculated for the
image sequences of the shear cutting process that are taken by a mobile microscope. A least-square
approximation is used for the automated evaluation of the local scale exponent values. In order to
determine the change of the scale exponent of individual material points, a digital image correlation
is applied.
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1. Introduction

Numerical procedures, such as simulations or data-driven models, are increasingly
utilized for the evaluation and the design of complex systems and components, which
can no longer be treated analytically [1–3]. In order to obtain meaningful results from the
simulations and numerical models, it is important to understand the underlying system
and to set the boundary conditions appropriately. In this context, the applied material
properties are of high importance [4]. In most cases, the material behavior is determined
by experiments, e.g., tensile or bending tests [5]. For the purpose of recording the mea-
surement data, optical measurement systems are used increasingly. The video sequences
provided by these optical systems open up numerous new possibilities for evaluation
to extract additional information. Most of them, including fractal analysis, have not yet
been exhausted. Fractal Analysis in specific is mostly used in static analysis, e.g., surface
topology in the context of fracture [6–9].

1.1. The Concept of Fractals

Fractal image analysis is based on the concept of fractals established by Mandel-
brot [10]. Fractals are self-similar objects that are too irregular to be described by classical
Euclidean geometry. Instead, they have a broken rational dimension—the fractal dimension,
being a generalization of the Euclidean concept of dimension [11]. In general, a subdivision
into mathematical and natural fractals is made [12]. Mathematical fractals, such as the
Koch curve or the Cantor set, are mathematical structures formed by recursive functional
rules [13]. The result is an object with details on all scales. In contrast to mathematical
fractals, natural fractals describe repeating pattern of real world entities that are not strictly
self-similar and hence cannot be defined by recursive functional rules. Their self-similarity
exists in a statistical sense and usually extends over a limited range of scales [14,15].
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1.2. Fractal Dimension

The fractal dimension D f describes the change of the mass m = 1
n(l) of the object with

scaling l. n(l) can be associated with the number of self-similar shapes at scaling l. The
designation mass refers to all the terms length, area and volume. The fractal dimension of
mathematical fractals can be easily calculated by applying the function rule

D f = −
ln(n(l))

ln(l)
(1)

according to Mandelbrot [10], however this formula does not apply to natural fractals.
Due to the statistical self-similarity of natural fractals, approximation approaches, such as
differential box-counting [16,17] and probability-based box-counting [18,19], the blanket
method [10,20], Brownian motion [18,21] and scale-space filtering [14,22–24], are needed
for the determination of their fractal dimension.

Since real objects, as well as their images, have only a limited resolution [25], which
is either determined by the object itself [15] or limited by the sampling rate of the image,
their scaling behavior is finite. However, many of the above-mentioned approaches do not
consider the lower scale limit given by the limited resolution, although a consideration
of the scale behavior or the fractal dimension below this limit is no longer meaningful.
On the contrary, it can even lead to an incorrect calculation of the scale behavior. Scale-
space filtering offers the possibility to determine and set the scale limits of a structure.
Subsequently, the scale behavior within these limits can be analyzed, and an erroneous
evaluation can be prevented [14]. Furthermore, it offers the possibility of analyzing gray-
scale images in contrast to simple logical data and thus prevents a significant loss of
information through conversion to binary images.

2. Scale Space Filtering

In the context of image analysis, the term scale space refers to a family of images
representing the original image on different scales [25]. To achieve this representation,
the image is gradually convolved with a parameterized filter kernel. After the smoothing
operation, the scale behavior is extracted from the resulting signal characteristics with
respect to the filter parameters. In order to obtain meaningful results, the convolution
cores used must meet certain requirements: the smoothed signal should adopt well-defined
values for the limit values of the scale parameter 0 and ∞. Further, extreme values that
occur once must not disappear within finer scales. According to reference [22], the Gaussian
bell function is the only function that fulfills these criteria for one-dimensional signals.
Reference [23] cites the proof for the uniqueness of the Gaussian function also for two-
dimensional signals. For discrete images, however, there is no guarantee that the previously
described requirements will be met. In some cases, the discrete convolution operation can
also lead to violations of these conditions [25]. This should be kept in mind when applying
scale-space filtering to discrete images.

Using the Gaussian filter for the smoothing process, the standard deviation σ, also
known as filter width, controls the size of the filter core and thus the filter effect. By varying
σ, the image signal W is filtered to different degrees Wσ and can then be analyzed on
different scales [26,27]. The scale-space evaluation is based on the gray value intensity
surface spanned by the discrete intensity values of the individual pixels for various filter
parameters σ [14,24]. To calculate the surface area

A(σ) =
∫ ∫ √

1 +
(

∂Wσ

∂x

)2

+

(
∂Wσ

∂y

)2

dydx, (2)

the partial derivatives ∂Wσ
∂x and ∂Wσ

∂y of the filtered image Wσ with respect to the horizontal
and vertical dimensions of the image plane x and y are used. Determining the surface
content A(σ) for different filter parameters σ according to Formula (2), a relation between
the surface and the used filter level can be set up. Plotting the relation of the surface content
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A(σ) with respect to the corresponding filter parameters σ in a double logarithmic plot, as
it is shown in the leftmost plot of Figure 1, there is a region that shows an almost linear
behavior for images depicting fractal structures. The slope of this region gives an indicator
of the scale behavior of the underlying structure. Furthermore, the relation, also known as
the Richardson plot, shows limit values for σ→ 0 and σ→ ∞ like it was demanded from
the requirements of the convolution core.

−2 0 2

13

14

15

log(σ)

lo
g(

A
(σ
))

−2 0 2

−4

−2

0

log(σ)
∂ ∂
σ

lo
g(

A
(σ
))

−2 0 2

0

500

1,000

log(σ)

∂2

∂
σ

2
lo

g(
A
(σ
))

Figure 1. First- and second-order derivatives of the area relation calculated by FDM.

2.1. Scale Exponent Approximation

According to reference [24], the scale exponent is defined by the slope of the surface
relation in the scale range. Hence, for automatic determination of the scale exponent, the
derivation of the double-logarithmic surface-relation is necessary. Utilizing of the finite
difference method (FDM) for the derivation leads to significantly increased noise. An
example of the noise amplification is given by Figure 1, depicting the first and second
derivations of a surface-area relation, as it was achieved by Formula (2). A promising
alternative is the approximation of an analytic function to the data points of the surface-
area relation since the analytical derivations do not suffer from noise amplifications, and
meaningful results can be obtained. Here, a sigmoidal function

f (x) = a · 1
1 + e−b(x−c)

+ d (3)

with the parameters a, b, c and d is conducted for the nonlinear least squares approximation.
The parameter a scales the function. By varying the parameter b, the slope and thus the
width of the transition region of the sigmoid function can be adjusted. The parameter c
defines the horizontal shift of the turning point, compared to x = 0. The vertical shift
is determined by parameter d. Compared to using FDM, it is possible to calculate the
derivations from the approximation of the parameterized sigmoid function analytically by

∂ f (x)
∂x

= ab · eb(x−c)

1 + eb(x−c)2 and (4)

∂2 f (x)
∂x2 = −ab2 · (e

b(x−c) − 1)eb(x−c)

(1 + eb(x−c))3
. (5)

In this way, the amplification of the high-frequency components of the signal is
eliminated. The approximation of the surface relation that was numerically derived in
Figure 1 is shown in Figure 2 together with its first and second analytically calculated
derivatives. In order to obtain repeatable estimates of the scale exponent, the slope at
the turning point of the sigmoid approximation is applied, as it can be calculated by
Equations (4) and (5).
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Figure 2. First- and second-order analytically calculated derivatives of the area relation approximated
by nonlinear least square approximation of a sigmoid function.

For a meaningful approximation of the area relation, it is important to select suitable
filter steps ∆σ for scale-space filtering as well as the limits of the filter steps σmin and σmax.
The minimum filter level σmin is given by the plateau of the sigmoid function in accordance
with reference [24]. Since this plateau varies only slightly for different textures, it is set
to σmin = 0.1. In order to determine the filter step size ∆σ and the upper limit for the
analysis of the image sequence at hand, a convergence study regarding two representative
images was conducted, one according to an undeformed image, the other regarding a
highly deformed image; see Figure 3. According to these results as well as considering the
computational effort ∆σ = 0.1, σmax = 10 were selected for further analyses.

Figure 3. Undeformed image (left) and deformed image during the separation process.

2.2. Scale Exponent Field

In principle, an image not only consists of a homogeneous structure, but unites
different textures of different scale behavior. Hence, the calculation of one global scale
exponent for the entire image is often not suitable for detailed analyses. In order to tackle
this issue, scale-space filtering can be adapted to selected parts of the image, allowing
for the estimation of local fractal characteristics. Performing the analysis on a grid-like
structure as depicted in Figure 4 results in a scale exponent field, giving the spatial fractal
characteristics of the image. The quadratic neighborhood region (2w + 1) × (2w + 1)
around the central grid point defines the local evaluation region. The grid size enables an
adjustment according to the resolution of the image.

neighbourhood

w

neighbourhood region
(2w + 1) × (2w + 1)

Figure 4. Grid and image excerpt selection for local scale-space analysis.
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3. Scale Exponent and Fractal Dimension

In general, no connection between the scale exponent and the fractal dimension is
given [14]. For means of interpretation, a rough estimate of the relation between the scale
exponent and fractal dimension is examined using artificial fractal textures with known
fractal properties. For the generation of artificial fractal structures, different programs are
available [28–30]. The program Gwyddion, for example, allows the generation of fractal
images by specifying the Hurst exponent and some random seed [30].

H = 0.05 H = 0.10 H = 0.15 H = 0.20 H = 0.25

Figure 5. Artificial fractal structures for different Hurst exponents.

Figure 5 shows five exemplary textures generated with Gwyddion using Hurst ex-
ponents between H = 0.05 and H = 0.25. The Hurst exponent H is directly related to
the fractal dimension D f = 2− H [31]. Calculating the scalar exponent via the proposed
method in Section 2, the relationship between the scale exponent and the Hurst exponent
or the fractal dimension can be obtained. The results are visualized in Figure 6, depicting
an approximately linear relationship between the fractal dimension D f and the scale expo-
nent S. In this sense, the scale exponent can be seen as a fractal indicator. The proposed
evaluation method is implemented in MATLAB.

1.65 1.7 1.75 1.8 1.85 1.9 1.95

−0.8

−0.6

Fractal dimension D f

Sc
al

e
ex

po
ne

nt
S

Scale exponents
Linear approximation

Figure 6. Relation between fractal dimension D f and the scale exponent S for artificial fractal
structures derived from different Hurst exponents H.

4. Experiments

The approach of scale-space filtering is applied to image sequences of a shear-cutting
process of a steel specimen. Shear cutting is an important process in the chipless separation
of metallic materials, which commonly shows ductile behavior [32]. In terms of quality
assessment, the formation of the cutting surface is important [33]. Many present investiga-
tions deal with the influence of different process parameters, i.e., cutting edge geometry,
cutting speed and clearance, on the formation of the cutting surface [34]. Material failure
occurs when the shear fracture limit is reached, which depends on the deformation and the
stress state. Thereby, the material behavior is decisively determined by the strain, strain
rate and temperature [35,36]. These variables interact in the shear-cutting-affected zone
during the cutting process [37,38]. The aim of the investigations is to track the change
in the scale exponent field as a function of the imposed deformation in order to obtain
information about the underlying processes.
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The test setup for the shear cutting experiment is shown in Figure 7. The tool consists
of an upper and a lower tool part, which are positioned to each other via guide pillars.
Between the upper and lower tool, the sheet metal sample is clamped on a die by means of
a blank holder. The punch is mounted above the die in the upper tool. With the vertical
movement of the upper tool, the punch lowers onto the specimen and separates the sheet
metal. The metal plates serve to fix the specimen to the side. The glass plate placed between
the specimen and the metal plate is necessary to ensure the observation of a plane strain
state through the measuring hole [39].

guide pillar

lower tool

die

sheet metal sample

blank holder

punch

upper tool

measurement hole

metal plate

glass plate

Figure 7. Shear cutting tool for plane strain deformation measurement.

The deformation of the sheet metal edge surface is observed through the measurement
hole with a mobile microscope of type Keyence VHX (Osaka, Japan). In order to ensure
proper data storage, the experiment was stopped several times. Figure 8 shows some
representative images of this experiment. In case of the shear cutting experiment shown in
Figure 8, a sample sheet metal of mild steel S355MC with a thickness of 4 mm was used.
Further sample preparation was performed by etching the ground edge surface in order
to bring out the grain structure of the material. This grain structure not only provides the
basis for the subsequent fractal analysis, but also acts as a speckle pattern for calculating
the displacements using digital image correlation (DIC) [40–42]. The etched sheet metal
samples were separated using low punch speeds of 10 mm/min. The time references given
at the lower edge of the images in Figure 8 serve the purpose of assigning the deformation
to the scale exponent values of the result part. With t = 1, the first analyzed image is
referred to.

t = 1 t = 100 t = 200 t = 300 t = 339

Figure 8. Image sequence of the sheet metal deformation and separation process.

5. Experimental Results

In order to analyze the qualitative progression of the scale exponent field over the
course of the shear-cutting process, the fractal analysis was combined with a displacement
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calculation using DIC, where the abort of the DIC routine leads to the end of the entire
evaluation. More information on the DIC approach used can be found in Refs. [41,42].
Figure 9 depicts the scalar exponent fields for the region of interest (ROI) defined in the
leftmost image. Due to reflections caused by the deformation of the sheet metal sample,
especially in the shear region, the deformation estimation suffers from calculation artifacts.
Additionally, the intermittent character of the experiment and the change in illumination
on the resumption of the experiment cause those difficulties. However, since the artifacts
are limited to the marginal areas, a meaningful assessment of the scale space behavior is
still possible. In the case of the unloaded state, i.e., the leftmost image of Figure 9, the
scalar exponent values are distributed in a relatively homogeneous manner, exhibiting
values around S ≈ −1.2. In the following time step that is depicted, nests with decreasing
scale exponent values of S ≈ −1.4 are formed at the upper and lower edges of the shear
zone. These nests merge to a vertical region that extends along the shear zone in the further
progress of the shear-cutting experiment. For laterally adjacent regions, the scale exponent
values are increased slightly. Toward later time steps, i.e., the rightmost image depicted
in Figure 9, the scale exponent values of the shear region increase slightly. Nevertheless,
the shear region is well separated from the undeformed regions by the difference in scale
exponent values. From time step t = 60 onward, a certain point symmetry of the scale
exponent values to the center of the shear zone can be noted. This symmetry may have its
origin in the boundary conditions, resulting from the shear-cutting process.

t = 2 t = 60 t = 120 t = 150 −1.8

−1.4

−1.0

−0.6
S

Figure 9. Temporal evaluation of scale exponent fields during shear cutting.

With these dimensional images of the scale exponent field, only an estimation of the
development of the spatial distribution of the scale exponent values but no exact statement
can be made about the temporal course of the values of individual material points. Hence,
in order to evaluate the fractal behavior over the course of the shear-cutting process, three
exemplary points were picked—one located in the shear zone, one in the fixed material
zone and one in the material zone that is pressed into the die. The selected points are
depicted in Figure 10.

Grid points

Point 1
Point 2
Point 3

Figure 10. Material points selected or the visualization of the temporal course of the scale exponent.
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The temporal courses of the scale exponent values of these points are visualized in
Figure 11. Here, it should be noted that the shear-cutting experiment was stopped and
restarted several times to ensure data storage. In this context, the camera position is slightly
changed, resulting in breaks and constant regions in the scale-exponent progression. The
areas concerned are highlighted in gray.

In general, a huge difference between the courses of the three points is recognizable.
While the scale exponent curve of the point lying in the fixed material area (point 1) remains
almost constant, the temporal course of the scale exponent of the point pressed into the
die (point 3) forms a sawtooth-like profile for later time steps. This profile is particularly
pronounced from time step t ≈ 75 onward. Similar to the scale exponent progression
of point 1, the time progression of point 3 remains constant on average. In contrast, the
scale exponent of the point lying in the shear zone (point 2) increases at the beginning
up to a time step of t ≈ 20. Afterward, ignoring the gray-shaded regions in which no
punch movement, and hence, deformation took place, the scale exponents decrease almost
continuously until t ≈ 120. Toward the end of the depicted time series, the values of point
2 also reach an about constant plateau.

50 100 150
−1.3

−1.2

−1.1

−1

−0.9

time step t

sc
al

e
ex

po
ne

nt
S

Point 1
Point 2
Point 3

Figure 11. Temporal development of scale exponent values during the shear-cutting experiment.

For means of physical interpretation, an inverse linear relationship between the scale
exponent and fractal dimension is assumed, as it was obtained analyzing artificial fractal
structures in Section 3. The material section of the fixed sample area hardly undergoes
any deformation due to its fixation. Since no deformation takes place that would lead
to a change in the grain boundaries and therefore to a variation in the scale exponent
progression, an about constant progression of scale exponent values over the temporal
course of the experiment seems reasonable for the material points of this region. The jumps
in the scale exponent course are directly located at the time steps where the experiment
was stopped. These jumps also occur in the courses of points 2 and 3, but they are less
pronounced than for point 1. The scale exponent course of material point 2, located in
the shear zone, merges into a continuous decrease after a short increase in scale exponent
values in the beginning. According to Figure 6, an increase in the scale exponent value is
associated with a decrease in the fractal dimension and thus a decrease in the roughness of
the speckle structure. Transferring this knowledge to the deformation of the sheet metal
grain, this hints to an initial elongation of the grain boundaries before the scalar exponent
starts to decrease with the formation of shear bands, causing an increased roughness of the
speckle structure. Since the material points in the material region that are pressed into the
die exhibit no major deformation, it is reasonable that the course of their scale exponent
values, as represented by point 3, is constant, on average. Nevertheless, in contrast to point
1 of the fixed material area, the profile shows a recurring structure, similar to a saw tooth
profile. The formation of these saw-tooth-like characteristics could be due to the stick-slip
effect experienced by points on the moving side of the material.
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6. Summary and Conclusions

The primary goal was to evaluate the opportunities by applying fractal analysis to
optical data of experimental mechanics. Therefore, an algorithm was implemented based
on the concept of scale space filtering proposed by Müssigmann [24]. A reproducible scale
exponent determination was achieved by a least-square approximation of the area relation
with a sigmoid function. Adapting this approach to image excerpts, the spatial distribution of
scalar exponent values could be investigated. Furthermore, the method of scale space filtering
was combined with a DIC calculation. This allowed the observation of the change of the scale
exponent values at single image points over the time course of the shear-cutting process.

The modified scale-space filtering method was applied to a shear-cutting experiment.
Analyzing the scale exponent fields qualitatively, it could be concluded that the major
change of scale exponents takes place in the shear zone, starting with the formation of nets
that form into a vertical region extending over the shear zone. Further insights were gained,
inspecting the scale exponent evaluation of single material points over the course of the
shear-cutting experiment by combining the scale exponent estimation with a deformation
calculation via DIC. While the material point in the fixed material area remains almost
constant, the material point that is pressed into the die shows a sawtooth-like scale exponent
course, remaining constant on average. In contrast to that, the scale exponent course of
material point located in the shear zone continuously decreases after a short initial increase,
resulting in a large total change of scale exponent values over the shearing process.

From the results, it appears that the scale-space filtering presents as a robust, fast and
suitable tool for the fractal analysis of experimental image data depicting the deformation
of grain structure of ductile materials.

Currently, the analysis is built on the assumption that the scale exponent is linearly
related to the fractal dimension. This has been shown for artificially generated fractal
images specified by different Hurst exponents. However, the generality of this assumption
remains open.

7. Outlook

In future work, numerical analysis validation and verification by the experimental
evaluations should be focused on. A promising field, which we think this kind of analysis
contributes to, is continuum mechanics approaches for fractal material, as presented, for
example, in [43,44].

The assumption on the general validity of the relation between fractal dimension and
scale exponent should be further investigated. For example, different classes of images
could be tested and evaluated on how the relation of fractal dimension and scale exponent
appears and which features show the biggest effect.

Further, future research could include the surface topography of the cut edge surface
after the shear cutting process. Here, in particular, the relation of fractal fracture surface
characteristics and the development of the scale exponent field during material deformation
for materials with a different microstructure seems promising.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

Abbreviations
DIC digital image correlation
FDM finite difference method
ROI region of interest
DFG German Research Foundation
Symbols
A surface area
a, b, c, d sigmoid function parameters
D f fractal dimension
f sigmoid function
H Hurst exponent
l scaling
m mass
n number of self-similar shape
σ standard deviation
S scale exponent
t dimensionless time, time step
W image signal
w neighborhood parameter
x, y spatial coordinates

References
1. Teodorescu, P.; Stanescu, N.D.; Pandrea, N. Numerical Analysis with Applications in Mechanics and Engineering; Wiley: Hoboken, NJ,

USA, 2013.
2. Hartmann, C.; Opritescu, D.; Volk, W. An artificial neural network approach for tool path generation in incremental sheet metal

free-forming. J. Intell. Manuf. 2019, 30, 757–770. [CrossRef]
3. Hartmann, C.; Opritescu, D.; Volk, W.; Schmiedl, F.; Ritter, M.; Gritzmann, P. A knowledge-based automated driving approach

for flexible production of individualized sheet metal parts. Knowl.-Based Syst. 2022, 244, 108558. [CrossRef]
4. Dixit, U.; Joshi, S.; Davim, J. Incorporation of material behavior in modeling of metal forming and machining processes: A review.

Mater. Des. 2011, 32, 3655–3670. [CrossRef]
5. Pierron, F.; Grédiac, M. Towards Material Testing 2.0. A review of test design for identification of constitutive parameters from

full-field measurements. Strain 2021, 57, e12370. [CrossRef]
6. Ruzicka, S.; Hausild, P. Fractal aspects of ductile and cleavage fracture surfaces. Eng. Fract. Mech. 2010, 77, 744–752. [CrossRef]
7. Sahu, S.; Yadav, P.C.; Shekhar, S. Fractal Analysis as Applied to Fractography in Ferritic Stainless Steel. Metallogr. Microstruct.

Anal. 2017, 6, 598–609. [CrossRef]
8. Macek, W. Correlation between Fractal Dimension and Areal Surface Parameters for Fracture Analysis after Bending-Torsion

Fatigue. Metals 2021, 11, 1790. [CrossRef]
9. Skripnyak, V.V.; Skripnyak, V.A. Localization of Plastic Deformation in Ti-6Al-4V Alloy. Metals 2021, 11, 1745. [CrossRef]
10. Mandelbrot, B. The Fractal Geometry of Nature. Am. J. Phys. 1983. [CrossRef]
11. Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638.

[CrossRef]
12. Cherepanov, G.P.; Balankin, A.S.; Ivanova, V.S. Fractal Fracture Mechanics—A Review. Eng. Fract. Mech. 1995, 51, 997–1033.
13. Falconer, K. Fractal Geometry—Mathematical Foundations and Applications; Wiley: Hoboken, NJ, USA, 1990; pp. I–XXII, 1–288.
14. Müssigmann, U. Bewertung Inhomogener Fraktaler Strukturen und Skalenanalyse von Texturen; Springer: Berlin/ Heidelberg,

Germany, 1992.
15. Zaiser, M.; Bay, K.; Hähner, P. Fractal analysis of deformation-induced dislocation patterns. Acta Mater. 1999, 47, 2463–2476.
16. Corrêa, R.D.; Meireles, J.B.; Huguenin, J.A.O.; Caetano, D.P.; da Silva, L. Fractal structure of digital speckle patterns produced by

rough surfaces. Phys. Stat. Mech. Its Appl. 2013, 392, 869–874. [CrossRef]
17. Al-Kadi, O.S.; Watson, D. Texture Analysis of Aggressive and Nonaggressive Lung Tumor CE CT Images. IEEE Trans. Biomed.

Eng. 2008, 55, 1822–1830. [CrossRef]
18. Voss, R.F. Characterization and Measurement of Random Fractals. Phys. Scr. 1986, 1986, 27–32. [CrossRef]

http://doi.org/10.1007/s10845-016-1279-x
http://dx.doi.org/10.1016/ j.knosys.2022.108558
http://dx.doi.org/10.1016/j.matdes.2011.03.049
http://dx.doi.org/10.1111/str.12370
http://dx.doi.org/10.1016/j.engfracmech.2009.11.009
http://dx.doi.org/10.1007/s13632-017-0396-z
http://dx.doi.org/10.3390/met11111790
http://dx.doi.org/10.3390/met11111745
http://dx.doi.org/10.1119/1.13295
http://dx.doi.org/10.1126/science.156.3775.636
http://dx.doi.org/10.1016/j.physa.2012.10.023
http://dx.doi.org/10.1109/TBME.2008.919735
http://dx.doi.org/10.1088/0031-8949/1986/t13/004


J. Imaging 2022, 8, 230 11 of 11

19. Keller, J.M.; Chen, S.; Crownover, R.M. Texture description and segmentation through fractal geometry. Comput. Vision Graph.
Image Process. 1989, 45, 150–166. [CrossRef]

20. Peleg, S.; Naor, J.; Hartley, R.; Avnir, D. Multiple Resolution Texture Analysis and Classification. IEEE Trans. Pattern Anal. Mach.
Intell. 1984, 4, 518–523. [CrossRef]

21. Guyot, S.; Péron, M.; Deléchelle, E. Spatial speckle characterization by Brownian motion analysis. Phys. Rev. E 2004, 70, 046618.
[CrossRef]

22. Witkin, A. Scale-space filtering: A new approach to multi-scale description. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, San Diego, CA, USA, 19–21 March 1984; pp. 150–153. [CrossRef]

23. Yuille, A.; Poggio, T. Scaling Theorems for Zero Crossings. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 1, 15–25. [CrossRef]
24. Müssigmann, U. Texturanalyse, Fraktale und Scale Space Filtering. In Proceedings of the Mustererkennung 1989, 11. DAGM-

Symposium, Hamburg, Germany, 2–4 Octorber 1989; pp. 60–67. [CrossRef]
25. Lindeberg, T. Scale-Space for Discrete Images. In Proceedings of the Scandinavian Conference on Image Analysis, Oulu, Finland,

19–22 June 1989; pp. 1098–1107.
26. Erhardt, A. Einführung in die Digitale Bildverarbeitung: Grundlagen, Systeme und Anwendungen; Mit 35 Beispielen und 44 Aufgaben;

Vieweg + Teubner: Wiesbaden, Germany, 2008.
27. Demant, C.; Streicher-Abel, B.; Springhoff, A. Industrielle Bildverarbeitung: Wie Optische Qualitätskontrolle Wirklich Funktioniert;

Springer: Berlin/Heidelberg, Germany, 2011.
28. Kroese, D.P.; Botev, Z.I., Spatial Process Simulation. In Stochastic Geometry, Spatial Statistics and Random Fields: Models and

Algorithms; Springer International Publishing: Cham, Switzerland, 2015; pp. 369–404. [CrossRef]
29. Maeder, R.E. Two-Dimensional Fractional Brownian Motion. Wolfram Demonstrations Project. 2011. Available online: https:

//demonstrations.wolfram.com/TwoDimensionalFractionalBrownianMotion/ (accessed on 1 July 2022).
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